HPM-MVS++ | | | 87.09 8 | 88.92 12 | 84.95 5 | 92.61 1 | 87.91 40 | 90.23 15 | 76.06 4 | 88.85 12 | 81.20 10 | 87.33 13 | 87.93 11 | 79.47 8 | 88.59 8 | 88.23 5 | 90.15 34 | 93.60 20 |
|
SMA-MVS | | | 87.56 6 | 90.17 6 | 84.52 9 | 91.71 2 | 90.57 9 | 90.77 8 | 75.19 13 | 90.67 6 | 80.50 14 | 86.59 17 | 88.86 7 | 78.09 16 | 89.92 1 | 89.41 1 | 90.84 10 | 95.19 4 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 85.34 20 | 86.59 24 | 83.88 16 | 91.48 3 | 88.88 25 | 89.79 17 | 75.54 11 | 86.67 21 | 77.94 23 | 76.55 35 | 84.99 25 | 78.07 17 | 88.04 11 | 87.68 11 | 90.46 25 | 93.31 21 |
|
CNVR-MVS | | | 86.36 13 | 88.19 16 | 84.23 12 | 91.33 4 | 89.84 14 | 90.34 11 | 75.56 10 | 87.36 18 | 78.97 18 | 81.19 28 | 86.76 17 | 78.74 11 | 89.30 4 | 88.58 2 | 90.45 26 | 94.33 9 |
|
xxxxxxxxxxxxxcwj | | | 85.35 19 | 85.76 30 | 84.86 7 | 91.26 5 | 91.10 7 | 90.90 5 | 75.65 7 | 89.21 8 | 81.25 7 | 91.12 7 | 61.35 115 | 78.82 9 | 87.42 19 | 86.23 30 | 91.28 3 | 93.90 12 |
|
SF-MVS | | | 87.47 7 | 89.70 7 | 84.86 7 | 91.26 5 | 91.10 7 | 90.90 5 | 75.65 7 | 89.21 8 | 81.25 7 | 91.12 7 | 88.93 6 | 78.82 9 | 87.42 19 | 86.23 30 | 91.28 3 | 93.90 12 |
|
APDe-MVS | | | 88.00 5 | 90.50 5 | 85.08 4 | 90.95 7 | 91.58 6 | 92.03 1 | 75.53 12 | 91.15 4 | 80.10 15 | 92.27 4 | 88.34 10 | 80.80 4 | 88.00 13 | 86.99 18 | 91.09 6 | 95.16 5 |
|
DPE-MVS | | | 88.63 3 | 91.29 3 | 85.53 2 | 90.87 8 | 92.20 3 | 91.98 2 | 76.00 5 | 90.55 7 | 82.09 6 | 93.85 1 | 90.75 1 | 81.25 1 | 88.62 7 | 87.59 13 | 90.96 9 | 95.48 3 |
|
HFP-MVS | | | 86.15 14 | 87.95 17 | 84.06 14 | 90.80 9 | 89.20 23 | 89.62 20 | 74.26 16 | 87.52 15 | 80.63 12 | 86.82 16 | 84.19 29 | 78.22 14 | 87.58 17 | 87.19 16 | 90.81 12 | 93.13 24 |
|
SteuartSystems-ACMMP | | | 85.99 15 | 88.31 15 | 83.27 21 | 90.73 10 | 89.84 14 | 90.27 14 | 74.31 15 | 84.56 30 | 75.88 30 | 87.32 14 | 85.04 24 | 77.31 24 | 89.01 6 | 88.46 3 | 91.14 5 | 93.96 11 |
Skip Steuart: Steuart Systems R&D Blog. |
APD-MVS | | | 86.84 11 | 88.91 13 | 84.41 10 | 90.66 11 | 90.10 12 | 90.78 7 | 75.64 9 | 87.38 17 | 78.72 19 | 90.68 10 | 86.82 16 | 80.15 6 | 87.13 25 | 86.45 28 | 90.51 20 | 93.83 14 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MP-MVS | | | 85.50 18 | 87.40 20 | 83.28 20 | 90.65 12 | 89.51 19 | 89.16 24 | 74.11 19 | 83.70 34 | 78.06 22 | 85.54 20 | 84.89 27 | 77.31 24 | 87.40 22 | 87.14 17 | 90.41 27 | 93.65 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
train_agg | | | 84.86 25 | 87.21 21 | 82.11 27 | 90.59 13 | 85.47 55 | 89.81 16 | 73.55 26 | 83.95 32 | 73.30 38 | 89.84 12 | 87.23 14 | 75.61 32 | 86.47 34 | 85.46 39 | 89.78 39 | 92.06 32 |
|
MCST-MVS | | | 85.13 23 | 86.62 23 | 83.39 18 | 90.55 14 | 89.82 16 | 89.29 22 | 73.89 23 | 84.38 31 | 76.03 29 | 79.01 31 | 85.90 21 | 78.47 12 | 87.81 15 | 86.11 34 | 92.11 1 | 93.29 22 |
|
SED-MVS | | | 88.85 1 | 91.59 2 | 85.67 1 | 90.54 15 | 92.29 2 | 91.71 3 | 76.40 2 | 92.41 2 | 83.24 2 | 92.50 3 | 90.64 3 | 81.10 2 | 89.53 2 | 88.02 7 | 91.00 8 | 95.73 2 |
|
zzz-MVS | | | 85.71 16 | 86.88 22 | 84.34 11 | 90.54 15 | 87.11 44 | 89.77 18 | 74.17 18 | 88.54 13 | 83.08 3 | 78.60 32 | 86.10 19 | 78.11 15 | 87.80 16 | 87.46 14 | 90.35 29 | 92.56 26 |
|
DVP-MVS | | | 88.67 2 | 91.62 1 | 85.22 3 | 90.47 17 | 92.36 1 | 90.69 9 | 76.15 3 | 93.08 1 | 82.75 4 | 92.19 5 | 90.71 2 | 80.45 5 | 89.27 5 | 87.91 8 | 90.82 11 | 95.84 1 |
|
DeepC-MVS_fast | | 78.24 3 | 84.27 29 | 85.50 31 | 82.85 23 | 90.46 18 | 89.24 21 | 87.83 33 | 74.24 17 | 84.88 26 | 76.23 28 | 75.26 38 | 81.05 43 | 77.62 21 | 88.02 12 | 87.62 12 | 90.69 16 | 92.41 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMP_NAP | | | 86.52 12 | 89.01 10 | 83.62 17 | 90.28 19 | 90.09 13 | 90.32 13 | 74.05 20 | 88.32 14 | 79.74 16 | 87.04 15 | 85.59 23 | 76.97 29 | 89.35 3 | 88.44 4 | 90.35 29 | 94.27 10 |
|
SD-MVS | | | 86.96 9 | 89.45 8 | 84.05 15 | 90.13 20 | 89.23 22 | 89.77 18 | 74.59 14 | 89.17 10 | 80.70 11 | 89.93 11 | 89.67 4 | 78.47 12 | 87.57 18 | 86.79 22 | 90.67 17 | 93.76 16 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMPR | | | 85.52 17 | 87.53 19 | 83.17 22 | 90.13 20 | 89.27 20 | 89.30 21 | 73.97 21 | 86.89 20 | 77.14 25 | 86.09 18 | 83.18 32 | 77.74 20 | 87.42 19 | 87.20 15 | 90.77 13 | 92.63 25 |
|
PGM-MVS | | | 84.42 28 | 86.29 27 | 82.23 26 | 90.04 22 | 88.82 27 | 89.23 23 | 71.74 36 | 82.82 37 | 74.61 33 | 84.41 23 | 82.09 35 | 77.03 28 | 87.13 25 | 86.73 24 | 90.73 15 | 92.06 32 |
|
MSP-MVS | | | 88.09 4 | 90.84 4 | 84.88 6 | 90.00 23 | 91.80 5 | 91.63 4 | 75.80 6 | 91.99 3 | 81.23 9 | 92.54 2 | 89.18 5 | 80.89 3 | 87.99 14 | 87.91 8 | 89.70 43 | 94.51 6 |
|
CSCG | | | 85.28 22 | 87.68 18 | 82.49 25 | 89.95 24 | 91.99 4 | 88.82 25 | 71.20 38 | 86.41 22 | 79.63 17 | 79.26 29 | 88.36 9 | 73.94 39 | 86.64 32 | 86.67 25 | 91.40 2 | 94.41 7 |
|
mPP-MVS | | | | | | 89.90 25 | | | | | | | 81.29 42 | | | | | |
|
TSAR-MVS + MP. | | | 86.88 10 | 89.23 9 | 84.14 13 | 89.78 26 | 88.67 31 | 90.59 10 | 73.46 27 | 88.99 11 | 80.52 13 | 91.26 6 | 88.65 8 | 79.91 7 | 86.96 30 | 86.22 32 | 90.59 18 | 93.83 14 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
X-MVS | | | 83.23 33 | 85.20 33 | 80.92 34 | 89.71 27 | 88.68 28 | 88.21 32 | 73.60 24 | 82.57 38 | 71.81 46 | 77.07 33 | 81.92 37 | 71.72 58 | 86.98 29 | 86.86 20 | 90.47 22 | 92.36 29 |
|
DPM-MVS | | | 83.30 32 | 84.33 35 | 82.11 27 | 89.56 28 | 88.49 34 | 90.33 12 | 73.24 28 | 83.85 33 | 76.46 27 | 72.43 48 | 82.65 33 | 73.02 47 | 86.37 36 | 86.91 19 | 90.03 36 | 89.62 51 |
|
TSAR-MVS + ACMM | | | 85.10 24 | 88.81 14 | 80.77 35 | 89.55 29 | 88.53 33 | 88.59 28 | 72.55 31 | 87.39 16 | 71.90 43 | 90.95 9 | 87.55 12 | 74.57 34 | 87.08 27 | 86.54 26 | 87.47 85 | 93.67 17 |
|
CP-MVS | | | 84.74 27 | 86.43 26 | 82.77 24 | 89.48 30 | 88.13 39 | 88.64 26 | 73.93 22 | 84.92 25 | 76.77 26 | 81.94 26 | 83.50 30 | 77.29 26 | 86.92 31 | 86.49 27 | 90.49 21 | 93.14 23 |
