test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 58 | 93.49 7 | 94.23 5 | | | | | 97.49 1 | 89.08 4 | 96.41 8 | 94.21 32 |
|
SED-MVS | | | 90.08 1 | 90.85 1 | 87.77 23 | 95.30 2 | 70.98 65 | 93.57 5 | 94.06 10 | 77.24 47 | 93.10 1 | 95.72 6 | 82.99 1 | 97.44 2 | 89.07 6 | 96.63 2 | 94.88 7 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 49 | 66.81 231 | 92.39 5 | | | | 88.94 8 | 96.63 2 | 94.85 10 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 65 | | 94.06 10 | 77.17 51 | 93.10 1 | 95.39 9 | 82.99 1 | 97.27 7 | | | |
|
DVP-MVS | | | 89.60 2 | 90.35 2 | 87.33 42 | 95.27 5 | 71.25 59 | 93.49 7 | 92.73 58 | 77.33 45 | 92.12 8 | 95.78 4 | 80.98 7 | 97.40 4 | 89.08 4 | 96.41 8 | 93.33 75 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 4 | 94.11 6 | 77.33 45 | 92.81 3 | 95.79 3 | 80.98 7 | | | | |
|
test_part2 | | | | | | 95.06 7 | 72.65 31 | | | | 91.80 10 | | | | | | |
|
HPM-MVS++ |  | | 89.02 7 | 89.15 7 | 88.63 2 | 95.01 8 | 76.03 1 | 92.38 23 | 92.85 53 | 80.26 13 | 87.78 26 | 94.27 34 | 75.89 16 | 96.81 19 | 87.45 16 | 96.44 7 | 93.05 86 |
|
DPE-MVS |  | | 89.48 4 | 89.98 3 | 88.01 12 | 94.80 9 | 72.69 30 | 91.59 39 | 94.10 8 | 75.90 83 | 92.29 6 | 95.66 8 | 81.67 4 | 97.38 6 | 87.44 17 | 96.34 11 | 93.95 44 |
|
CNVR-MVS | | | 88.93 8 | 89.13 8 | 88.33 5 | 94.77 10 | 73.82 7 | 90.51 59 | 93.00 42 | 80.90 9 | 88.06 24 | 94.06 44 | 76.43 13 | 96.84 17 | 88.48 11 | 95.99 15 | 94.34 27 |
|
ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 11 | 94.64 11 | 73.59 10 | 93.04 10 | 93.20 34 | 76.78 63 | 84.66 60 | 94.52 21 | 68.81 79 | 96.65 26 | 84.53 37 | 94.90 41 | 94.00 42 |
|
region2R | | | 87.42 27 | 87.20 31 | 88.09 10 | 94.63 12 | 73.55 11 | 93.03 12 | 93.12 37 | 76.73 66 | 84.45 63 | 94.52 21 | 69.09 76 | 96.70 23 | 84.37 40 | 94.83 46 | 94.03 39 |
|
OPU-MVS | | | | | 89.06 1 | 94.62 13 | 75.42 2 | 93.57 5 | | | | 94.02 45 | 82.45 3 | 96.87 16 | 83.77 48 | 96.48 6 | 94.88 7 |
|
HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 15 | 94.58 14 | 73.54 13 | 93.04 10 | 93.24 32 | 76.78 63 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 84.53 37 | 94.89 42 | 93.66 57 |
|
#test# | | | 87.33 30 | 87.13 32 | 87.94 15 | 94.58 14 | 73.54 13 | 92.34 25 | 93.24 32 | 75.23 95 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 83.75 49 | 94.89 42 | 93.66 57 |
|
testtj | | | 87.78 19 | 87.78 20 | 87.77 23 | 94.55 16 | 72.47 37 | 92.23 28 | 93.49 25 | 74.75 105 | 88.33 21 | 94.43 30 | 73.27 39 | 97.02 13 | 84.18 45 | 94.84 44 | 93.82 52 |
|
MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 27 | 94.53 17 | 72.46 38 | 89.82 78 | 93.82 16 | 73.07 139 | 84.86 57 | 92.89 68 | 76.22 14 | 96.33 36 | 84.89 32 | 95.13 37 | 94.40 24 |
|
APDe-MVS | | | 89.15 5 | 89.63 5 | 87.73 27 | 94.49 18 | 71.69 55 | 93.83 2 | 93.96 14 | 75.70 87 | 91.06 12 | 96.03 1 | 76.84 12 | 97.03 12 | 89.09 3 | 95.65 28 | 94.47 23 |
|
DP-MVS Recon | | | 83.11 87 | 82.09 94 | 86.15 65 | 94.44 19 | 70.92 71 | 88.79 106 | 92.20 81 | 70.53 178 | 79.17 125 | 91.03 106 | 64.12 119 | 96.03 47 | 68.39 184 | 90.14 99 | 91.50 133 |
|
XVS | | | 87.18 33 | 86.91 36 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 44 | 79.14 21 | 83.67 77 | 94.17 38 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
X-MVStestdata | | | 80.37 138 | 77.83 172 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 44 | 79.14 21 | 83.67 77 | 12.47 359 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 29 | 94.41 22 | 73.55 11 | 92.74 17 | 92.22 80 | 76.87 60 | 82.81 88 | 94.25 36 | 66.44 97 | 96.24 39 | 82.88 59 | 94.28 58 | 93.38 72 |
|
NCCC | | | 88.06 13 | 88.01 17 | 88.24 8 | 94.41 22 | 73.62 9 | 91.22 48 | 92.83 54 | 81.50 6 | 85.79 41 | 93.47 56 | 73.02 42 | 97.00 14 | 84.90 30 | 94.94 40 | 94.10 35 |
|
ZNCC-MVS | | | 87.94 17 | 87.85 19 | 88.20 9 | 94.39 24 | 73.33 18 | 93.03 12 | 93.81 17 | 76.81 61 | 85.24 47 | 94.32 33 | 71.76 51 | 96.93 15 | 85.53 26 | 95.79 21 | 94.32 28 |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 45 | | 92.67 60 | 70.98 169 | 87.75 27 | 94.07 43 | 74.01 35 | 96.70 23 | 84.66 36 | 94.84 44 | |
|
MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 18 | 94.36 26 | 73.88 5 | 92.71 19 | 92.65 63 | 77.57 38 | 83.84 74 | 94.40 32 | 72.24 47 | 96.28 38 | 85.65 25 | 95.30 36 | 93.62 64 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MSP-MVS | | | 89.51 3 | 89.91 4 | 88.30 7 | 94.28 27 | 73.46 16 | 92.90 14 | 94.11 6 | 80.27 12 | 91.35 11 | 94.16 39 | 78.35 10 | 96.77 20 | 89.59 1 | 94.22 60 | 94.67 16 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 89.08 6 | 89.23 6 | 88.61 3 | 94.25 28 | 73.73 8 | 92.40 20 | 93.63 20 | 74.77 104 | 92.29 6 | 95.97 2 | 74.28 31 | 97.24 8 | 88.58 10 | 96.91 1 | 94.87 9 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 87.44 25 | 87.52 23 | 87.19 44 | 94.24 29 | 72.39 40 | 91.86 36 | 92.83 54 | 73.01 141 | 88.58 19 | 94.52 21 | 73.36 37 | 96.49 34 | 84.26 42 | 95.01 38 | 92.70 96 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 19 | 94.22 30 | 73.38 17 | 90.22 71 | 93.04 38 | 75.53 89 | 83.86 73 | 94.42 31 | 67.87 85 | 96.64 27 | 82.70 63 | 94.57 51 | 93.66 57 |
|
CP-MVS | | | 87.11 34 | 86.92 35 | 87.68 34 | 94.20 31 | 73.86 6 | 93.98 1 | 92.82 57 | 76.62 68 | 83.68 76 | 94.46 25 | 67.93 83 | 95.95 52 | 84.20 44 | 94.39 55 | 93.23 78 |
|
zzz-MVS | | | 87.53 23 | 87.41 26 | 87.90 19 | 94.18 32 | 74.25 3 | 90.23 69 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
