DeepPCF-MVS | | 97.74 3 | 96.19 1 | 97.41 3 | 95.38 2 | 94.82 3 | 95.76 1 | 96.89 12 | 93.48 4 | 99.99 2 |
|
DeepC-MVS_fast | | 98.34 1 | 96.18 2 | 97.28 5 | 95.45 1 | 94.56 6 | 95.00 4 | 97.73 2 | 93.62 3 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TAPA-MVS(SR) | | | 96.14 3 | 97.59 1 | 95.17 3 | 95.28 1 | 93.71 14 | 98.33 1 | 93.46 5 | 99.90 8 |
|
DeepC-MVS | | 97.63 4 | 95.83 4 | 96.95 9 | 95.09 5 | 93.92 9 | 95.10 3 | 96.47 15 | 93.69 2 | 99.98 3 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMH | | 95.42 14 | 95.82 5 | 96.86 10 | 95.13 4 | 93.91 10 | 93.94 11 | 97.45 7 | 94.00 1 | 99.80 14 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 95.51 13 | 95.80 6 | 97.10 8 | 94.93 7 | 94.48 7 | 94.50 9 | 96.96 11 | 93.34 6 | 99.73 16 |
|
PCF-MVS | | 97.50 6 | 95.74 7 | 96.78 11 | 95.05 6 | 93.88 11 | 95.12 2 | 97.66 4 | 92.36 10 | 99.68 18 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
COLMAP(SR) | | | 95.71 8 | 97.15 7 | 94.75 8 | 94.61 5 | 94.55 8 | 97.18 9 | 92.52 9 | 99.69 17 |
|
GSE | | | 95.61 9 | 97.53 2 | 94.34 10 | 95.24 2 | 94.65 7 | 97.62 5 | 90.76 15 | 99.81 11 |
|
COLMAP(base) | | | 95.30 10 | 97.33 4 | 93.94 13 | 94.75 4 | 93.79 13 | 96.15 16 | 91.87 13 | 99.92 6 |
|
ACMP | | 96.25 10 | 95.30 10 | 96.74 13 | 94.34 10 | 93.51 13 | 94.77 6 | 95.94 18 | 92.31 11 | 99.96 4 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
TAPA-MVS | | 97.53 5 | 95.25 12 | 96.76 12 | 94.23 12 | 93.61 12 | 92.41 16 | 97.58 6 | 92.72 7 | 99.92 6 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMM | | 96.26 9 | 95.18 13 | 96.16 14 | 94.52 9 | 92.37 15 | 94.94 5 | 95.99 17 | 92.64 8 | 99.96 4 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PLC |  | 97.93 2 | 95.09 14 | 97.17 6 | 93.70 14 | 94.44 8 | 94.23 10 | 95.51 22 | 91.35 14 | 99.90 8 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LTVRE_ROB | | 93.20 16 | 94.13 15 | 95.94 15 | 92.92 15 | 92.49 14 | 89.18 23 | 97.69 3 | 91.90 12 | 99.39 23 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LPCS | | | 92.53 16 | 95.50 16 | 90.54 20 | 91.21 16 | 89.61 22 | 96.82 13 | 85.20 19 | 99.79 15 |
|
3Dnovator | | 96.92 7 | 92.36 17 | 93.23 20 | 91.79 17 | 86.64 20 | 90.84 19 | 97.21 8 | 87.32 17 | 99.81 11 |
|
3Dnovator+ | | 96.92 7 | 92.27 18 | 92.92 21 | 91.84 16 | 86.23 21 | 90.61 20 | 97.00 10 | 87.90 16 | 99.60 20 |
|
COLMAP_ROB |  | 96.15 12 | 91.92 19 | 95.33 17 | 89.64 21 | 91.06 17 | 91.29 18 | 95.83 20 | 81.79 21 | 99.61 19 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
OpenMVS |  | 96.23 11 | 91.77 20 | 92.83 22 | 91.06 18 | 85.83 22 | 90.32 21 | 96.57 14 | 86.31 18 | 99.83 10 |
|
IB-MVS | | 93.96 15 | 91.21 21 | 93.79 19 | 89.49 22 | 88.03 19 | 93.91 12 | 94.73 24 | 79.84 23 | 99.54 21 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
A-TVSNet + Gipuma |  | | 91.21 21 | 91.69 23 | 90.89 19 | 85.31 23 | 91.82 17 | 95.85 19 | 84.99 20 | 98.08 27 |
|
BP-MVSNet | | | 91.05 23 | 94.24 18 | 88.93 23 | 88.67 18 | 92.83 15 | 94.84 23 | 79.12 24 | 99.81 11 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
CIDER | | | 89.63 24 | 91.22 24 | 88.57 24 | 85.18 24 | 89.08 24 | 95.64 21 | 81.00 22 | 97.26 28 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
CasMVSNet(SR_B) | | | 83.61 25 | 87.31 25 | 81.15 25 | 75.56 26 | 87.86 25 | 92.66 25 | 62.92 26 | 99.06 24 |
|
CasMVSNet(base) | | | 82.59 26 | 87.14 27 | 79.56 26 | 75.62 25 | 86.71 26 | 91.79 26 | 60.17 28 | 98.66 26 |
|
unsupervisedMVS_cas | | | 79.54 27 | 86.41 28 | 74.97 27 | 73.36 28 | 78.28 27 | 86.45 28 | 60.17 28 | 99.46 22 |
|
CasMVSNet(SR_A) | | | 79.19 28 | 87.31 25 | 73.78 28 | 75.56 26 | 73.57 30 | 84.86 31 | 62.92 26 | 99.06 24 |
|
MVE |  | 67.97 19 | 74.31 29 | 77.95 30 | 71.89 30 | 58.86 30 | 76.59 28 | 72.71 32 | 66.36 25 | 97.05 30 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
example | | | 73.08 30 | 74.06 33 | 72.43 29 | 51.09 33 | 75.36 29 | 87.87 27 | 54.05 30 | 97.02 31 |
|
hgnet | | | 71.79 31 | 75.62 31 | 69.25 31 | 57.10 31 | 72.41 31 | 86.27 29 | 49.06 31 | 94.13 32 |
|
DPSNet | | | 71.79 31 | 75.62 31 | 69.25 31 | 57.10 31 | 72.41 31 | 86.27 29 | 49.06 31 | 94.13 32 |
|
PMVS |  | 72.60 17 | 62.73 33 | 78.60 29 | 52.15 33 | 60.09 29 | 58.00 33 | 72.15 33 | 26.30 33 | 97.12 29 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CMPMVS |  | 70.31 18 | 17.21 34 | 42.68 34 | 0.23 34 | 0.00 34 | 0.00 34 | 0.66 34 | 0.02 34 | 85.36 34 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
dnet | | | 0.00 35 | 0.00 35 | 0.00 35 | 0.00 34 | 0.00 34 | 0.00 35 | 0.00 35 | 0.00 35 |
|