|
CDPH-MVS | | | 82.64 34 | 85.03 34 | 79.86 39 | 89.41 31 | 88.31 36 | 88.32 30 | 71.84 35 | 80.11 45 | 67.47 62 | 82.09 25 | 81.44 41 | 71.85 56 | 85.89 40 | 86.15 33 | 90.24 32 | 91.25 38 |
|
DeepC-MVS | | 78.47 2 | 84.81 26 | 86.03 28 | 83.37 19 | 89.29 32 | 90.38 11 | 88.61 27 | 76.50 1 | 86.25 23 | 77.22 24 | 75.12 39 | 80.28 45 | 77.59 22 | 88.39 9 | 88.17 6 | 91.02 7 | 93.66 18 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap | | | 79.74 47 | 78.62 59 | 81.05 33 | 89.23 33 | 86.06 52 | 84.95 49 | 71.96 34 | 79.39 48 | 75.51 31 | 63.16 89 | 68.84 93 | 76.51 30 | 83.55 57 | 82.85 55 | 88.13 70 | 86.46 74 |
|
SR-MVS | | | | | | 88.99 34 | | | 73.57 25 | | | | 87.54 13 | | | | | |
|
EPNet | | | 79.08 54 | 80.62 49 | 77.28 53 | 88.90 35 | 83.17 76 | 83.65 55 | 72.41 32 | 74.41 58 | 67.15 64 | 76.78 34 | 74.37 60 | 64.43 95 | 83.70 56 | 83.69 51 | 87.15 89 | 88.19 59 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepPCF-MVS | | 79.04 1 | 85.30 21 | 88.93 11 | 81.06 32 | 88.77 36 | 90.48 10 | 85.46 46 | 73.08 29 | 90.97 5 | 73.77 37 | 84.81 22 | 85.95 20 | 77.43 23 | 88.22 10 | 87.73 10 | 87.85 78 | 94.34 8 |
|
ACMMP | | | 83.42 31 | 85.27 32 | 81.26 31 | 88.47 37 | 88.49 34 | 88.31 31 | 72.09 33 | 83.42 35 | 72.77 41 | 82.65 24 | 78.22 49 | 75.18 33 | 86.24 38 | 85.76 36 | 90.74 14 | 92.13 31 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator+ | | 75.73 4 | 82.40 35 | 82.76 40 | 81.97 29 | 88.02 38 | 89.67 17 | 86.60 37 | 71.48 37 | 81.28 43 | 78.18 21 | 64.78 83 | 77.96 51 | 77.13 27 | 87.32 23 | 86.83 21 | 90.41 27 | 91.48 36 |
|
OPM-MVS | | | 79.68 48 | 79.28 57 | 80.15 38 | 87.99 39 | 86.77 47 | 88.52 29 | 72.72 30 | 64.55 92 | 67.65 61 | 67.87 71 | 74.33 61 | 74.31 37 | 86.37 36 | 85.25 41 | 89.73 42 | 89.81 49 |
|
MAR-MVS | | | 79.21 51 | 80.32 53 | 77.92 51 | 87.46 40 | 88.15 38 | 83.95 53 | 67.48 62 | 74.28 59 | 68.25 58 | 64.70 84 | 77.04 52 | 72.17 52 | 85.42 42 | 85.00 43 | 88.22 66 | 87.62 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
HQP-MVS | | | 81.19 41 | 83.27 38 | 78.76 46 | 87.40 41 | 85.45 56 | 86.95 35 | 70.47 41 | 81.31 42 | 66.91 65 | 79.24 30 | 76.63 53 | 71.67 59 | 84.43 50 | 83.78 50 | 89.19 53 | 92.05 34 |
|
abl_6 | | | | | 79.05 43 | 87.27 42 | 88.85 26 | 83.62 56 | 68.25 55 | 81.68 41 | 72.94 40 | 73.79 45 | 84.45 28 | 72.55 50 | | | 89.66 45 | 90.64 43 |
|
CANet | | | 81.62 40 | 83.41 37 | 79.53 41 | 87.06 43 | 88.59 32 | 85.47 45 | 67.96 59 | 76.59 53 | 74.05 34 | 74.69 40 | 81.98 36 | 72.98 48 | 86.14 39 | 85.47 38 | 89.68 44 | 90.42 46 |
|
MSLP-MVS++ | | | 82.09 37 | 82.66 41 | 81.42 30 | 87.03 44 | 87.22 43 | 85.82 42 | 70.04 43 | 80.30 44 | 78.66 20 | 68.67 67 | 81.04 44 | 77.81 19 | 85.19 46 | 84.88 44 | 89.19 53 | 91.31 37 |
|
ACMM | | 72.26 8 | 78.86 55 | 78.13 61 | 79.71 40 | 86.89 45 | 83.40 73 | 86.02 40 | 70.50 40 | 75.28 55 | 71.49 50 | 63.01 90 | 69.26 87 | 73.57 41 | 84.11 52 | 83.98 48 | 89.76 41 | 87.84 62 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | | | | 86.63 46 | 88.68 28 | 85.00 47 | | | 71.81 46 | | 81.92 37 | | | | 90.47 22 | |
|
X-MVStestdata | | | | | | 86.63 46 | 88.68 28 | 85.00 47 | | | 71.81 46 | | 81.92 37 | | | | 90.47 22 | |
|
PHI-MVS | | | 82.36 36 | 85.89 29 | 78.24 49 | 86.40 48 | 89.52 18 | 85.52 44 | 69.52 49 | 82.38 40 | 65.67 69 | 81.35 27 | 82.36 34 | 73.07 45 | 87.31 24 | 86.76 23 | 89.24 50 | 91.56 35 |
|
LGP-MVS_train | | | 79.83 44 | 81.22 47 | 78.22 50 | 86.28 49 | 85.36 58 | 86.76 36 | 69.59 47 | 77.34 50 | 65.14 71 | 75.68 37 | 70.79 75 | 71.37 62 | 84.60 48 | 84.01 47 | 90.18 33 | 90.74 42 |
|
MVS_0304 | | | 81.73 39 | 83.86 36 | 79.26 42 | 86.22 50 | 89.18 24 | 86.41 38 | 67.15 63 | 75.28 55 | 70.75 53 | 74.59 41 | 83.49 31 | 74.42 36 | 87.05 28 | 86.34 29 | 90.58 19 | 91.08 40 |
|
CPTT-MVS | | | 81.77 38 | 83.10 39 | 80.21 37 | 85.93 51 | 86.45 50 | 87.72 34 | 70.98 39 | 82.54 39 | 71.53 49 | 74.23 44 | 81.49 40 | 76.31 31 | 82.85 64 | 81.87 61 | 88.79 61 | 92.26 30 |
|
MVS_111021_HR | | | 80.13 43 | 81.46 45 | 78.58 47 | 85.77 52 | 85.17 59 | 83.45 57 | 69.28 50 | 74.08 61 | 70.31 54 | 74.31 43 | 75.26 58 | 73.13 44 | 86.46 35 | 85.15 42 | 89.53 46 | 89.81 49 |
|
ACMP | | 73.23 7 | 79.79 45 | 80.53 50 | 78.94 44 | 85.61 53 | 85.68 53 | 85.61 43 | 69.59 47 | 77.33 51 | 71.00 52 | 74.45 42 | 69.16 88 | 71.88 54 | 83.15 61 | 83.37 53 | 89.92 37 | 90.57 45 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UA-Net | | | 74.47 74 | 77.80 64 | 70.59 89 | 85.33 54 | 85.40 57 | 73.54 136 | 65.98 72 | 60.65 124 | 56.00 106 | 72.11 49 | 79.15 46 | 54.63 161 | 83.13 62 | 82.25 58 | 88.04 72 | 81.92 122 |
|
TSAR-MVS + GP. | | | 83.69 30 | 86.58 25 | 80.32 36 | 85.14 55 | 86.96 45 | 84.91 50 | 70.25 42 | 84.71 29 | 73.91 36 | 85.16 21 | 85.63 22 | 77.92 18 | 85.44 41 | 85.71 37 | 89.77 40 | 92.45 27 |
|
LS3D | | | 74.08 76 | 73.39 88 | 74.88 67 | 85.05 56 | 82.62 79 | 79.71 73 | 68.66 53 | 72.82 64 | 58.80 89 | 57.61 118 | 61.31 116 | 71.07 64 | 80.32 96 | 78.87 108 | 86.00 127 | 80.18 136 |
|
QAPM | | | 78.47 56 | 80.22 54 | 76.43 57 | 85.03 57 | 86.75 48 | 80.62 66 | 66.00 71 | 73.77 62 | 65.35 70 | 65.54 79 | 78.02 50 | 72.69 49 | 83.71 55 | 83.36 54 | 88.87 59 | 90.41 47 |
|
OpenMVS | | 70.44 10 | 76.15 67 | 76.82 75 | 75.37 63 | 85.01 58 | 84.79 61 | 78.99 81 | 62.07 116 | 71.27 66 | 67.88 60 | 57.91 117 | 72.36 68 | 70.15 66 | 82.23 69 | 81.41 66 | 88.12 71 | 87.78 63 |
|
CLD-MVS | | | 79.35 50 | 81.23 46 | 77.16 54 | 85.01 58 | 86.92 46 | 85.87 41 | 60.89 126 | 80.07 47 | 75.35 32 | 72.96 46 | 73.21 65 | 68.43 76 | 85.41 43 | 84.63 45 | 87.41 86 | 85.44 85 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
3Dnovator | | 73.76 5 | 79.75 46 | 80.52 51 | 78.84 45 | 84.94 60 | 87.35 41 | 84.43 52 | 65.54 74 | 78.29 49 | 73.97 35 | 63.00 91 | 75.62 57 | 74.07 38 | 85.00 47 | 85.34 40 | 90.11 35 | 89.04 53 |