MTAPA | | | 87.23 32 | 87.00 33 | 87.90 19 | 94.18 32 | 74.25 3 | 86.58 177 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 22 | 94.12 34 | 72.97 23 | 92.39 22 | 93.43 28 | 76.89 59 | 84.68 58 | 93.99 47 | 70.67 61 | 96.82 18 | 84.18 45 | 95.01 38 | 93.90 47 |
|
SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 35 | 72.11 48 | 92.37 24 | 92.56 66 | 74.50 109 | 86.84 33 | 94.65 18 | 67.31 90 | 95.77 57 | 84.80 34 | 92.85 68 | 92.84 94 |
|
114514_t | | | 80.68 130 | 79.51 134 | 84.20 115 | 94.09 36 | 67.27 146 | 89.64 85 | 91.11 124 | 58.75 315 | 74.08 229 | 90.72 111 | 58.10 190 | 95.04 90 | 69.70 172 | 89.42 108 | 90.30 172 |
|
test1172 | | | 86.20 49 | 86.22 45 | 86.12 67 | 93.95 37 | 69.89 91 | 91.79 38 | 92.28 75 | 75.07 99 | 86.40 35 | 94.58 20 | 65.00 114 | 95.56 62 | 84.34 41 | 92.60 72 | 92.90 92 |
|
HPM-MVS |  | | 87.11 34 | 86.98 34 | 87.50 38 | 93.88 38 | 72.16 46 | 92.19 29 | 93.33 31 | 76.07 81 | 83.81 75 | 93.95 48 | 69.77 70 | 96.01 49 | 85.15 28 | 94.66 48 | 94.32 28 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
xxxxxxxxxxxxxcwj | | | 87.88 18 | 87.92 18 | 87.77 23 | 93.80 39 | 72.35 42 | 90.47 62 | 89.69 161 | 74.31 113 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
save fliter | | | | | | 93.80 39 | 72.35 42 | 90.47 62 | 91.17 122 | 74.31 113 | | | | | | | |
|
ETH3 D test6400 | | | 87.50 24 | 87.44 25 | 87.70 32 | 93.71 41 | 71.75 54 | 90.62 57 | 94.05 13 | 70.80 171 | 87.59 29 | 93.51 53 | 77.57 11 | 96.63 28 | 83.31 50 | 95.77 22 | 94.72 15 |
|
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 15 | 93.70 42 | 73.05 21 | 90.86 52 | 93.59 21 | 76.27 78 | 88.14 22 | 95.09 13 | 71.06 56 | 96.67 25 | 87.67 13 | 96.37 10 | 94.09 36 |
|
HPM-MVS_fast | | | 85.35 61 | 84.95 66 | 86.57 58 | 93.69 43 | 70.58 80 | 92.15 31 | 91.62 106 | 73.89 124 | 82.67 90 | 94.09 42 | 62.60 139 | 95.54 65 | 80.93 74 | 92.93 66 | 93.57 66 |
|
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 29 | 93.68 44 | 72.13 47 | 91.41 44 | 92.35 73 | 74.62 108 | 88.90 17 | 93.85 49 | 75.75 17 | 96.00 50 | 87.80 12 | 94.63 49 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 45 | 72.04 49 | 89.80 80 | 93.50 24 | 75.17 98 | 86.34 36 | 95.29 10 | 70.86 57 | 96.00 50 | 88.78 9 | 96.04 12 | 94.58 19 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP |  | | 85.89 52 | 85.39 57 | 87.38 41 | 93.59 46 | 72.63 32 | 92.74 17 | 93.18 36 | 76.78 63 | 80.73 113 | 93.82 50 | 64.33 117 | 96.29 37 | 82.67 64 | 90.69 91 | 93.23 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepC-MVS_fast | | 79.65 3 | 86.91 37 | 86.62 40 | 87.76 26 | 93.52 47 | 72.37 41 | 91.26 45 | 93.04 38 | 76.62 68 | 84.22 68 | 93.36 58 | 71.44 54 | 96.76 21 | 80.82 76 | 95.33 34 | 94.16 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 85.76 54 | 85.29 61 | 87.17 45 | 93.49 48 | 71.08 63 | 88.58 116 | 92.42 71 | 68.32 223 | 84.61 61 | 93.48 54 | 72.32 46 | 96.15 45 | 79.00 87 | 95.43 30 | 94.28 30 |
|
DP-MVS | | | 76.78 215 | 74.57 227 | 83.42 138 | 93.29 49 | 69.46 102 | 88.55 117 | 83.70 268 | 63.98 271 | 70.20 264 | 88.89 153 | 54.01 223 | 94.80 101 | 46.66 327 | 81.88 196 | 86.01 289 |
|
CPTT-MVS | | | 83.73 74 | 83.33 77 | 84.92 92 | 93.28 50 | 70.86 72 | 92.09 32 | 90.38 139 | 68.75 217 | 79.57 121 | 92.83 70 | 60.60 177 | 93.04 176 | 80.92 75 | 91.56 82 | 90.86 152 |
|
TEST9 | | | | | | 93.26 51 | 72.96 24 | 88.75 108 | 91.89 96 | 68.44 222 | 85.00 50 | 93.10 62 | 74.36 30 | 95.41 72 | | | |
|
train_agg | | | 86.43 44 | 86.20 46 | 87.13 46 | 93.26 51 | 72.96 24 | 88.75 108 | 91.89 96 | 68.69 218 | 85.00 50 | 93.10 62 | 74.43 27 | 95.41 72 | 84.97 29 | 95.71 26 | 93.02 88 |
|
test_8 | | | | | | 93.13 53 | 72.57 34 | 88.68 113 | 91.84 99 | 68.69 218 | 84.87 56 | 93.10 62 | 74.43 27 | 95.16 83 | | | |
|
新几何1 | | | | | 83.42 138 | 93.13 53 | 70.71 75 | | 85.48 246 | 57.43 323 | 81.80 99 | 91.98 79 | 63.28 127 | 92.27 196 | 64.60 216 | 92.99 65 | 87.27 262 |
|
1121 | | | 80.84 121 | 79.77 128 | 84.05 121 | 93.11 55 | 70.78 74 | 84.66 221 | 85.42 247 | 57.37 324 | 81.76 102 | 92.02 78 | 63.41 125 | 94.12 123 | 67.28 192 | 92.93 66 | 87.26 263 |
|
AdaColmap |  | | 80.58 134 | 79.42 136 | 84.06 120 | 93.09 56 | 68.91 110 | 89.36 88 | 88.97 187 | 69.27 201 | 75.70 198 | 89.69 130 | 57.20 202 | 95.77 57 | 63.06 225 | 88.41 120 | 87.50 257 |
|
SR-MVS-dyc-post | | | 85.77 53 | 85.61 54 | 86.23 63 | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 76 | 73.53 132 | 85.69 42 | 94.45 26 | 65.00 114 | 95.56 62 | 82.75 60 | 91.87 77 | 92.50 103 |
|
RE-MVS-def | | | | 85.48 55 | | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 76 | 73.53 132 | 85.69 42 | 94.45 26 | 63.87 121 | | 82.75 60 | 91.87 77 | 92.50 103 |
|
原ACMM1 | | | | | 84.35 110 | 93.01 59 | 68.79 111 | | 92.44 68 | 63.96 272 | 81.09 109 | 91.57 89 | 66.06 102 | 95.45 69 | 67.19 195 | 94.82 47 | 88.81 229 |
|
CSCG | | | 86.41 46 | 86.19 47 | 87.07 47 | 92.91 60 | 72.48 36 | 90.81 53 | 93.56 22 | 73.95 121 | 83.16 82 | 91.07 103 | 75.94 15 | 95.19 82 | 79.94 84 | 94.38 56 | 93.55 67 |
|
agg_prior1 | | | 86.22 48 | 86.09 50 | 86.62 56 | 92.85 61 | 71.94 51 | 88.59 115 | 91.78 102 | 68.96 213 | 84.41 64 | 93.18 61 | 74.94 23 | 94.93 92 | 84.75 35 | 95.33 34 | 93.01 89 |
|
agg_prior | | | | | | 92.85 61 | 71.94 51 | | 91.78 102 | | 84.41 64 | | | 94.93 92 | | | |
|
9.14 | | | | 88.26 14 | | 92.84 63 | | 91.52 42 | 94.75 1 | 73.93 123 | 88.57 20 | 94.67 17 | 75.57 20 | 95.79 56 | 86.77 20 | 95.76 24 | |
|
SF-MVS | | | 88.46 10 | 88.74 10 | 87.64 35 | 92.78 64 | 71.95 50 | 92.40 20 | 94.74 2 | 75.71 85 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