|
PCF-MVS | | 73.28 6 | 79.42 49 | 80.41 52 | 78.26 48 | 84.88 61 | 88.17 37 | 86.08 39 | 69.85 44 | 75.23 57 | 68.43 57 | 68.03 70 | 78.38 48 | 71.76 57 | 81.26 82 | 80.65 83 | 88.56 64 | 91.18 39 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DELS-MVS | | | 79.15 53 | 81.07 48 | 76.91 55 | 83.54 62 | 87.31 42 | 84.45 51 | 64.92 79 | 69.98 67 | 69.34 55 | 71.62 52 | 76.26 54 | 69.84 67 | 86.57 33 | 85.90 35 | 89.39 48 | 89.88 48 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OMC-MVS | | | 80.26 42 | 82.59 42 | 77.54 52 | 83.04 63 | 85.54 54 | 83.25 58 | 65.05 78 | 87.32 19 | 72.42 42 | 72.04 50 | 78.97 47 | 73.30 43 | 83.86 53 | 81.60 65 | 88.15 69 | 88.83 55 |
|
PLC | | 68.99 11 | 75.68 68 | 75.31 80 | 76.12 59 | 82.94 64 | 81.26 89 | 79.94 70 | 66.10 69 | 77.15 52 | 66.86 66 | 59.13 107 | 68.53 94 | 73.73 40 | 80.38 95 | 79.04 104 | 87.13 93 | 81.68 124 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CNLPA | | | 77.20 61 | 77.54 66 | 76.80 56 | 82.63 65 | 84.31 63 | 79.77 72 | 64.64 80 | 85.17 24 | 73.18 39 | 56.37 124 | 69.81 83 | 74.53 35 | 81.12 86 | 78.69 109 | 86.04 125 | 87.29 68 |
|
ACMH+ | | 66.54 13 | 71.36 93 | 70.09 111 | 72.85 77 | 82.59 66 | 81.13 91 | 78.56 83 | 68.04 57 | 61.55 116 | 52.52 128 | 51.50 163 | 54.14 150 | 68.56 75 | 78.85 116 | 79.50 100 | 86.82 101 | 83.94 104 |
|
ACMH | | 65.37 14 | 70.71 97 | 70.00 112 | 71.54 81 | 82.51 67 | 82.47 80 | 77.78 91 | 68.13 56 | 56.19 151 | 46.06 161 | 54.30 134 | 51.20 177 | 68.68 74 | 80.66 91 | 80.72 76 | 86.07 121 | 84.45 101 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EIA-MVS | | | 75.64 69 | 76.60 76 | 74.53 71 | 82.43 68 | 83.84 66 | 78.32 87 | 62.28 115 | 65.96 82 | 63.28 79 | 68.95 63 | 67.54 97 | 71.61 60 | 82.55 66 | 81.63 64 | 89.24 50 | 85.72 79 |
|
canonicalmvs | | | 79.16 52 | 82.37 43 | 75.41 62 | 82.33 69 | 86.38 51 | 80.80 63 | 63.18 92 | 82.90 36 | 67.34 63 | 72.79 47 | 76.07 55 | 69.62 68 | 83.46 60 | 84.41 46 | 89.20 52 | 90.60 44 |
|
ETV-MVS | | | 77.32 60 | 78.81 58 | 75.58 61 | 82.24 70 | 83.64 70 | 79.98 68 | 64.02 86 | 69.64 71 | 63.90 76 | 70.89 56 | 69.94 82 | 73.41 42 | 85.39 44 | 83.91 49 | 89.92 37 | 88.31 58 |
|
MSDG | | | 71.52 90 | 69.87 113 | 73.44 75 | 82.21 71 | 79.35 108 | 79.52 74 | 64.59 81 | 66.15 80 | 61.87 80 | 53.21 148 | 56.09 140 | 65.85 92 | 78.94 115 | 78.50 111 | 86.60 110 | 76.85 158 |
|
test_part1 | | | 74.24 75 | 73.44 87 | 75.18 64 | 82.02 72 | 82.34 81 | 83.88 54 | 62.40 113 | 60.93 122 | 68.68 56 | 49.25 173 | 69.71 84 | 65.73 93 | 81.26 82 | 81.98 60 | 88.35 65 | 88.60 57 |
|
CS-MVS | | | 76.92 62 | 78.01 62 | 75.64 60 | 81.47 73 | 83.59 71 | 80.68 64 | 62.47 111 | 68.39 73 | 65.83 68 | 67.84 72 | 70.74 76 | 73.07 45 | 85.31 45 | 82.79 56 | 90.33 31 | 87.42 65 |
|
IS_MVSNet | | | 73.33 79 | 77.34 71 | 68.65 109 | 81.29 74 | 83.47 72 | 74.45 118 | 63.58 89 | 65.75 84 | 48.49 145 | 67.11 76 | 70.61 77 | 54.63 161 | 84.51 49 | 83.58 52 | 89.48 47 | 86.34 75 |
|
Effi-MVS+ | | | 75.28 71 | 76.20 77 | 74.20 73 | 81.15 75 | 83.24 74 | 81.11 61 | 63.13 94 | 66.37 78 | 60.27 85 | 64.30 87 | 68.88 92 | 70.93 65 | 81.56 73 | 81.69 63 | 88.61 62 | 87.35 66 |
|
MVS_111021_LR | | | 78.13 58 | 79.85 56 | 76.13 58 | 81.12 76 | 81.50 86 | 80.28 67 | 65.25 76 | 76.09 54 | 71.32 51 | 76.49 36 | 72.87 67 | 72.21 51 | 82.79 65 | 81.29 67 | 86.59 111 | 87.91 61 |
|
FC-MVSNet-train | | | 72.60 84 | 75.07 81 | 69.71 98 | 81.10 77 | 78.79 115 | 73.74 135 | 65.23 77 | 66.10 81 | 53.34 121 | 70.36 58 | 63.40 110 | 56.92 146 | 81.44 75 | 80.96 72 | 87.93 74 | 84.46 100 |
|
MS-PatchMatch | | | 70.17 104 | 70.49 108 | 69.79 97 | 80.98 78 | 77.97 127 | 77.51 93 | 58.95 149 | 62.33 110 | 55.22 110 | 53.14 149 | 65.90 102 | 62.03 111 | 79.08 113 | 77.11 133 | 84.08 150 | 77.91 150 |
|
Anonymous202405211 | | | | 72.16 99 | | 80.85 79 | 81.85 83 | 76.88 101 | 65.40 75 | 62.89 107 | | 46.35 180 | 67.99 96 | 62.05 110 | 81.15 85 | 80.38 87 | 85.97 128 | 84.50 99 |
|
TAPA-MVS | | 71.42 9 | 77.69 59 | 80.05 55 | 74.94 66 | 80.68 80 | 84.52 62 | 81.36 60 | 63.14 93 | 84.77 27 | 64.82 73 | 68.72 65 | 75.91 56 | 71.86 55 | 81.62 71 | 79.55 99 | 87.80 80 | 85.24 88 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PVSNet_Blended_VisFu | | | 76.57 64 | 77.90 63 | 75.02 65 | 80.56 81 | 86.58 49 | 79.24 77 | 66.18 68 | 64.81 89 | 68.18 59 | 65.61 77 | 71.45 70 | 67.05 78 | 84.16 51 | 81.80 62 | 88.90 57 | 90.92 41 |
|
EPP-MVSNet | | | 74.00 77 | 77.41 69 | 70.02 95 | 80.53 82 | 83.91 65 | 74.99 114 | 62.68 106 | 65.06 87 | 49.77 141 | 68.68 66 | 72.09 69 | 63.06 103 | 82.49 68 | 80.73 75 | 89.12 55 | 88.91 54 |
|
COLMAP_ROB | | 62.73 15 | 67.66 133 | 66.76 149 | 68.70 108 | 80.49 83 | 77.98 125 | 75.29 107 | 62.95 96 | 63.62 101 | 49.96 139 | 47.32 179 | 50.72 180 | 58.57 131 | 76.87 137 | 75.50 149 | 84.94 145 | 75.33 169 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
casdiffmvs | | | 76.76 63 | 78.46 60 | 74.77 68 | 80.32 84 | 83.73 69 | 80.65 65 | 63.24 91 | 73.58 63 | 66.11 67 | 69.39 62 | 74.09 62 | 69.49 70 | 82.52 67 | 79.35 103 | 88.84 60 | 86.52 73 |
|
DCV-MVSNet | | | 73.65 78 | 75.78 79 | 71.16 83 | 80.19 85 | 79.27 109 | 77.45 96 | 61.68 122 | 66.73 77 | 58.72 90 | 65.31 80 | 69.96 81 | 62.19 108 | 81.29 81 | 80.97 71 | 86.74 104 | 86.91 69 |
|
Anonymous20231211 | | | 71.90 87 | 72.48 96 | 71.21 82 | 80.14 86 | 81.53 85 | 76.92 99 | 62.89 97 | 64.46 94 | 58.94 87 | 43.80 184 | 70.98 74 | 62.22 107 | 80.70 90 | 80.19 90 | 86.18 118 | 85.73 78 |
|
TSAR-MVS + COLMAP | | | 78.34 57 | 81.64 44 | 74.48 72 | 80.13 87 | 85.01 60 | 81.73 59 | 65.93 73 | 84.75 28 | 61.68 81 | 85.79 19 | 66.27 101 | 71.39 61 | 82.91 63 | 80.78 74 | 86.01 126 | 85.98 76 |
|
baseline1 | | | 70.10 105 | 72.17 98 | 67.69 118 | 79.74 88 | 76.80 137 | 73.91 129 | 64.38 83 | 62.74 108 | 48.30 147 | 64.94 81 | 64.08 107 | 54.17 163 | 81.46 74 | 78.92 106 | 85.66 133 | 76.22 160 |
|
EPNet_dtu | | | 68.08 125 | 71.00 104 | 64.67 147 | 79.64 89 | 68.62 178 | 75.05 113 | 63.30 90 | 66.36 79 | 45.27 165 | 67.40 74 | 66.84 100 | 43.64 183 | 75.37 146 | 74.98 152 | 81.15 162 | 77.44 153 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_BlendedMVS | | | 76.21 65 | 77.52 67 | 74.69 69 | 79.46 90 | 83.79 67 | 77.50 94 | 64.34 84 | 69.88 68 | 71.88 44 | 68.54 68 | 70.42 78 | 67.05 78 | 83.48 58 | 79.63 95 | 87.89 76 | 86.87 70 |
|
PVSNet_Blended | | | 76.21 65 | 77.52 67 | 74.69 69 | 79.46 90 | 83.79 67 | 77.50 94 | 64.34 84 | 69.88 68 | 71.88 44 | 68.54 68 | 70.42 78 | 67.05 78 | 83.48 58 | 79.63 95 | 87.89 76 | 86.87 70 |
|
IB-MVS | | 66.94 12 | 71.21 94 | 71.66 102 | 70.68 86 | 79.18 92 | 82.83 78 | 72.61 142 | 61.77 120 | 59.66 129 | 63.44 78 | 53.26 146 | 59.65 123 | 59.16 130 | 76.78 139 | 82.11 59 | 87.90 75 | 87.33 67 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVS_Test | | | 75.37 70 | 77.13 73 | 73.31 76 | 79.07 93 | 81.32 88 | 79.98 68 | 60.12 137 | 69.72 70 | 64.11 75 | 70.53 57 | 73.22 64 | 68.90 72 | 80.14 101 | 79.48 101 | 87.67 82 | 85.50 83 |
|
Effi-MVS+-dtu | | | 71.82 88 | 71.86 101 | 71.78 80 | 78.77 94 | 80.47 98 | 78.55 84 | 61.67 123 | 60.68 123 | 55.49 107 | 58.48 111 | 65.48 103 | 68.85 73 | 76.92 136 | 75.55 148 | 87.35 87 | 85.46 84 |
|
EG-PatchMatch MVS | | | 67.24 140 | 66.94 147 | 67.60 120 | 78.73 95 | 81.35 87 | 73.28 140 | 59.49 142 | 46.89 192 | 51.42 133 | 43.65 185 | 53.49 158 | 55.50 158 | 81.38 77 | 80.66 82 | 87.15 89 | 81.17 128 |
|
gg-mvs-nofinetune | | | 62.55 163 | 65.05 161 | 59.62 172 | 78.72 96 | 77.61 131 | 70.83 150 | 53.63 165 | 39.71 204 | 22.04 205 | 36.36 197 | 64.32 106 | 47.53 176 | 81.16 84 | 79.03 105 | 85.00 144 | 77.17 155 |
|
Vis-MVSNet (Re-imp) | | | 67.83 130 | 73.52 86 | 61.19 163 | 78.37 97 | 76.72 139 | 66.80 168 | 62.96 95 | 65.50 85 | 34.17 188 | 67.19 75 | 69.68 85 | 39.20 191 | 79.39 110 | 79.44 102 | 85.68 132 | 76.73 159 |
|
DI_MVS_plusplus_trai | | | 75.13 72 | 76.12 78 | 73.96 74 | 78.18 98 | 81.55 84 | 80.97 62 | 62.54 108 | 68.59 72 | 65.13 72 | 61.43 93 | 74.81 59 | 69.32 71 | 81.01 88 | 79.59 97 | 87.64 83 | 85.89 77 |
|
thres600view7 | | | 67.68 132 | 68.43 134 | 66.80 135 | 77.90 99 | 78.86 113 | 73.84 131 | 62.75 99 | 56.07 152 | 44.70 168 | 52.85 154 | 52.81 167 | 55.58 156 | 80.41 92 | 77.77 120 | 86.05 123 | 80.28 135 |
|
thres400 | | | 67.95 127 | 68.62 132 | 67.17 128 | 77.90 99 | 78.59 118 | 74.27 124 | 62.72 101 | 56.34 150 | 45.77 163 | 53.00 151 | 53.35 163 | 56.46 148 | 80.21 100 | 78.43 112 | 85.91 130 | 80.43 134 |
|
thres200 | | | 67.98 126 | 68.55 133 | 67.30 126 | 77.89 101 | 78.86 113 | 74.18 127 | 62.75 99 | 56.35 149 | 46.48 158 | 52.98 152 | 53.54 156 | 56.46 148 | 80.41 92 | 77.97 118 | 86.05 123 | 79.78 140 |
|
thres100view900 | | | 67.60 136 | 68.02 137 | 67.12 130 | 77.83 102 | 77.75 129 | 73.90 130 | 62.52 109 | 56.64 146 | 46.82 155 | 52.65 156 | 53.47 160 | 55.92 152 | 78.77 117 | 77.62 123 | 85.72 131 | 79.23 143 |
|
tfpn200view9 | | | 68.11 124 | 68.72 130 | 67.40 123 | 77.83 102 | 78.93 111 | 74.28 123 | 62.81 98 | 56.64 146 | 46.82 155 | 52.65 156 | 53.47 160 | 56.59 147 | 80.41 92 | 78.43 112 | 86.11 119 | 80.52 133 |
|
Fast-Effi-MVS+ | | | 73.11 81 | 73.66 85 | 72.48 78 | 77.72 104 | 80.88 95 | 78.55 84 | 58.83 152 | 65.19 86 | 60.36 84 | 59.98 102 | 62.42 113 | 71.22 63 | 81.66 70 | 80.61 85 | 88.20 67 | 84.88 95 |
|
UniMVSNet_NR-MVSNet | | | 70.59 98 | 72.19 97 | 68.72 107 | 77.72 104 | 80.72 96 | 73.81 133 | 69.65 46 | 61.99 112 | 43.23 170 | 60.54 98 | 57.50 132 | 58.57 131 | 79.56 107 | 81.07 70 | 89.34 49 | 83.97 102 |
|
IterMVS-LS | | | 71.69 89 | 72.82 94 | 70.37 91 | 77.54 106 | 76.34 142 | 75.13 112 | 60.46 132 | 61.53 117 | 57.57 97 | 64.89 82 | 67.33 98 | 66.04 91 | 77.09 135 | 77.37 129 | 85.48 136 | 85.18 89 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
NR-MVSNet | | | 68.79 119 | 70.56 107 | 66.71 138 | 77.48 107 | 79.54 105 | 73.52 137 | 69.20 51 | 61.20 120 | 39.76 177 | 58.52 109 | 50.11 183 | 51.37 170 | 80.26 99 | 80.71 80 | 88.97 56 | 83.59 108 |
|
TransMVSNet (Re) | | | 64.74 152 | 65.66 155 | 63.66 154 | 77.40 108 | 75.33 151 | 69.86 151 | 62.67 107 | 47.63 190 | 41.21 176 | 50.01 169 | 52.33 170 | 45.31 180 | 79.57 106 | 77.69 122 | 85.49 135 | 77.07 157 |
|
TranMVSNet+NR-MVSNet | | | 69.25 114 | 70.81 106 | 67.43 122 | 77.23 109 | 79.46 107 | 73.48 138 | 69.66 45 | 60.43 126 | 39.56 178 | 58.82 108 | 53.48 159 | 55.74 155 | 79.59 105 | 81.21 68 | 88.89 58 | 82.70 112 |
|
CANet_DTU | | | 73.29 80 | 76.96 74 | 69.00 106 | 77.04 110 | 82.06 82 | 79.49 75 | 56.30 162 | 67.85 75 | 53.29 122 | 71.12 55 | 70.37 80 | 61.81 117 | 81.59 72 | 80.96 72 | 86.09 120 | 84.73 96 |
|
CHOSEN 1792x2688 | | | 69.20 115 | 69.26 122 | 69.13 103 | 76.86 111 | 78.93 111 | 77.27 97 | 60.12 137 | 61.86 114 | 54.42 111 | 42.54 188 | 61.61 114 | 66.91 83 | 78.55 120 | 78.14 116 | 79.23 170 | 83.23 111 |
|
HyFIR lowres test | | | 69.47 112 | 68.94 126 | 70.09 94 | 76.77 112 | 82.93 77 | 76.63 103 | 60.17 135 | 59.00 132 | 54.03 115 | 40.54 193 | 65.23 104 | 67.89 77 | 76.54 142 | 78.30 114 | 85.03 143 | 80.07 137 |
|
UniMVSNet (Re) | | | 69.53 110 | 71.90 100 | 66.76 136 | 76.42 113 | 80.93 92 | 72.59 143 | 68.03 58 | 61.75 115 | 41.68 175 | 58.34 115 | 57.23 134 | 53.27 166 | 79.53 108 | 80.62 84 | 88.57 63 | 84.90 94 |
|
gm-plane-assit | | | 57.00 187 | 57.62 194 | 56.28 184 | 76.10 114 | 62.43 200 | 47.62 207 | 46.57 198 | 33.84 207 | 23.24 201 | 37.52 194 | 40.19 204 | 59.61 129 | 79.81 103 | 77.55 125 | 84.55 148 | 72.03 179 |
|