ETH3D-3000-0.1 | | | 88.09 12 | 88.29 13 | 87.50 38 | 92.76 65 | 71.89 53 | 91.43 43 | 94.70 3 | 74.47 110 | 88.86 18 | 94.61 19 | 75.23 21 | 95.84 54 | 86.62 23 | 95.92 17 | 94.78 13 |
|
MG-MVS | | | 83.41 80 | 83.45 75 | 83.28 143 | 92.74 66 | 62.28 235 | 88.17 133 | 89.50 165 | 75.22 96 | 81.49 103 | 92.74 73 | 66.75 93 | 95.11 85 | 72.85 147 | 91.58 81 | 92.45 106 |
|
APD-MVS_3200maxsize | | | 85.97 50 | 85.88 51 | 86.22 64 | 92.69 67 | 69.53 98 | 91.93 33 | 92.99 44 | 73.54 131 | 85.94 37 | 94.51 24 | 65.80 106 | 95.61 60 | 83.04 57 | 92.51 74 | 93.53 69 |
|
test12 | | | | | 86.80 52 | 92.63 68 | 70.70 76 | | 91.79 101 | | 82.71 89 | | 71.67 52 | 96.16 44 | | 94.50 52 | 93.54 68 |
|
test_prior3 | | | 86.73 38 | 86.86 38 | 86.33 60 | 92.61 69 | 69.59 96 | 88.85 104 | 92.97 47 | 75.41 91 | 84.91 52 | 93.54 51 | 74.28 31 | 95.48 67 | 83.31 50 | 95.86 18 | 93.91 45 |
|
test_prior | | | | | 86.33 60 | 92.61 69 | 69.59 96 | | 92.97 47 | | | | | 95.48 67 | | | 93.91 45 |
|
SD-MVS | | | 88.06 13 | 88.50 12 | 86.71 54 | 92.60 71 | 72.71 28 | 91.81 37 | 93.19 35 | 77.87 33 | 90.32 13 | 94.00 46 | 74.83 24 | 93.78 139 | 87.63 14 | 94.27 59 | 93.65 62 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PAPM_NR | | | 83.02 88 | 82.41 88 | 84.82 95 | 92.47 72 | 66.37 160 | 87.93 141 | 91.80 100 | 73.82 125 | 77.32 161 | 90.66 112 | 67.90 84 | 94.90 96 | 70.37 165 | 89.48 107 | 93.19 82 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 11 | 88.56 11 | 86.73 53 | 92.24 73 | 69.03 105 | 89.57 86 | 93.39 30 | 77.53 42 | 89.79 14 | 94.12 41 | 78.98 9 | 96.58 33 | 85.66 24 | 95.72 25 | 94.58 19 |
|
abl_6 | | | 85.23 62 | 84.95 66 | 86.07 68 | 92.23 74 | 70.48 81 | 90.80 54 | 92.08 85 | 73.51 134 | 85.26 46 | 94.16 39 | 62.75 138 | 95.92 53 | 82.46 66 | 91.30 86 | 91.81 126 |
|
SteuartSystems-ACMMP | | | 88.72 9 | 88.86 9 | 88.32 6 | 92.14 75 | 72.96 24 | 93.73 3 | 93.67 19 | 80.19 14 | 88.10 23 | 94.80 14 | 73.76 36 | 97.11 10 | 87.51 15 | 95.82 20 | 94.90 6 |
Skip Steuart: Steuart Systems R&D Blog. |
UA-Net | | | 85.08 66 | 84.96 65 | 85.45 75 | 92.07 76 | 68.07 132 | 89.78 81 | 90.86 130 | 82.48 2 | 84.60 62 | 93.20 60 | 69.35 73 | 95.22 81 | 71.39 157 | 90.88 90 | 93.07 85 |
|
旧先验1 | | | | | | 91.96 77 | 65.79 171 | | 86.37 237 | | | 93.08 66 | 69.31 75 | | | 92.74 69 | 88.74 232 |
|
MSLP-MVS++ | | | 85.43 59 | 85.76 53 | 84.45 105 | 91.93 78 | 70.24 82 | 90.71 55 | 92.86 52 | 77.46 44 | 84.22 68 | 92.81 72 | 67.16 92 | 92.94 178 | 80.36 80 | 94.35 57 | 90.16 176 |
|
LFMVS | | | 81.82 105 | 81.23 106 | 83.57 135 | 91.89 79 | 63.43 217 | 89.84 77 | 81.85 294 | 77.04 56 | 83.21 80 | 93.10 62 | 52.26 235 | 93.43 158 | 71.98 152 | 89.95 103 | 93.85 49 |
|
PLC |  | 70.83 11 | 78.05 191 | 76.37 208 | 83.08 154 | 91.88 80 | 67.80 136 | 88.19 132 | 89.46 166 | 64.33 265 | 69.87 273 | 88.38 167 | 53.66 225 | 93.58 148 | 58.86 262 | 82.73 186 | 87.86 248 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_111021_HR | | | 85.14 64 | 84.75 68 | 86.32 62 | 91.65 81 | 72.70 29 | 85.98 192 | 90.33 143 | 76.11 80 | 82.08 94 | 91.61 88 | 71.36 55 | 94.17 122 | 81.02 73 | 92.58 73 | 92.08 119 |
|
ETH3D cwj APD-0.16 | | | 87.31 31 | 87.27 27 | 87.44 40 | 91.60 82 | 72.45 39 | 90.02 74 | 94.37 4 | 71.76 155 | 87.28 30 | 94.27 34 | 75.18 22 | 96.08 46 | 85.16 27 | 95.77 22 | 93.80 55 |
|
test222 | | | | | | 91.50 83 | 68.26 128 | 84.16 236 | 83.20 280 | 54.63 335 | 79.74 119 | 91.63 87 | 58.97 186 | | | 91.42 83 | 86.77 275 |
|
TSAR-MVS + GP. | | | 85.71 55 | 85.33 58 | 86.84 50 | 91.34 84 | 72.50 35 | 89.07 98 | 87.28 224 | 76.41 71 | 85.80 40 | 90.22 120 | 74.15 34 | 95.37 78 | 81.82 68 | 91.88 76 | 92.65 100 |
|
MAR-MVS | | | 81.84 104 | 80.70 112 | 85.27 79 | 91.32 85 | 71.53 57 | 89.82 78 | 90.92 127 | 69.77 192 | 78.50 136 | 86.21 229 | 62.36 145 | 94.52 108 | 65.36 209 | 92.05 75 | 89.77 200 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS | | 79.81 2 | 87.08 36 | 86.88 37 | 87.69 33 | 91.16 86 | 72.32 44 | 90.31 67 | 93.94 15 | 77.12 53 | 82.82 87 | 94.23 37 | 72.13 49 | 97.09 11 | 84.83 33 | 95.37 31 | 93.65 62 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 77.84 4 | 85.48 57 | 84.47 71 | 88.51 4 | 91.08 87 | 73.49 15 | 93.18 9 | 93.78 18 | 80.79 10 | 76.66 176 | 93.37 57 | 60.40 181 | 96.75 22 | 77.20 107 | 93.73 63 | 95.29 2 |
|
Anonymous202405211 | | | 78.25 183 | 77.01 191 | 81.99 186 | 91.03 88 | 60.67 253 | 84.77 219 | 83.90 266 | 70.65 177 | 80.00 118 | 91.20 99 | 41.08 322 | 91.43 223 | 65.21 210 | 85.26 155 | 93.85 49 |
|
VDD-MVS | | | 83.01 89 | 82.36 90 | 84.96 89 | 91.02 89 | 66.40 159 | 88.91 101 | 88.11 204 | 77.57 38 | 84.39 66 | 93.29 59 | 52.19 236 | 93.91 134 | 77.05 109 | 88.70 115 | 94.57 21 |
|
API-MVS | | | 81.99 102 | 81.23 106 | 84.26 114 | 90.94 90 | 70.18 88 | 91.10 49 | 89.32 169 | 71.51 162 | 78.66 134 | 88.28 170 | 65.26 109 | 95.10 88 | 64.74 215 | 91.23 87 | 87.51 256 |
|
testdata | | | | | 79.97 228 | 90.90 91 | 64.21 199 | | 84.71 253 | 59.27 310 | 85.40 44 | 92.91 67 | 62.02 152 | 89.08 266 | 68.95 180 | 91.37 84 | 86.63 279 |
|
PHI-MVS | | | 86.43 44 | 86.17 48 | 87.24 43 | 90.88 92 | 70.96 67 | 92.27 27 | 94.07 9 | 72.45 144 | 85.22 48 | 91.90 81 | 69.47 72 | 96.42 35 | 83.28 53 | 95.94 16 | 94.35 26 |
|
VNet | | | 82.21 97 | 82.41 88 | 81.62 192 | 90.82 93 | 60.93 249 | 84.47 227 | 89.78 157 | 76.36 76 | 84.07 71 | 91.88 82 | 64.71 116 | 90.26 246 | 70.68 162 | 88.89 111 | 93.66 57 |
|
PVSNet_Blended_VisFu | | | 82.62 93 | 81.83 101 | 84.96 89 | 90.80 94 | 69.76 93 | 88.74 110 | 91.70 105 | 69.39 198 | 78.96 127 | 88.46 165 | 65.47 108 | 94.87 99 | 74.42 129 | 88.57 116 | 90.24 174 |
|
test_part1 | | | 82.78 91 | 82.08 95 | 84.89 93 | 90.66 95 | 66.97 152 | 90.96 51 | 92.93 50 | 77.19 50 | 80.53 115 | 90.04 124 | 63.44 124 | 95.39 74 | 76.04 118 | 76.90 246 | 92.31 110 |
|
Anonymous20240529 | | | 80.19 142 | 78.89 148 | 84.10 118 | 90.60 96 | 64.75 189 | 88.95 100 | 90.90 128 | 65.97 246 | 80.59 114 | 91.17 100 | 49.97 264 | 93.73 145 | 69.16 178 | 82.70 188 | 93.81 53 |
|
hse-mvs3 | | | 83.15 84 | 82.19 92 | 86.02 70 | 90.56 97 | 70.85 73 | 88.15 135 | 89.16 177 | 76.02 82 | 84.67 59 | 91.39 95 | 61.54 157 | 95.50 66 | 82.71 62 | 75.48 269 | 91.72 128 |
|
Anonymous20231211 | | | 78.97 169 | 77.69 179 | 82.81 167 | 90.54 98 | 64.29 198 | 90.11 73 | 91.51 110 | 65.01 257 | 76.16 191 | 88.13 178 | 50.56 258 | 93.03 177 | 69.68 173 | 77.56 239 | 91.11 144 |
|
LS3D | | | 76.95 213 | 74.82 225 | 83.37 141 | 90.45 99 | 67.36 145 | 89.15 96 | 86.94 229 | 61.87 291 | 69.52 276 | 90.61 113 | 51.71 247 | 94.53 107 | 46.38 330 | 86.71 141 | 88.21 242 |
|
VDDNet | | | 81.52 110 | 80.67 113 | 84.05 121 | 90.44 100 | 64.13 201 | 89.73 83 | 85.91 243 | 71.11 166 | 83.18 81 | 93.48 54 | 50.54 259 | 93.49 154 | 73.40 141 | 88.25 121 | 94.54 22 |
|
CNLPA | | | 78.08 189 | 76.79 198 | 81.97 187 | 90.40 101 | 71.07 64 | 87.59 148 | 84.55 256 | 66.03 245 | 72.38 245 | 89.64 132 | 57.56 196 | 86.04 295 | 59.61 254 | 83.35 177 | 88.79 230 |
|
PAPR | | | 81.66 108 | 80.89 111 | 83.99 127 | 90.27 102 | 64.00 202 | 86.76 173 | 91.77 104 | 68.84 216 | 77.13 169 | 89.50 136 | 67.63 86 | 94.88 98 | 67.55 189 | 88.52 118 | 93.09 84 |
|
Vis-MVSNet |  | | 83.46 79 | 82.80 85 | 85.43 76 | 90.25 103 | 68.74 115 | 90.30 68 | 90.13 149 | 76.33 77 | 80.87 112 | 92.89 68 | 61.00 170 | 94.20 119 | 72.45 151 | 90.97 88 | 93.35 74 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DPM-MVS | | | 84.93 67 | 84.29 72 | 86.84 50 | 90.20 104 | 73.04 22 | 87.12 159 | 93.04 38 | 69.80 191 | 82.85 86 | 91.22 98 | 73.06 41 | 96.02 48 | 76.72 114 | 94.63 49 | 91.46 136 |
|
EPP-MVSNet | | | 83.40 81 | 83.02 81 | 84.57 101 | 90.13 105 | 64.47 195 | 92.32 26 | 90.73 131 | 74.45 112 | 79.35 124 | 91.10 101 | 69.05 78 | 95.12 84 | 72.78 148 | 87.22 133 | 94.13 34 |
|
CANet | | | 86.45 43 | 86.10 49 | 87.51 37 | 90.09 106 | 70.94 69 | 89.70 84 | 92.59 65 | 81.78 4 | 81.32 104 | 91.43 94 | 70.34 63 | 97.23 9 | 84.26 42 | 93.36 64 | 94.37 25 |
|
HQP_MVS | | | 83.64 76 | 83.14 78 | 85.14 83 | 90.08 107 | 68.71 117 | 91.25 46 | 92.44 68 | 79.12 23 | 78.92 129 | 91.00 107 | 60.42 179 | 95.38 75 | 78.71 90 | 86.32 146 | 91.33 138 |
|
plane_prior7 | | | | | | 90.08 107 | 68.51 124 | | | | | | | | | | |
|
CHOSEN 1792x2688 | | | 77.63 202 | 75.69 211 | 83.44 137 | 89.98 109 | 68.58 123 | 78.70 298 | 87.50 220 | 56.38 329 | 75.80 197 | 86.84 205 | 58.67 187 | 91.40 224 | 61.58 240 | 85.75 154 | 90.34 171 |
|
IS-MVSNet | | | 83.15 84 | 82.81 84 | 84.18 116 | 89.94 110 | 63.30 219 | 91.59 39 | 88.46 201 | 79.04 25 | 79.49 122 | 92.16 76 | 65.10 111 | 94.28 113 | 67.71 187 | 91.86 79 | 94.95 5 |
|
plane_prior1 | | | | | | 89.90 111 | | | | | | | | | | | |
|
canonicalmvs | | | 85.91 51 | 85.87 52 | 86.04 69 | 89.84 112 | 69.44 103 | 90.45 65 | 93.00 42 | 76.70 67 | 88.01 25 | 91.23 97 | 73.28 38 | 93.91 134 | 81.50 70 | 88.80 113 | 94.77 14 |
|
plane_prior6 | | | | | | 89.84 112 | 68.70 119 | | | | | | 60.42 179 | | | | |
|
CS-MVS | | | 84.76 70 | 84.61 70 | 85.22 82 | 89.66 114 | 66.43 158 | 90.23 69 | 93.56 22 | 76.52 70 | 82.59 91 | 85.93 233 | 70.41 62 | 95.80 55 | 79.93 85 | 92.68 71 | 93.42 71 |
|
NP-MVS | | | | | | 89.62 115 | 68.32 126 | | | | | 90.24 118 | | | | | |
|
EIA-MVS | | | 83.31 83 | 82.80 85 | 84.82 95 | 89.59 116 | 65.59 174 | 88.21 131 | 92.68 59 | 74.66 107 | 78.96 127 | 86.42 225 | 69.06 77 | 95.26 80 | 75.54 124 | 90.09 100 | 93.62 64 |
|
HyFIR lowres test | | | 77.53 203 | 75.40 218 | 83.94 130 | 89.59 116 | 66.62 155 | 80.36 280 | 88.64 198 | 56.29 330 | 76.45 179 | 85.17 251 | 57.64 195 | 93.28 161 | 61.34 243 | 83.10 182 | 91.91 122 |
|
TAPA-MVS | | 73.13 9 | 79.15 163 | 77.94 168 | 82.79 170 | 89.59 116 | 62.99 228 | 88.16 134 | 91.51 110 | 65.77 247 | 77.14 168 | 91.09 102 | 60.91 171 | 93.21 163 | 50.26 310 | 87.05 135 | 92.17 117 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
thres100view900 | | | 76.50 218 | 75.55 214 | 79.33 240 | 89.52 119 | 56.99 293 | 85.83 198 | 83.23 278 | 73.94 122 | 76.32 184 | 87.12 201 | 51.89 244 | 91.95 208 | 48.33 318 | 83.75 171 | 89.07 212 |
|
alignmvs | | | 85.48 57 | 85.32 59 | 85.96 71 | 89.51 120 | 69.47 100 | 89.74 82 | 92.47 67 | 76.17 79 | 87.73 28 | 91.46 93 | 70.32 64 | 93.78 139 | 81.51 69 | 88.95 110 | 94.63 18 |
|
PS-MVSNAJ | | | 81.69 106 | 81.02 110 | 83.70 132 | 89.51 120 | 68.21 130 | 84.28 235 | 90.09 150 | 70.79 172 | 81.26 108 | 85.62 242 | 63.15 132 | 94.29 112 | 75.62 122 | 88.87 112 | 88.59 235 |
|
ACMP | | 74.13 6 | 81.51 112 | 80.57 114 | 84.36 109 | 89.42 122 | 68.69 120 | 89.97 76 | 91.50 113 | 74.46 111 | 75.04 219 | 90.41 116 | 53.82 224 | 94.54 106 | 77.56 103 | 82.91 183 | 89.86 196 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
thres600view7 | | | 76.50 218 | 75.44 216 | 79.68 234 | 89.40 123 | 57.16 290 | 85.53 206 | 83.23 278 | 73.79 126 | 76.26 185 | 87.09 202 | 51.89 244 | 91.89 211 | 48.05 323 | 83.72 174 | 90.00 188 |
|
ETV-MVS | | | 84.90 69 | 84.67 69 | 85.59 74 | 89.39 124 | 68.66 121 | 88.74 110 | 92.64 64 | 79.97 17 | 84.10 70 | 85.71 238 | 69.32 74 | 95.38 75 | 80.82 76 | 91.37 84 | 92.72 95 |
|