DU-MVS | | | 69.63 109 | 70.91 105 | 68.13 113 | 75.99 115 | 79.54 105 | 73.81 133 | 69.20 51 | 61.20 120 | 43.23 170 | 58.52 109 | 53.50 157 | 58.57 131 | 79.22 111 | 80.45 86 | 87.97 73 | 83.97 102 |
|
Baseline_NR-MVSNet | | | 67.53 137 | 68.77 129 | 66.09 140 | 75.99 115 | 74.75 156 | 72.43 144 | 68.41 54 | 61.33 119 | 38.33 181 | 51.31 164 | 54.13 152 | 56.03 151 | 79.22 111 | 78.19 115 | 85.37 138 | 82.45 114 |
|
CostFormer | | | 68.92 117 | 69.58 118 | 68.15 112 | 75.98 117 | 76.17 144 | 78.22 89 | 51.86 178 | 65.80 83 | 61.56 82 | 63.57 88 | 62.83 111 | 61.85 115 | 70.40 182 | 68.67 179 | 79.42 168 | 79.62 141 |
|
tfpnnormal | | | 64.27 155 | 63.64 171 | 65.02 144 | 75.84 118 | 75.61 148 | 71.24 149 | 62.52 109 | 47.79 189 | 42.97 172 | 42.65 187 | 44.49 197 | 52.66 168 | 78.77 117 | 76.86 135 | 84.88 146 | 79.29 142 |
|
baseline2 | | | 69.69 108 | 70.27 110 | 69.01 105 | 75.72 119 | 77.13 135 | 73.82 132 | 58.94 150 | 61.35 118 | 57.09 100 | 61.68 92 | 57.17 135 | 61.99 112 | 78.10 124 | 76.58 140 | 86.48 114 | 79.85 138 |
|
diffmvs | | | 74.86 73 | 77.37 70 | 71.93 79 | 75.62 120 | 80.35 100 | 79.42 76 | 60.15 136 | 72.81 65 | 64.63 74 | 71.51 53 | 73.11 66 | 66.53 88 | 79.02 114 | 77.98 117 | 85.25 140 | 86.83 72 |
|
tpm cat1 | | | 65.41 147 | 63.81 170 | 67.28 127 | 75.61 121 | 72.88 162 | 75.32 106 | 52.85 172 | 62.97 105 | 63.66 77 | 53.24 147 | 53.29 165 | 61.83 116 | 65.54 193 | 64.14 195 | 74.43 190 | 74.60 171 |
|
CDS-MVSNet | | | 67.65 134 | 69.83 115 | 65.09 143 | 75.39 122 | 76.55 140 | 74.42 121 | 63.75 87 | 53.55 169 | 49.37 143 | 59.41 105 | 62.45 112 | 44.44 181 | 79.71 104 | 79.82 93 | 83.17 156 | 77.36 154 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Fast-Effi-MVS+-dtu | | | 68.34 122 | 69.47 119 | 67.01 132 | 75.15 123 | 77.97 127 | 77.12 98 | 55.40 164 | 57.87 135 | 46.68 157 | 56.17 125 | 60.39 117 | 62.36 106 | 76.32 143 | 76.25 144 | 85.35 139 | 81.34 126 |
|
WR-MVS | | | 63.03 159 | 67.40 144 | 57.92 178 | 75.14 124 | 77.60 132 | 60.56 191 | 66.10 69 | 54.11 168 | 23.88 199 | 53.94 140 | 53.58 155 | 34.50 195 | 73.93 155 | 77.71 121 | 87.35 87 | 80.94 129 |
|
test-LLR | | | 64.42 153 | 64.36 166 | 64.49 148 | 75.02 125 | 63.93 191 | 66.61 170 | 61.96 117 | 54.41 164 | 47.77 150 | 57.46 119 | 60.25 118 | 55.20 159 | 70.80 176 | 69.33 174 | 80.40 166 | 74.38 173 |
|
test0.0.03 1 | | | 58.80 183 | 61.58 184 | 55.56 186 | 75.02 125 | 68.45 179 | 59.58 195 | 61.96 117 | 52.74 171 | 29.57 192 | 49.75 172 | 54.56 148 | 31.46 198 | 71.19 171 | 69.77 172 | 75.75 183 | 64.57 193 |
|
v1144 | | | 69.93 107 | 69.36 121 | 70.61 88 | 74.89 127 | 80.93 92 | 79.11 79 | 60.64 128 | 55.97 153 | 55.31 109 | 53.85 141 | 54.14 150 | 66.54 87 | 78.10 124 | 77.44 127 | 87.14 92 | 85.09 90 |
|
v10 | | | 70.22 103 | 69.76 116 | 70.74 84 | 74.79 128 | 80.30 102 | 79.22 78 | 59.81 140 | 57.71 140 | 56.58 104 | 54.22 139 | 55.31 143 | 66.95 81 | 78.28 122 | 77.47 126 | 87.12 95 | 85.07 91 |
|
v8 | | | 70.23 102 | 69.86 114 | 70.67 87 | 74.69 129 | 79.82 104 | 78.79 82 | 59.18 145 | 58.80 133 | 58.20 95 | 55.00 131 | 57.33 133 | 66.31 90 | 77.51 129 | 76.71 138 | 86.82 101 | 83.88 105 |
|
v2v482 | | | 70.05 106 | 69.46 120 | 70.74 84 | 74.62 130 | 80.32 101 | 79.00 80 | 60.62 129 | 57.41 142 | 56.89 101 | 55.43 130 | 55.14 145 | 66.39 89 | 77.25 132 | 77.14 132 | 86.90 98 | 83.57 109 |
|
v1192 | | | 69.50 111 | 68.83 127 | 70.29 92 | 74.49 131 | 80.92 94 | 78.55 84 | 60.54 130 | 55.04 159 | 54.21 112 | 52.79 155 | 52.33 170 | 66.92 82 | 77.88 126 | 77.35 130 | 87.04 96 | 85.51 82 |
|
UniMVSNet_ETH3D | | | 67.18 141 | 67.03 146 | 67.36 124 | 74.44 132 | 78.12 120 | 74.07 128 | 66.38 66 | 52.22 175 | 46.87 154 | 48.64 174 | 51.84 174 | 56.96 144 | 77.29 131 | 78.53 110 | 85.42 137 | 82.59 113 |
|
DTE-MVSNet | | | 61.85 172 | 64.96 163 | 58.22 177 | 74.32 133 | 74.39 158 | 61.01 190 | 67.85 60 | 51.76 180 | 21.91 206 | 53.28 145 | 48.17 187 | 37.74 192 | 72.22 164 | 76.44 141 | 86.52 113 | 78.49 147 |
|
Vis-MVSNet | | | 72.77 83 | 77.20 72 | 67.59 121 | 74.19 134 | 84.01 64 | 76.61 104 | 61.69 121 | 60.62 125 | 50.61 137 | 70.25 59 | 71.31 73 | 55.57 157 | 83.85 54 | 82.28 57 | 86.90 98 | 88.08 60 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v144192 | | | 69.34 113 | 68.68 131 | 70.12 93 | 74.06 135 | 80.54 97 | 78.08 90 | 60.54 130 | 54.99 161 | 54.13 114 | 52.92 153 | 52.80 168 | 66.73 85 | 77.13 134 | 76.72 137 | 87.15 89 | 85.63 80 |
|
v1921920 | | | 69.03 116 | 68.32 135 | 69.86 96 | 74.03 136 | 80.37 99 | 77.55 92 | 60.25 134 | 54.62 163 | 53.59 120 | 52.36 159 | 51.50 176 | 66.75 84 | 77.17 133 | 76.69 139 | 86.96 97 | 85.56 81 |
|
PEN-MVS | | | 62.96 160 | 65.77 154 | 59.70 171 | 73.98 137 | 75.45 149 | 63.39 184 | 67.61 61 | 52.49 173 | 25.49 198 | 53.39 143 | 49.12 186 | 40.85 189 | 71.94 167 | 77.26 131 | 86.86 100 | 80.72 131 |
|
v1240 | | | 68.64 121 | 67.89 140 | 69.51 101 | 73.89 138 | 80.26 103 | 76.73 102 | 59.97 139 | 53.43 170 | 53.08 123 | 51.82 162 | 50.84 179 | 66.62 86 | 76.79 138 | 76.77 136 | 86.78 103 | 85.34 86 |
|
thisisatest0530 | | | 71.48 91 | 73.01 91 | 69.70 99 | 73.83 139 | 78.62 117 | 74.53 117 | 59.12 146 | 64.13 95 | 58.63 91 | 64.60 85 | 58.63 127 | 64.27 96 | 80.28 98 | 80.17 91 | 87.82 79 | 84.64 98 |
|
GA-MVS | | | 68.14 123 | 69.17 124 | 66.93 134 | 73.77 140 | 78.50 119 | 74.45 118 | 58.28 154 | 55.11 158 | 48.44 146 | 60.08 100 | 53.99 153 | 61.50 119 | 78.43 121 | 77.57 124 | 85.13 141 | 80.54 132 |
|
tttt0517 | | | 71.41 92 | 72.95 92 | 69.60 100 | 73.70 141 | 78.70 116 | 74.42 121 | 59.12 146 | 63.89 99 | 58.35 94 | 64.56 86 | 58.39 129 | 64.27 96 | 80.29 97 | 80.17 91 | 87.74 81 | 84.69 97 |
|
pm-mvs1 | | | 65.62 146 | 67.42 143 | 63.53 155 | 73.66 142 | 76.39 141 | 69.66 152 | 60.87 127 | 49.73 185 | 43.97 169 | 51.24 165 | 57.00 137 | 48.16 175 | 79.89 102 | 77.84 119 | 84.85 147 | 79.82 139 |