BH-RMVSNet | | | 79.61 150 | 78.44 156 | 83.14 151 | 89.38 125 | 65.93 167 | 84.95 216 | 87.15 226 | 73.56 130 | 78.19 144 | 89.79 129 | 56.67 205 | 93.36 159 | 59.53 255 | 86.74 140 | 90.13 178 |
|
Regformer-1 | | | 86.41 46 | 86.33 42 | 86.64 55 | 89.33 126 | 70.93 70 | 88.43 118 | 91.39 115 | 82.14 3 | 86.65 34 | 90.09 122 | 74.39 29 | 95.01 91 | 83.97 47 | 90.63 92 | 93.97 43 |
|
Regformer-2 | | | 86.63 42 | 86.53 41 | 86.95 48 | 89.33 126 | 71.24 62 | 88.43 118 | 92.05 86 | 82.50 1 | 86.88 32 | 90.09 122 | 74.45 26 | 95.61 60 | 84.38 39 | 90.63 92 | 94.01 41 |
|
HQP-NCC | | | | | | 89.33 126 | | 89.17 92 | | 76.41 71 | 77.23 164 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 126 | | 89.17 92 | | 76.41 71 | 77.23 164 | | | | | | |
|
HQP-MVS | | | 82.61 94 | 82.02 97 | 84.37 108 | 89.33 126 | 66.98 150 | 89.17 92 | 92.19 82 | 76.41 71 | 77.23 164 | 90.23 119 | 60.17 182 | 95.11 85 | 77.47 104 | 85.99 151 | 91.03 146 |
|
ACMM | | 73.20 8 | 80.78 129 | 79.84 127 | 83.58 134 | 89.31 131 | 68.37 125 | 89.99 75 | 91.60 107 | 70.28 182 | 77.25 162 | 89.66 131 | 53.37 227 | 93.53 153 | 74.24 132 | 82.85 184 | 88.85 227 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Test_1112_low_res | | | 76.40 222 | 75.44 216 | 79.27 241 | 89.28 132 | 58.09 275 | 81.69 268 | 87.07 227 | 59.53 308 | 72.48 243 | 86.67 215 | 61.30 163 | 89.33 261 | 60.81 247 | 80.15 215 | 90.41 168 |
|
F-COLMAP | | | 76.38 223 | 74.33 232 | 82.50 177 | 89.28 132 | 66.95 154 | 88.41 121 | 89.03 182 | 64.05 269 | 66.83 298 | 88.61 160 | 46.78 287 | 92.89 179 | 57.48 274 | 78.55 228 | 87.67 251 |
|
LPG-MVS_test | | | 82.08 99 | 81.27 105 | 84.50 103 | 89.23 134 | 68.76 113 | 90.22 71 | 91.94 94 | 75.37 93 | 76.64 177 | 91.51 90 | 54.29 219 | 94.91 94 | 78.44 94 | 83.78 169 | 89.83 197 |
|
LGP-MVS_train | | | | | 84.50 103 | 89.23 134 | 68.76 113 | | 91.94 94 | 75.37 93 | 76.64 177 | 91.51 90 | 54.29 219 | 94.91 94 | 78.44 94 | 83.78 169 | 89.83 197 |
|
BH-untuned | | | 79.47 154 | 78.60 152 | 82.05 184 | 89.19 136 | 65.91 168 | 86.07 191 | 88.52 200 | 72.18 150 | 75.42 205 | 87.69 183 | 61.15 167 | 93.54 152 | 60.38 248 | 86.83 139 | 86.70 277 |
|
xiu_mvs_v2_base | | | 81.69 106 | 81.05 109 | 83.60 133 | 89.15 137 | 68.03 133 | 84.46 229 | 90.02 151 | 70.67 175 | 81.30 107 | 86.53 223 | 63.17 131 | 94.19 120 | 75.60 123 | 88.54 117 | 88.57 236 |
|
test_yl | | | 81.17 115 | 80.47 117 | 83.24 146 | 89.13 138 | 63.62 208 | 86.21 187 | 89.95 153 | 72.43 147 | 81.78 100 | 89.61 133 | 57.50 197 | 93.58 148 | 70.75 160 | 86.90 137 | 92.52 101 |
|
DCV-MVSNet | | | 81.17 115 | 80.47 117 | 83.24 146 | 89.13 138 | 63.62 208 | 86.21 187 | 89.95 153 | 72.43 147 | 81.78 100 | 89.61 133 | 57.50 197 | 93.58 148 | 70.75 160 | 86.90 137 | 92.52 101 |
|
tfpn200view9 | | | 76.42 221 | 75.37 220 | 79.55 239 | 89.13 138 | 57.65 285 | 85.17 209 | 83.60 269 | 73.41 135 | 76.45 179 | 86.39 226 | 52.12 237 | 91.95 208 | 48.33 318 | 83.75 171 | 89.07 212 |
|
thres400 | | | 76.50 218 | 75.37 220 | 79.86 230 | 89.13 138 | 57.65 285 | 85.17 209 | 83.60 269 | 73.41 135 | 76.45 179 | 86.39 226 | 52.12 237 | 91.95 208 | 48.33 318 | 83.75 171 | 90.00 188 |
|
1112_ss | | | 77.40 206 | 76.43 206 | 80.32 223 | 89.11 142 | 60.41 258 | 83.65 244 | 87.72 216 | 62.13 289 | 73.05 237 | 86.72 209 | 62.58 141 | 89.97 251 | 62.11 235 | 80.80 206 | 90.59 162 |
|
Regformer-3 | | | 85.23 62 | 85.07 63 | 85.70 73 | 88.95 143 | 69.01 107 | 88.29 128 | 89.91 155 | 80.95 8 | 85.01 49 | 90.01 125 | 72.45 45 | 94.19 120 | 82.50 65 | 87.57 125 | 93.90 47 |
|
Regformer-4 | | | 85.68 56 | 85.45 56 | 86.35 59 | 88.95 143 | 69.67 95 | 88.29 128 | 91.29 117 | 81.73 5 | 85.36 45 | 90.01 125 | 72.62 44 | 95.35 79 | 83.28 53 | 87.57 125 | 94.03 39 |
|
Fast-Effi-MVS+ | | | 80.81 124 | 79.92 125 | 83.47 136 | 88.85 145 | 64.51 192 | 85.53 206 | 89.39 167 | 70.79 172 | 78.49 137 | 85.06 254 | 67.54 87 | 93.58 148 | 67.03 198 | 86.58 142 | 92.32 109 |
|
PVSNet_BlendedMVS | | | 80.60 132 | 80.02 123 | 82.36 180 | 88.85 145 | 65.40 177 | 86.16 189 | 92.00 90 | 69.34 200 | 78.11 146 | 86.09 232 | 66.02 103 | 94.27 114 | 71.52 154 | 82.06 193 | 87.39 258 |
|
PVSNet_Blended | | | 80.98 118 | 80.34 119 | 82.90 163 | 88.85 145 | 65.40 177 | 84.43 231 | 92.00 90 | 67.62 226 | 78.11 146 | 85.05 255 | 66.02 103 | 94.27 114 | 71.52 154 | 89.50 106 | 89.01 219 |
|
MVS_111021_LR | | | 82.61 94 | 82.11 93 | 84.11 117 | 88.82 148 | 71.58 56 | 85.15 211 | 86.16 240 | 74.69 106 | 80.47 116 | 91.04 104 | 62.29 146 | 90.55 244 | 80.33 81 | 90.08 101 | 90.20 175 |
|
BH-w/o | | | 78.21 185 | 77.33 187 | 80.84 213 | 88.81 149 | 65.13 184 | 84.87 217 | 87.85 214 | 69.75 193 | 74.52 225 | 84.74 258 | 61.34 162 | 93.11 171 | 58.24 269 | 85.84 153 | 84.27 307 |
|
FIs | | | 82.07 100 | 82.42 87 | 81.04 210 | 88.80 150 | 58.34 273 | 88.26 130 | 93.49 25 | 76.93 58 | 78.47 138 | 91.04 104 | 69.92 68 | 92.34 195 | 69.87 171 | 84.97 157 | 92.44 107 |
|
OPM-MVS | | | 83.50 78 | 82.95 82 | 85.14 83 | 88.79 151 | 70.95 68 | 89.13 97 | 91.52 109 | 77.55 41 | 80.96 111 | 91.75 83 | 60.71 173 | 94.50 109 | 79.67 86 | 86.51 144 | 89.97 192 |
|
WR-MVS | | | 79.49 153 | 79.22 143 | 80.27 224 | 88.79 151 | 58.35 272 | 85.06 213 | 88.61 199 | 78.56 29 | 77.65 154 | 88.34 168 | 63.81 123 | 90.66 243 | 64.98 213 | 77.22 242 | 91.80 127 |
|
OMC-MVS | | | 82.69 92 | 81.97 99 | 84.85 94 | 88.75 153 | 67.42 142 | 87.98 137 | 90.87 129 | 74.92 102 | 79.72 120 | 91.65 85 | 62.19 149 | 93.96 127 | 75.26 126 | 86.42 145 | 93.16 83 |
|
AUN-MVS | | | 79.21 162 | 77.60 181 | 84.05 121 | 88.71 154 | 67.61 139 | 85.84 197 | 87.26 225 | 69.08 208 | 77.23 164 | 88.14 177 | 53.20 229 | 93.47 155 | 75.50 125 | 73.45 295 | 91.06 145 |
|
ACMH | | 67.68 16 | 75.89 228 | 73.93 235 | 81.77 190 | 88.71 154 | 66.61 156 | 88.62 114 | 89.01 184 | 69.81 190 | 66.78 299 | 86.70 214 | 41.95 319 | 91.51 222 | 55.64 286 | 78.14 234 | 87.17 265 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Vis-MVSNet (Re-imp) | | | 78.36 182 | 78.45 155 | 78.07 259 | 88.64 156 | 51.78 331 | 86.70 174 | 79.63 315 | 74.14 119 | 75.11 216 | 90.83 110 | 61.29 164 | 89.75 254 | 58.10 270 | 91.60 80 | 92.69 98 |
|
PatchMatch-RL | | | 72.38 263 | 70.90 263 | 76.80 277 | 88.60 157 | 67.38 144 | 79.53 288 | 76.17 330 | 62.75 283 | 69.36 278 | 82.00 294 | 45.51 298 | 84.89 304 | 53.62 293 | 80.58 209 | 78.12 340 |
|
ACMH+ | | 68.96 14 | 76.01 227 | 74.01 234 | 82.03 185 | 88.60 157 | 65.31 181 | 88.86 103 | 87.55 218 | 70.25 183 | 67.75 287 | 87.47 190 | 41.27 320 | 93.19 166 | 58.37 267 | 75.94 262 | 87.60 253 |
|
LTVRE_ROB | | 69.57 13 | 76.25 224 | 74.54 229 | 81.41 197 | 88.60 157 | 64.38 197 | 79.24 291 | 89.12 181 | 70.76 174 | 69.79 275 | 87.86 180 | 49.09 275 | 93.20 165 | 56.21 285 | 80.16 214 | 86.65 278 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DELS-MVS | | | 85.41 60 | 85.30 60 | 85.77 72 | 88.49 160 | 67.93 134 | 85.52 208 | 93.44 27 | 78.70 28 | 83.63 79 | 89.03 151 | 74.57 25 | 95.71 59 | 80.26 82 | 94.04 61 | 93.66 57 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CLD-MVS | | | 82.31 96 | 81.65 102 | 84.29 113 | 88.47 161 | 67.73 138 | 85.81 199 | 92.35 73 | 75.78 84 | 78.33 141 | 86.58 220 | 64.01 120 | 94.35 111 | 76.05 117 | 87.48 130 | 90.79 153 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet_NR-MVSNet | | | 81.88 103 | 81.54 103 | 82.92 162 | 88.46 162 | 63.46 215 | 87.13 158 | 92.37 72 | 80.19 14 | 78.38 139 | 89.14 146 | 71.66 53 | 93.05 174 | 70.05 168 | 76.46 254 | 92.25 113 |
|
ab-mvs | | | 79.51 152 | 78.97 147 | 81.14 207 | 88.46 162 | 60.91 250 | 83.84 241 | 89.24 174 | 70.36 180 | 79.03 126 | 88.87 154 | 63.23 130 | 90.21 248 | 65.12 211 | 82.57 189 | 92.28 112 |
|
FC-MVSNet-test | | | 81.52 110 | 82.02 97 | 80.03 227 | 88.42 164 | 55.97 309 | 87.95 139 | 93.42 29 | 77.10 54 | 77.38 159 | 90.98 109 | 69.96 67 | 91.79 213 | 68.46 183 | 84.50 162 | 92.33 108 |
|
Effi-MVS+ | | | 83.62 77 | 83.08 79 | 85.24 80 | 88.38 165 | 67.45 141 | 88.89 102 | 89.15 178 | 75.50 90 | 82.27 92 | 88.28 170 | 69.61 71 | 94.45 110 | 77.81 101 | 87.84 123 | 93.84 51 |
|
UniMVSNet (Re) | | | 81.60 109 | 81.11 108 | 83.09 153 | 88.38 165 | 64.41 196 | 87.60 147 | 93.02 41 | 78.42 31 | 78.56 135 | 88.16 173 | 69.78 69 | 93.26 162 | 69.58 174 | 76.49 253 | 91.60 129 |
|
VPNet | | | 78.69 174 | 78.66 151 | 78.76 248 | 88.31 167 | 55.72 311 | 84.45 230 | 86.63 233 | 76.79 62 | 78.26 142 | 90.55 114 | 59.30 184 | 89.70 256 | 66.63 199 | 77.05 244 | 90.88 151 |
|
TR-MVS | | | 77.44 204 | 76.18 209 | 81.20 205 | 88.24 168 | 63.24 220 | 84.61 225 | 86.40 236 | 67.55 227 | 77.81 151 | 86.48 224 | 54.10 221 | 93.15 168 | 57.75 273 | 82.72 187 | 87.20 264 |
|
EI-MVSNet-Vis-set | | | 84.19 71 | 83.81 73 | 85.31 77 | 88.18 169 | 67.85 135 | 87.66 146 | 89.73 160 | 80.05 16 | 82.95 83 | 89.59 135 | 70.74 60 | 94.82 100 | 80.66 79 | 84.72 160 | 93.28 77 |
|
baseline1 | | | 76.98 212 | 76.75 201 | 77.66 264 | 88.13 170 | 55.66 312 | 85.12 212 | 81.89 292 | 73.04 140 | 76.79 172 | 88.90 152 | 62.43 144 | 87.78 284 | 63.30 223 | 71.18 310 | 89.55 206 |
|
test_0402 | | | 72.79 260 | 70.44 267 | 79.84 231 | 88.13 170 | 65.99 165 | 85.93 194 | 84.29 260 | 65.57 250 | 67.40 292 | 85.49 244 | 46.92 286 | 92.61 185 | 35.88 348 | 74.38 286 | 80.94 332 |
|
tttt0517 | | | 79.40 157 | 77.91 169 | 83.90 131 | 88.10 172 | 63.84 205 | 88.37 125 | 84.05 264 | 71.45 163 | 76.78 173 | 89.12 148 | 49.93 267 | 94.89 97 | 70.18 167 | 83.18 180 | 92.96 91 |
|
VPA-MVSNet | | | 80.60 132 | 80.55 115 | 80.76 215 | 88.07 173 | 60.80 252 | 86.86 167 | 91.58 108 | 75.67 88 | 80.24 117 | 89.45 142 | 63.34 126 | 90.25 247 | 70.51 164 | 79.22 227 | 91.23 141 |
|
UGNet | | | 80.83 123 | 79.59 133 | 84.54 102 | 88.04 174 | 68.09 131 | 89.42 87 | 88.16 203 | 76.95 57 | 76.22 186 | 89.46 140 | 49.30 273 | 93.94 130 | 68.48 182 | 90.31 95 | 91.60 129 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
WR-MVS_H | | | 78.51 178 | 78.49 154 | 78.56 251 | 88.02 175 | 56.38 304 | 88.43 118 | 92.67 60 | 77.14 52 | 73.89 230 | 87.55 187 | 66.25 99 | 89.24 263 | 58.92 261 | 73.55 294 | 90.06 186 |
|
QAPM | | | 80.88 119 | 79.50 135 | 85.03 86 | 88.01 176 | 68.97 109 | 91.59 39 | 92.00 90 | 66.63 238 | 75.15 215 | 92.16 76 | 57.70 194 | 95.45 69 | 63.52 219 | 88.76 114 | 90.66 158 |
|
3Dnovator | | 76.31 5 | 83.38 82 | 82.31 91 | 86.59 57 | 87.94 177 | 72.94 27 | 90.64 56 | 92.14 84 | 77.21 49 | 75.47 201 | 92.83 70 | 58.56 188 | 94.72 104 | 73.24 144 | 92.71 70 | 92.13 118 |
|
EI-MVSNet-UG-set | | | 83.81 73 | 83.38 76 | 85.09 85 | 87.87 178 | 67.53 140 | 87.44 152 | 89.66 162 | 79.74 18 | 82.23 93 | 89.41 144 | 70.24 65 | 94.74 103 | 79.95 83 | 83.92 168 | 92.99 90 |
|
TranMVSNet+NR-MVSNet | | | 80.84 121 | 80.31 120 | 82.42 178 | 87.85 179 | 62.33 233 | 87.74 145 | 91.33 116 | 80.55 11 | 77.99 149 | 89.86 127 | 65.23 110 | 92.62 184 | 67.05 197 | 75.24 279 | 92.30 111 |
|
CP-MVSNet | | | 78.22 184 | 78.34 160 | 77.84 261 | 87.83 180 | 54.54 316 | 87.94 140 | 91.17 122 | 77.65 35 | 73.48 232 | 88.49 164 | 62.24 148 | 88.43 276 | 62.19 232 | 74.07 287 | 90.55 163 |
|
DU-MVS | | | 81.12 117 | 80.52 116 | 82.90 163 | 87.80 181 | 63.46 215 | 87.02 162 | 91.87 98 | 79.01 26 | 78.38 139 | 89.07 149 | 65.02 112 | 93.05 174 | 70.05 168 | 76.46 254 | 92.20 115 |