|
dps | | | 64.00 157 | 62.99 173 | 65.18 142 | 73.29 143 | 72.07 165 | 68.98 157 | 53.07 171 | 57.74 139 | 58.41 93 | 55.55 128 | 47.74 190 | 60.89 125 | 69.53 185 | 67.14 188 | 76.44 182 | 71.19 181 |
|
v148 | | | 67.85 129 | 67.53 141 | 68.23 111 | 73.25 144 | 77.57 133 | 74.26 125 | 57.36 159 | 55.70 154 | 57.45 99 | 53.53 142 | 55.42 142 | 61.96 113 | 75.23 147 | 73.92 156 | 85.08 142 | 81.32 127 |
|
PatchMatch-RL | | | 67.78 131 | 66.65 150 | 69.10 104 | 73.01 145 | 72.69 163 | 68.49 158 | 61.85 119 | 62.93 106 | 60.20 86 | 56.83 123 | 50.42 181 | 69.52 69 | 75.62 145 | 74.46 155 | 81.51 160 | 73.62 177 |
|
GBi-Net | | | 70.78 95 | 73.37 89 | 67.76 114 | 72.95 146 | 78.00 122 | 75.15 109 | 62.72 101 | 64.13 95 | 51.44 130 | 58.37 112 | 69.02 89 | 57.59 138 | 81.33 78 | 80.72 76 | 86.70 105 | 82.02 116 |
|
test1 | | | 70.78 95 | 73.37 89 | 67.76 114 | 72.95 146 | 78.00 122 | 75.15 109 | 62.72 101 | 64.13 95 | 51.44 130 | 58.37 112 | 69.02 89 | 57.59 138 | 81.33 78 | 80.72 76 | 86.70 105 | 82.02 116 |
|
FMVSNet2 | | | 70.39 101 | 72.67 95 | 67.72 117 | 72.95 146 | 78.00 122 | 75.15 109 | 62.69 105 | 63.29 103 | 51.25 134 | 55.64 126 | 68.49 95 | 57.59 138 | 80.91 89 | 80.35 88 | 86.70 105 | 82.02 116 |
|
FMVSNet3 | | | 70.49 99 | 72.90 93 | 67.67 119 | 72.88 149 | 77.98 125 | 74.96 115 | 62.72 101 | 64.13 95 | 51.44 130 | 58.37 112 | 69.02 89 | 57.43 141 | 79.43 109 | 79.57 98 | 86.59 111 | 81.81 123 |
|
LTVRE_ROB | | 59.44 16 | 61.82 175 | 62.64 177 | 60.87 165 | 72.83 150 | 77.19 134 | 64.37 180 | 58.97 148 | 33.56 208 | 28.00 195 | 52.59 158 | 42.21 200 | 63.93 99 | 74.52 151 | 76.28 142 | 77.15 177 | 82.13 115 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 67.05 142 | 66.94 147 | 67.17 128 | 72.35 151 | 78.97 110 | 73.26 141 | 58.88 151 | 51.16 181 | 50.90 135 | 48.21 176 | 50.11 183 | 60.96 122 | 77.70 127 | 77.38 128 | 86.68 108 | 85.05 92 |
|
tpm | | | 62.41 166 | 63.15 172 | 61.55 162 | 72.24 152 | 63.79 193 | 71.31 148 | 46.12 200 | 57.82 136 | 55.33 108 | 59.90 103 | 54.74 147 | 53.63 164 | 67.24 192 | 64.29 194 | 70.65 200 | 74.25 175 |
|
test20.03 | | | 53.93 194 | 56.28 195 | 51.19 194 | 72.19 153 | 65.83 186 | 53.20 201 | 61.08 124 | 42.74 198 | 22.08 204 | 37.07 196 | 45.76 195 | 24.29 206 | 70.44 180 | 69.04 176 | 74.31 191 | 63.05 197 |
|
CP-MVSNet | | | 62.68 162 | 65.49 157 | 59.40 174 | 71.84 154 | 75.34 150 | 62.87 186 | 67.04 64 | 52.64 172 | 27.19 196 | 53.38 144 | 48.15 188 | 41.40 187 | 71.26 170 | 75.68 146 | 86.07 121 | 82.00 119 |
|
PS-CasMVS | | | 62.38 168 | 65.06 160 | 59.25 175 | 71.73 155 | 75.21 154 | 62.77 187 | 66.99 65 | 51.94 179 | 26.96 197 | 52.00 161 | 47.52 191 | 41.06 188 | 71.16 173 | 75.60 147 | 85.97 128 | 81.97 121 |
|
WR-MVS_H | | | 61.83 174 | 65.87 153 | 57.12 181 | 71.72 156 | 76.87 136 | 61.45 189 | 66.19 67 | 51.97 178 | 22.92 203 | 53.13 150 | 52.30 172 | 33.80 196 | 71.03 174 | 75.00 151 | 86.65 109 | 80.78 130 |
|
USDC | | | 67.36 139 | 67.90 139 | 66.74 137 | 71.72 156 | 75.23 153 | 71.58 146 | 60.28 133 | 67.45 76 | 50.54 138 | 60.93 94 | 45.20 196 | 62.08 109 | 76.56 141 | 74.50 154 | 84.25 149 | 75.38 168 |
|
UGNet | | | 72.78 82 | 77.67 65 | 67.07 131 | 71.65 158 | 83.24 74 | 75.20 108 | 63.62 88 | 64.93 88 | 56.72 102 | 71.82 51 | 73.30 63 | 49.02 174 | 81.02 87 | 80.70 81 | 86.22 117 | 88.67 56 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tpmrst | | | 62.00 170 | 62.35 181 | 61.58 161 | 71.62 159 | 64.14 190 | 69.07 156 | 48.22 196 | 62.21 111 | 53.93 116 | 58.26 116 | 55.30 144 | 55.81 154 | 63.22 197 | 62.62 197 | 70.85 199 | 70.70 182 |
|
pmmvs4 | | | 67.89 128 | 67.39 145 | 68.48 110 | 71.60 160 | 73.57 160 | 74.45 118 | 60.98 125 | 64.65 90 | 57.97 96 | 54.95 132 | 51.73 175 | 61.88 114 | 73.78 156 | 75.11 150 | 83.99 152 | 77.91 150 |
|
testgi | | | 54.39 193 | 57.86 192 | 50.35 195 | 71.59 161 | 67.24 182 | 54.95 199 | 53.25 169 | 43.36 197 | 23.78 200 | 44.64 183 | 47.87 189 | 24.96 203 | 70.45 179 | 68.66 180 | 73.60 193 | 62.78 198 |
|
pmmvs6 | | | 62.41 166 | 62.88 174 | 61.87 160 | 71.38 162 | 75.18 155 | 67.76 161 | 59.45 144 | 41.64 200 | 42.52 174 | 37.33 195 | 52.91 166 | 46.87 177 | 77.67 128 | 76.26 143 | 83.23 155 | 79.18 144 |
|
FMVSNet1 | | | 68.84 118 | 70.47 109 | 66.94 133 | 71.35 163 | 77.68 130 | 74.71 116 | 62.35 114 | 56.93 144 | 49.94 140 | 50.01 169 | 64.59 105 | 57.07 143 | 81.33 78 | 80.72 76 | 86.25 116 | 82.00 119 |
|
IterMVS-SCA-FT | | | 66.89 143 | 69.22 123 | 64.17 149 | 71.30 164 | 75.64 147 | 71.33 147 | 53.17 170 | 57.63 141 | 49.08 144 | 60.72 96 | 60.05 121 | 63.09 102 | 74.99 149 | 73.92 156 | 77.07 178 | 81.57 125 |
|
PatchmatchNet | | | 64.21 156 | 64.65 164 | 63.69 153 | 71.29 165 | 68.66 177 | 69.63 153 | 51.70 180 | 63.04 104 | 53.77 118 | 59.83 104 | 58.34 130 | 60.23 128 | 68.54 189 | 66.06 191 | 75.56 185 | 68.08 189 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
baseline | | | 70.45 100 | 74.09 84 | 66.20 139 | 70.95 166 | 75.67 146 | 74.26 125 | 53.57 166 | 68.33 74 | 58.42 92 | 69.87 60 | 71.45 70 | 61.55 118 | 74.84 150 | 74.76 153 | 78.42 172 | 83.72 107 |
|
SCA | | | 65.40 148 | 66.58 151 | 64.02 151 | 70.65 167 | 73.37 161 | 67.35 162 | 53.46 168 | 63.66 100 | 54.14 113 | 60.84 95 | 60.20 120 | 61.50 119 | 69.96 183 | 68.14 184 | 77.01 179 | 69.91 183 |
|
CR-MVSNet | | | 64.83 151 | 65.54 156 | 64.01 152 | 70.64 168 | 69.41 173 | 65.97 173 | 52.74 173 | 57.81 137 | 52.65 125 | 54.27 135 | 56.31 139 | 60.92 123 | 72.20 165 | 73.09 161 | 81.12 163 | 75.69 165 |
|
MVSTER | | | 72.06 86 | 74.24 82 | 69.51 101 | 70.39 169 | 75.97 145 | 76.91 100 | 57.36 159 | 64.64 91 | 61.39 83 | 68.86 64 | 63.76 108 | 63.46 100 | 81.44 75 | 79.70 94 | 87.56 84 | 85.31 87 |
|