|
NR-MVSNet | | | 80.23 140 | 79.38 138 | 82.78 171 | 87.80 181 | 63.34 218 | 86.31 184 | 91.09 125 | 79.01 26 | 72.17 247 | 89.07 149 | 67.20 91 | 92.81 183 | 66.08 204 | 75.65 265 | 92.20 115 |
|
TAMVS | | | 78.89 171 | 77.51 183 | 83.03 157 | 87.80 181 | 67.79 137 | 84.72 220 | 85.05 251 | 67.63 225 | 76.75 174 | 87.70 182 | 62.25 147 | 90.82 239 | 58.53 266 | 87.13 134 | 90.49 165 |
|
thres200 | | | 75.55 232 | 74.47 230 | 78.82 247 | 87.78 184 | 57.85 282 | 83.07 256 | 83.51 272 | 72.44 146 | 75.84 196 | 84.42 260 | 52.08 239 | 91.75 214 | 47.41 325 | 83.64 175 | 86.86 273 |
|
PS-CasMVS | | | 78.01 193 | 78.09 165 | 77.77 263 | 87.71 185 | 54.39 318 | 88.02 136 | 91.22 119 | 77.50 43 | 73.26 234 | 88.64 159 | 60.73 172 | 88.41 277 | 61.88 236 | 73.88 291 | 90.53 164 |
|
PCF-MVS | | 73.52 7 | 80.38 137 | 78.84 149 | 85.01 87 | 87.71 185 | 68.99 108 | 83.65 244 | 91.46 114 | 63.00 278 | 77.77 153 | 90.28 117 | 66.10 100 | 95.09 89 | 61.40 241 | 88.22 122 | 90.94 150 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
thisisatest0530 | | | 79.40 157 | 77.76 176 | 84.31 112 | 87.69 187 | 65.10 185 | 87.36 153 | 84.26 262 | 70.04 185 | 77.42 158 | 88.26 172 | 49.94 265 | 94.79 102 | 70.20 166 | 84.70 161 | 93.03 87 |
|
GBi-Net | | | 78.40 179 | 77.40 184 | 81.40 198 | 87.60 188 | 63.01 225 | 88.39 122 | 89.28 170 | 71.63 158 | 75.34 208 | 87.28 193 | 54.80 212 | 91.11 230 | 62.72 226 | 79.57 219 | 90.09 182 |
|
test1 | | | 78.40 179 | 77.40 184 | 81.40 198 | 87.60 188 | 63.01 225 | 88.39 122 | 89.28 170 | 71.63 158 | 75.34 208 | 87.28 193 | 54.80 212 | 91.11 230 | 62.72 226 | 79.57 219 | 90.09 182 |
|
FMVSNet2 | | | 78.20 186 | 77.21 188 | 81.20 205 | 87.60 188 | 62.89 229 | 87.47 151 | 89.02 183 | 71.63 158 | 75.29 212 | 87.28 193 | 54.80 212 | 91.10 233 | 62.38 230 | 79.38 223 | 89.61 204 |
|
CDS-MVSNet | | | 79.07 166 | 77.70 178 | 83.17 150 | 87.60 188 | 68.23 129 | 84.40 233 | 86.20 239 | 67.49 228 | 76.36 183 | 86.54 222 | 61.54 157 | 90.79 240 | 61.86 237 | 87.33 131 | 90.49 165 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HY-MVS | | 69.67 12 | 77.95 194 | 77.15 189 | 80.36 221 | 87.57 192 | 60.21 260 | 83.37 251 | 87.78 215 | 66.11 242 | 75.37 207 | 87.06 204 | 63.27 128 | 90.48 245 | 61.38 242 | 82.43 190 | 90.40 169 |
|
xiu_mvs_v1_base_debu | | | 80.80 126 | 79.72 130 | 84.03 124 | 87.35 193 | 70.19 85 | 85.56 201 | 88.77 192 | 69.06 209 | 81.83 96 | 88.16 173 | 50.91 253 | 92.85 180 | 78.29 98 | 87.56 127 | 89.06 214 |
|
xiu_mvs_v1_base | | | 80.80 126 | 79.72 130 | 84.03 124 | 87.35 193 | 70.19 85 | 85.56 201 | 88.77 192 | 69.06 209 | 81.83 96 | 88.16 173 | 50.91 253 | 92.85 180 | 78.29 98 | 87.56 127 | 89.06 214 |
|
xiu_mvs_v1_base_debi | | | 80.80 126 | 79.72 130 | 84.03 124 | 87.35 193 | 70.19 85 | 85.56 201 | 88.77 192 | 69.06 209 | 81.83 96 | 88.16 173 | 50.91 253 | 92.85 180 | 78.29 98 | 87.56 127 | 89.06 214 |
|
MVSFormer | | | 82.85 90 | 82.05 96 | 85.24 80 | 87.35 193 | 70.21 83 | 90.50 60 | 90.38 139 | 68.55 220 | 81.32 104 | 89.47 138 | 61.68 154 | 93.46 156 | 78.98 88 | 90.26 97 | 92.05 120 |
|
lupinMVS | | | 81.39 113 | 80.27 122 | 84.76 98 | 87.35 193 | 70.21 83 | 85.55 204 | 86.41 235 | 62.85 281 | 81.32 104 | 88.61 160 | 61.68 154 | 92.24 199 | 78.41 96 | 90.26 97 | 91.83 124 |
|
baseline | | | 84.93 67 | 84.98 64 | 84.80 97 | 87.30 198 | 65.39 179 | 87.30 155 | 92.88 51 | 77.62 36 | 84.04 72 | 92.26 75 | 71.81 50 | 93.96 127 | 81.31 71 | 90.30 96 | 95.03 4 |
|
PAPM | | | 77.68 201 | 76.40 207 | 81.51 195 | 87.29 199 | 61.85 240 | 83.78 242 | 89.59 163 | 64.74 259 | 71.23 255 | 88.70 156 | 62.59 140 | 93.66 147 | 52.66 297 | 87.03 136 | 89.01 219 |
|
LCM-MVSNet-Re | | | 77.05 210 | 76.94 194 | 77.36 269 | 87.20 200 | 51.60 332 | 80.06 283 | 80.46 307 | 75.20 97 | 67.69 288 | 86.72 209 | 62.48 142 | 88.98 268 | 63.44 221 | 89.25 109 | 91.51 132 |
|
casdiffmvs | | | 85.11 65 | 85.14 62 | 85.01 87 | 87.20 200 | 65.77 172 | 87.75 144 | 92.83 54 | 77.84 34 | 84.36 67 | 92.38 74 | 72.15 48 | 93.93 133 | 81.27 72 | 90.48 94 | 95.33 1 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 257 | 70.41 268 | 80.81 214 | 87.13 202 | 65.63 173 | 88.30 127 | 84.19 263 | 62.96 279 | 63.80 322 | 87.69 183 | 38.04 332 | 92.56 187 | 46.66 327 | 74.91 281 | 84.24 308 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 77.73 198 | 77.69 179 | 77.84 261 | 87.07 203 | 53.91 321 | 87.91 142 | 91.18 121 | 77.56 40 | 73.14 236 | 88.82 155 | 61.23 165 | 89.17 264 | 59.95 251 | 72.37 301 | 90.43 167 |
|
MVS_Test | | | 83.15 84 | 83.06 80 | 83.41 140 | 86.86 204 | 63.21 221 | 86.11 190 | 92.00 90 | 74.31 113 | 82.87 85 | 89.44 143 | 70.03 66 | 93.21 163 | 77.39 106 | 88.50 119 | 93.81 53 |
|
UniMVSNet_ETH3D | | | 79.10 165 | 78.24 163 | 81.70 191 | 86.85 205 | 60.24 259 | 87.28 156 | 88.79 191 | 74.25 116 | 76.84 170 | 90.53 115 | 49.48 270 | 91.56 219 | 67.98 185 | 82.15 192 | 93.29 76 |
|
FMVSNet3 | | | 77.88 196 | 76.85 196 | 80.97 211 | 86.84 206 | 62.36 232 | 86.52 180 | 88.77 192 | 71.13 165 | 75.34 208 | 86.66 216 | 54.07 222 | 91.10 233 | 62.72 226 | 79.57 219 | 89.45 207 |
|
FMVSNet1 | | | 77.44 204 | 76.12 210 | 81.40 198 | 86.81 207 | 63.01 225 | 88.39 122 | 89.28 170 | 70.49 179 | 74.39 226 | 87.28 193 | 49.06 276 | 91.11 230 | 60.91 245 | 78.52 229 | 90.09 182 |
|
nrg030 | | | 83.88 72 | 83.53 74 | 84.96 89 | 86.77 208 | 69.28 104 | 90.46 64 | 92.67 60 | 74.79 103 | 82.95 83 | 91.33 96 | 72.70 43 | 93.09 172 | 80.79 78 | 79.28 226 | 92.50 103 |
|