Anonymous20231206 | | | 56.36 189 | 57.80 193 | 54.67 189 | 70.08 170 | 66.39 185 | 60.46 192 | 57.54 156 | 49.50 187 | 29.30 193 | 33.86 200 | 46.64 192 | 35.18 194 | 70.44 180 | 68.88 178 | 75.47 186 | 68.88 188 |
|
thisisatest0515 | | | 67.40 138 | 68.78 128 | 65.80 141 | 70.02 171 | 75.24 152 | 69.36 155 | 57.37 158 | 54.94 162 | 53.67 119 | 55.53 129 | 54.85 146 | 58.00 136 | 78.19 123 | 78.91 107 | 86.39 115 | 83.78 106 |
|
CMPMVS | | 47.78 17 | 62.49 165 | 62.52 178 | 62.46 158 | 70.01 172 | 70.66 171 | 62.97 185 | 51.84 179 | 51.98 177 | 56.71 103 | 42.87 186 | 53.62 154 | 57.80 137 | 72.23 163 | 70.37 171 | 75.45 187 | 75.91 162 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
TDRefinement | | | 66.09 145 | 65.03 162 | 67.31 125 | 69.73 173 | 76.75 138 | 75.33 105 | 64.55 82 | 60.28 127 | 49.72 142 | 45.63 182 | 42.83 199 | 60.46 127 | 75.75 144 | 75.95 145 | 84.08 150 | 78.04 149 |
|
TinyColmap | | | 62.84 161 | 61.03 186 | 64.96 145 | 69.61 174 | 71.69 166 | 68.48 159 | 59.76 141 | 55.41 155 | 47.69 152 | 47.33 178 | 34.20 207 | 62.76 105 | 74.52 151 | 72.59 164 | 81.44 161 | 71.47 180 |
|
RPMNet | | | 61.71 176 | 62.88 174 | 60.34 167 | 69.51 175 | 69.41 173 | 63.48 183 | 49.23 188 | 57.81 137 | 45.64 164 | 50.51 167 | 50.12 182 | 53.13 167 | 68.17 191 | 68.49 182 | 81.07 164 | 75.62 167 |
|
IterMVS | | | 66.36 144 | 68.30 136 | 64.10 150 | 69.48 176 | 74.61 157 | 73.41 139 | 50.79 184 | 57.30 143 | 48.28 148 | 60.64 97 | 59.92 122 | 60.85 126 | 74.14 154 | 72.66 163 | 81.80 159 | 78.82 146 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
SixPastTwentyTwo | | | 61.84 173 | 62.45 179 | 61.12 164 | 69.20 177 | 72.20 164 | 62.03 188 | 57.40 157 | 46.54 193 | 38.03 183 | 57.14 122 | 41.72 201 | 58.12 135 | 69.67 184 | 71.58 167 | 81.94 158 | 78.30 148 |
|
MDTV_nov1_ep13 | | | 64.37 154 | 65.24 158 | 63.37 157 | 68.94 178 | 70.81 169 | 72.40 145 | 50.29 187 | 60.10 128 | 53.91 117 | 60.07 101 | 59.15 125 | 57.21 142 | 69.43 186 | 67.30 186 | 77.47 175 | 69.78 185 |
|
EPMVS | | | 60.00 181 | 61.97 182 | 57.71 179 | 68.46 179 | 63.17 197 | 64.54 179 | 48.23 195 | 63.30 102 | 44.72 167 | 60.19 99 | 56.05 141 | 50.85 171 | 65.27 195 | 62.02 198 | 69.44 202 | 63.81 195 |
|
our_test_3 | | | | | | 67.93 180 | 70.99 168 | 66.89 166 | | | | | | | | | | |
|
FC-MVSNet-test | | | 56.90 188 | 65.20 159 | 47.21 198 | 66.98 181 | 63.20 196 | 49.11 206 | 58.60 153 | 59.38 131 | 11.50 212 | 65.60 78 | 56.68 138 | 24.66 205 | 71.17 172 | 71.36 169 | 72.38 196 | 69.02 187 |
|
CVMVSNet | | | 62.55 163 | 65.89 152 | 58.64 176 | 66.95 182 | 69.15 175 | 66.49 172 | 56.29 163 | 52.46 174 | 32.70 189 | 59.27 106 | 58.21 131 | 50.09 172 | 71.77 168 | 71.39 168 | 79.31 169 | 78.99 145 |
|
FPMVS | | | 51.87 196 | 50.00 201 | 54.07 190 | 66.83 183 | 57.25 203 | 60.25 193 | 50.91 182 | 50.25 183 | 34.36 187 | 36.04 198 | 32.02 209 | 41.49 186 | 58.98 203 | 56.07 202 | 70.56 201 | 59.36 203 |
|
pmmvs-eth3d | | | 63.52 158 | 62.44 180 | 64.77 146 | 66.82 184 | 70.12 172 | 69.41 154 | 59.48 143 | 54.34 167 | 52.71 124 | 46.24 181 | 44.35 198 | 56.93 145 | 72.37 160 | 73.77 158 | 83.30 154 | 75.91 162 |
|
TAMVS | | | 59.58 182 | 62.81 176 | 55.81 185 | 66.03 185 | 65.64 188 | 63.86 182 | 48.74 191 | 49.95 184 | 37.07 185 | 54.77 133 | 58.54 128 | 44.44 181 | 72.29 162 | 71.79 165 | 74.70 189 | 66.66 191 |
|
MDTV_nov1_ep13_2view | | | 60.16 180 | 60.51 188 | 59.75 170 | 65.39 186 | 69.05 176 | 68.00 160 | 48.29 194 | 51.99 176 | 45.95 162 | 48.01 177 | 49.64 185 | 53.39 165 | 68.83 188 | 66.52 190 | 77.47 175 | 69.55 186 |
|
pmmvs5 | | | 62.37 169 | 64.04 168 | 60.42 166 | 65.03 187 | 71.67 167 | 67.17 164 | 52.70 175 | 50.30 182 | 44.80 166 | 54.23 138 | 51.19 178 | 49.37 173 | 72.88 159 | 73.48 160 | 83.45 153 | 74.55 172 |
|
ambc | | | | 53.42 196 | | 64.99 188 | 63.36 195 | 49.96 204 | | 47.07 191 | 37.12 184 | 28.97 204 | 16.36 215 | 41.82 185 | 75.10 148 | 67.34 185 | 71.55 198 | 75.72 164 |
|
V42 | | | 68.76 120 | 69.63 117 | 67.74 116 | 64.93 189 | 78.01 121 | 78.30 88 | 56.48 161 | 58.65 134 | 56.30 105 | 54.26 137 | 57.03 136 | 64.85 94 | 77.47 130 | 77.01 134 | 85.60 134 | 84.96 93 |
|
PMVS | | 39.38 18 | 46.06 202 | 43.30 204 | 49.28 197 | 62.93 190 | 38.75 210 | 41.88 209 | 53.50 167 | 33.33 209 | 35.46 186 | 28.90 205 | 31.01 210 | 33.04 197 | 58.61 204 | 54.63 205 | 68.86 203 | 57.88 204 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new-patchmatchnet | | | 46.97 200 | 49.47 202 | 44.05 202 | 62.82 191 | 56.55 204 | 45.35 208 | 52.01 177 | 42.47 199 | 17.04 210 | 35.73 199 | 35.21 206 | 21.84 209 | 61.27 200 | 54.83 204 | 65.26 205 | 60.26 200 |
|
ET-MVSNet_ETH3D | | | 72.46 85 | 74.19 83 | 70.44 90 | 62.50 192 | 81.17 90 | 79.90 71 | 62.46 112 | 64.52 93 | 57.52 98 | 71.49 54 | 59.15 125 | 72.08 53 | 78.61 119 | 81.11 69 | 88.16 68 | 83.29 110 |
|
ADS-MVSNet | | | 55.94 190 | 58.01 191 | 53.54 193 | 62.48 193 | 58.48 202 | 59.12 196 | 46.20 199 | 59.65 130 | 42.88 173 | 52.34 160 | 53.31 164 | 46.31 178 | 62.00 199 | 60.02 200 | 64.23 206 | 60.24 202 |
|
RPSCF | | | 67.64 135 | 71.25 103 | 63.43 156 | 61.86 194 | 70.73 170 | 67.26 163 | 50.86 183 | 74.20 60 | 58.91 88 | 67.49 73 | 69.33 86 | 64.10 98 | 71.41 169 | 68.45 183 | 77.61 174 | 77.17 155 |
|
MIMVSNet | | | 58.52 185 | 61.34 185 | 55.22 187 | 60.76 195 | 67.01 183 | 66.81 167 | 49.02 190 | 56.43 148 | 38.90 180 | 40.59 192 | 54.54 149 | 40.57 190 | 73.16 158 | 71.65 166 | 75.30 188 | 66.00 192 |
|
PatchT | | | 61.97 171 | 64.04 168 | 59.55 173 | 60.49 196 | 67.40 181 | 56.54 197 | 48.65 192 | 56.69 145 | 52.65 125 | 51.10 166 | 52.14 173 | 60.92 123 | 72.20 165 | 73.09 161 | 78.03 173 | 75.69 165 |
|
N_pmnet | | | 47.35 199 | 50.13 200 | 44.11 201 | 59.98 197 | 51.64 207 | 51.86 202 | 44.80 201 | 49.58 186 | 20.76 207 | 40.65 191 | 40.05 205 | 29.64 199 | 59.84 201 | 55.15 203 | 57.63 207 | 54.00 205 |
|
MVS-HIRNet | | | 54.41 192 | 52.10 199 | 57.11 182 | 58.99 198 | 56.10 205 | 49.68 205 | 49.10 189 | 46.18 194 | 52.15 129 | 33.18 201 | 46.11 194 | 56.10 150 | 63.19 198 | 59.70 201 | 76.64 181 | 60.25 201 |
|
PM-MVS | | | 60.48 179 | 60.94 187 | 59.94 169 | 58.85 199 | 66.83 184 | 64.27 181 | 51.39 181 | 55.03 160 | 48.03 149 | 50.00 171 | 40.79 203 | 58.26 134 | 69.20 187 | 67.13 189 | 78.84 171 | 77.60 152 |
|
anonymousdsp | | | 65.28 149 | 67.98 138 | 62.13 159 | 58.73 200 | 73.98 159 | 67.10 165 | 50.69 185 | 48.41 188 | 47.66 153 | 54.27 135 | 52.75 169 | 61.45 121 | 76.71 140 | 80.20 89 | 87.13 93 | 89.53 52 |
|
TESTMET0.1,1 | | | 61.10 177 | 64.36 166 | 57.29 180 | 57.53 201 | 63.93 191 | 66.61 170 | 36.22 206 | 54.41 164 | 47.77 150 | 57.46 119 | 60.25 118 | 55.20 159 | 70.80 176 | 69.33 174 | 80.40 166 | 74.38 173 |
|
EU-MVSNet | | | 54.63 191 | 58.69 190 | 49.90 196 | 56.99 202 | 62.70 199 | 56.41 198 | 50.64 186 | 45.95 195 | 23.14 202 | 50.42 168 | 46.51 193 | 36.63 193 | 65.51 194 | 64.85 193 | 75.57 184 | 74.91 170 |
|
FMVSNet5 | | | 57.24 186 | 60.02 189 | 53.99 191 | 56.45 203 | 62.74 198 | 65.27 176 | 47.03 197 | 55.14 157 | 39.55 179 | 40.88 190 | 53.42 162 | 41.83 184 | 72.35 161 | 71.10 170 | 73.79 192 | 64.50 194 |
|
test-mter | | | 60.84 178 | 64.62 165 | 56.42 183 | 55.99 204 | 64.18 189 | 65.39 175 | 34.23 207 | 54.39 166 | 46.21 160 | 57.40 121 | 59.49 124 | 55.86 153 | 71.02 175 | 69.65 173 | 80.87 165 | 76.20 161 |
|
CHOSEN 280x420 | | | 58.70 184 | 61.88 183 | 54.98 188 | 55.45 205 | 50.55 208 | 64.92 177 | 40.36 203 | 55.21 156 | 38.13 182 | 48.31 175 | 63.76 108 | 63.03 104 | 73.73 157 | 68.58 181 | 68.00 204 | 73.04 178 |
|
PMMVS | | | 65.06 150 | 69.17 124 | 60.26 168 | 55.25 206 | 63.43 194 | 66.71 169 | 43.01 202 | 62.41 109 | 50.64 136 | 69.44 61 | 67.04 99 | 63.29 101 | 74.36 153 | 73.54 159 | 82.68 157 | 73.99 176 |
|
Gipuma | | | 36.38 204 | 35.80 206 | 37.07 203 | 45.76 207 | 33.90 211 | 29.81 211 | 48.47 193 | 39.91 203 | 18.02 209 | 8.00 213 | 8.14 217 | 25.14 202 | 59.29 202 | 61.02 199 | 55.19 209 | 40.31 207 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
pmmvs3 | | | 47.65 198 | 49.08 203 | 45.99 199 | 44.61 208 | 54.79 206 | 50.04 203 | 31.95 210 | 33.91 206 | 29.90 191 | 30.37 202 | 33.53 208 | 46.31 178 | 63.50 196 | 63.67 196 | 73.14 195 | 63.77 196 |
|
MIMVSNet1 | | | 49.27 197 | 53.25 197 | 44.62 200 | 44.61 208 | 61.52 201 | 53.61 200 | 52.18 176 | 41.62 201 | 18.68 208 | 28.14 206 | 41.58 202 | 25.50 201 | 68.46 190 | 69.04 176 | 73.15 194 | 62.37 199 |
|
MDA-MVSNet-bldmvs | | | 53.37 195 | 53.01 198 | 53.79 192 | 43.67 210 | 67.95 180 | 59.69 194 | 57.92 155 | 43.69 196 | 32.41 190 | 41.47 189 | 27.89 212 | 52.38 169 | 56.97 205 | 65.99 192 | 76.68 180 | 67.13 190 |
|
E-PMN | | | 21.77 206 | 18.24 209 | 25.89 205 | 40.22 211 | 19.58 214 | 12.46 215 | 39.87 204 | 18.68 213 | 6.71 214 | 9.57 210 | 4.31 220 | 22.36 208 | 19.89 211 | 27.28 210 | 33.73 211 | 28.34 211 |
|
EMVS | | | 20.98 207 | 17.15 210 | 25.44 206 | 39.51 212 | 19.37 215 | 12.66 214 | 39.59 205 | 19.10 212 | 6.62 215 | 9.27 211 | 4.40 219 | 22.43 207 | 17.99 212 | 24.40 211 | 31.81 212 | 25.53 212 |
|
new_pmnet | | | 38.40 203 | 42.64 205 | 33.44 204 | 37.54 213 | 45.00 209 | 36.60 210 | 32.72 209 | 40.27 202 | 12.72 211 | 29.89 203 | 28.90 211 | 24.78 204 | 53.17 206 | 52.90 206 | 56.31 208 | 48.34 206 |
|
PMMVS2 | | | 25.60 205 | 29.75 207 | 20.76 208 | 28.00 214 | 30.93 212 | 23.10 212 | 29.18 211 | 23.14 211 | 1.46 217 | 18.23 209 | 16.54 214 | 5.08 211 | 40.22 207 | 41.40 208 | 37.76 210 | 37.79 209 |
|
tmp_tt | | | | | 14.50 210 | 14.68 215 | 7.17 217 | 10.46 217 | 2.21 213 | 37.73 205 | 28.71 194 | 25.26 207 | 16.98 213 | 4.37 212 | 31.49 208 | 29.77 209 | 26.56 213 | |
|
MVE | | 19.12 19 | 20.47 208 | 23.27 208 | 17.20 209 | 12.66 216 | 25.41 213 | 10.52 216 | 34.14 208 | 14.79 214 | 6.53 216 | 8.79 212 | 4.68 218 | 16.64 210 | 29.49 209 | 41.63 207 | 22.73 214 | 38.11 208 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
GG-mvs-BLEND | | | 46.86 201 | 67.51 142 | 22.75 207 | 0.05 217 | 76.21 143 | 64.69 178 | 0.04 214 | 61.90 113 | 0.09 218 | 55.57 127 | 71.32 72 | 0.08 213 | 70.54 178 | 67.19 187 | 71.58 197 | 69.86 184 |
|
testmvs | | | 0.09 209 | 0.15 211 | 0.02 211 | 0.01 218 | 0.02 218 | 0.05 219 | 0.01 215 | 0.11 215 | 0.01 219 | 0.26 215 | 0.01 221 | 0.06 215 | 0.10 213 | 0.10 212 | 0.01 216 | 0.43 214 |
|
uanet_test | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 219 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 220 | 0.00 216 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet-low-res | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 219 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 220 | 0.00 216 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 219 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 220 | 0.00 216 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
test123 | | | 0.09 209 | 0.14 212 | 0.02 211 | 0.00 219 | 0.02 218 | 0.02 220 | 0.01 215 | 0.09 216 | 0.00 220 | 0.30 214 | 0.00 222 | 0.08 213 | 0.03 214 | 0.09 213 | 0.01 216 | 0.45 213 |
|
RE-MVS-def | | | | | | | | | | | 46.24 159 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 86.88 15 | | | | | |
|
MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 18 | | | | | |
|
MTMP | | | | | | | | | | | 82.66 5 | | 84.91 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.85 218 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 80.10 46 | | | | | | | | |
|
Patchmtry | | | | | | | 65.80 187 | 65.97 173 | 52.74 173 | | 52.65 125 | | | | | | | |
|
DeepMVS_CX | | | | | | | 18.74 216 | 18.55 213 | 8.02 212 | 26.96 210 | 7.33 213 | 23.81 208 | 13.05 216 | 25.99 200 | 25.17 210 | | 22.45 215 | 36.25 210 |
|