ET-MVSNet_ETH3D | | | 78.63 175 | 76.63 204 | 84.64 100 | 86.73 209 | 69.47 100 | 85.01 214 | 84.61 255 | 69.54 196 | 66.51 304 | 86.59 218 | 50.16 262 | 91.75 214 | 76.26 115 | 84.24 166 | 92.69 98 |
|
jason | | | 81.39 113 | 80.29 121 | 84.70 99 | 86.63 210 | 69.90 90 | 85.95 193 | 86.77 231 | 63.24 274 | 81.07 110 | 89.47 138 | 61.08 169 | 92.15 202 | 78.33 97 | 90.07 102 | 92.05 120 |
jason: jason. |
PS-MVSNAJss | | | 82.07 100 | 81.31 104 | 84.34 111 | 86.51 211 | 67.27 146 | 89.27 90 | 91.51 110 | 71.75 156 | 79.37 123 | 90.22 120 | 63.15 132 | 94.27 114 | 77.69 102 | 82.36 191 | 91.49 134 |
|
WTY-MVS | | | 75.65 231 | 75.68 212 | 75.57 285 | 86.40 212 | 56.82 295 | 77.92 306 | 82.40 288 | 65.10 254 | 76.18 188 | 87.72 181 | 63.13 135 | 80.90 323 | 60.31 249 | 81.96 194 | 89.00 221 |
|
DTE-MVSNet | | | 76.99 211 | 76.80 197 | 77.54 268 | 86.24 213 | 53.06 328 | 87.52 149 | 90.66 132 | 77.08 55 | 72.50 242 | 88.67 158 | 60.48 178 | 89.52 258 | 57.33 277 | 70.74 312 | 90.05 187 |
|
PVSNet | | 64.34 18 | 72.08 266 | 70.87 265 | 75.69 283 | 86.21 214 | 56.44 302 | 74.37 324 | 80.73 302 | 62.06 290 | 70.17 266 | 82.23 290 | 42.86 311 | 83.31 314 | 54.77 289 | 84.45 164 | 87.32 261 |
|
tfpnnormal | | | 74.39 240 | 73.16 243 | 78.08 258 | 86.10 215 | 58.05 276 | 84.65 224 | 87.53 219 | 70.32 181 | 71.22 256 | 85.63 241 | 54.97 211 | 89.86 252 | 43.03 339 | 75.02 280 | 86.32 281 |
|
RRT_test8_iter05 | | | 78.38 181 | 77.40 184 | 81.34 201 | 86.00 216 | 58.86 268 | 86.55 179 | 91.26 118 | 72.13 153 | 75.91 193 | 87.42 191 | 44.97 300 | 93.73 145 | 77.02 110 | 75.30 276 | 91.45 137 |
|
IterMVS-LS | | | 80.06 143 | 79.38 138 | 82.11 182 | 85.89 217 | 63.20 222 | 86.79 170 | 89.34 168 | 74.19 117 | 75.45 204 | 86.72 209 | 66.62 94 | 92.39 192 | 72.58 149 | 76.86 248 | 90.75 155 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Baseline_NR-MVSNet | | | 78.15 188 | 78.33 161 | 77.61 266 | 85.79 218 | 56.21 307 | 86.78 171 | 85.76 244 | 73.60 129 | 77.93 150 | 87.57 186 | 65.02 112 | 88.99 267 | 67.14 196 | 75.33 275 | 87.63 252 |
|
cascas | | | 76.72 216 | 74.64 226 | 82.99 159 | 85.78 219 | 65.88 169 | 82.33 262 | 89.21 175 | 60.85 297 | 72.74 239 | 81.02 299 | 47.28 284 | 93.75 143 | 67.48 190 | 85.02 156 | 89.34 209 |
|
MVS | | | 78.19 187 | 76.99 193 | 81.78 189 | 85.66 220 | 66.99 149 | 84.66 221 | 90.47 137 | 55.08 334 | 72.02 249 | 85.27 248 | 63.83 122 | 94.11 125 | 66.10 203 | 89.80 104 | 84.24 308 |
|
XVG-OURS | | | 80.41 136 | 79.23 142 | 83.97 128 | 85.64 221 | 69.02 106 | 83.03 257 | 90.39 138 | 71.09 167 | 77.63 155 | 91.49 92 | 54.62 218 | 91.35 225 | 75.71 120 | 83.47 176 | 91.54 131 |
|
CANet_DTU | | | 80.61 131 | 79.87 126 | 82.83 165 | 85.60 222 | 63.17 224 | 87.36 153 | 88.65 197 | 76.37 75 | 75.88 195 | 88.44 166 | 53.51 226 | 93.07 173 | 73.30 142 | 89.74 105 | 92.25 113 |
|
XVG-OURS-SEG-HR | | | 80.81 124 | 79.76 129 | 83.96 129 | 85.60 222 | 68.78 112 | 83.54 249 | 90.50 136 | 70.66 176 | 76.71 175 | 91.66 84 | 60.69 174 | 91.26 227 | 76.94 111 | 81.58 198 | 91.83 124 |
|
TransMVSNet (Re) | | | 75.39 236 | 74.56 228 | 77.86 260 | 85.50 224 | 57.10 292 | 86.78 171 | 86.09 242 | 72.17 151 | 71.53 253 | 87.34 192 | 63.01 136 | 89.31 262 | 56.84 281 | 61.83 334 | 87.17 265 |
|
RRT_MVS | | | 79.88 147 | 78.38 158 | 84.38 107 | 85.42 225 | 70.60 79 | 88.71 112 | 88.75 196 | 72.30 149 | 78.83 131 | 89.14 146 | 44.44 303 | 92.18 201 | 78.50 93 | 79.33 225 | 90.35 170 |
|
MVP-Stereo | | | 76.12 225 | 74.46 231 | 81.13 208 | 85.37 226 | 69.79 92 | 84.42 232 | 87.95 210 | 65.03 256 | 67.46 290 | 85.33 247 | 53.28 228 | 91.73 216 | 58.01 271 | 83.27 178 | 81.85 327 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
thisisatest0515 | | | 77.33 207 | 75.38 219 | 83.18 149 | 85.27 227 | 63.80 206 | 82.11 264 | 83.27 277 | 65.06 255 | 75.91 193 | 83.84 268 | 49.54 269 | 94.27 114 | 67.24 194 | 86.19 148 | 91.48 135 |
|
OpenMVS |  | 72.83 10 | 79.77 148 | 78.33 161 | 84.09 119 | 85.17 228 | 69.91 89 | 90.57 58 | 90.97 126 | 66.70 234 | 72.17 247 | 91.91 80 | 54.70 216 | 93.96 127 | 61.81 238 | 90.95 89 | 88.41 240 |
|
AllTest | | | 70.96 271 | 68.09 283 | 79.58 237 | 85.15 229 | 63.62 208 | 84.58 226 | 79.83 313 | 62.31 287 | 60.32 332 | 86.73 207 | 32.02 345 | 88.96 270 | 50.28 308 | 71.57 308 | 86.15 285 |
|
TestCases | | | | | 79.58 237 | 85.15 229 | 63.62 208 | | 79.83 313 | 62.31 287 | 60.32 332 | 86.73 207 | 32.02 345 | 88.96 270 | 50.28 308 | 71.57 308 | 86.15 285 |
|
Effi-MVS+-dtu | | | 80.03 144 | 78.57 153 | 84.42 106 | 85.13 231 | 68.74 115 | 88.77 107 | 88.10 205 | 74.99 100 | 74.97 220 | 83.49 274 | 57.27 200 | 93.36 159 | 73.53 137 | 80.88 204 | 91.18 142 |
|
mvs-test1 | | | 80.88 119 | 79.40 137 | 85.29 78 | 85.13 231 | 69.75 94 | 89.28 89 | 88.10 205 | 74.99 100 | 76.44 182 | 86.72 209 | 57.27 200 | 94.26 118 | 73.53 137 | 83.18 180 | 91.87 123 |
|
SixPastTwentyTwo | | | 73.37 251 | 71.26 261 | 79.70 233 | 85.08 233 | 57.89 281 | 85.57 200 | 83.56 271 | 71.03 168 | 65.66 308 | 85.88 235 | 42.10 317 | 92.57 186 | 59.11 259 | 63.34 333 | 88.65 234 |
|
EG-PatchMatch MVS | | | 74.04 245 | 71.82 254 | 80.71 216 | 84.92 234 | 67.42 142 | 85.86 196 | 88.08 207 | 66.04 244 | 64.22 318 | 83.85 267 | 35.10 340 | 92.56 187 | 57.44 275 | 80.83 205 | 82.16 326 |
|
IB-MVS | | 68.01 15 | 75.85 229 | 73.36 241 | 83.31 142 | 84.76 235 | 66.03 163 | 83.38 250 | 85.06 250 | 70.21 184 | 69.40 277 | 81.05 298 | 45.76 296 | 94.66 105 | 65.10 212 | 75.49 268 | 89.25 211 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
mvs_tets | | | 79.13 164 | 77.77 175 | 83.22 148 | 84.70 236 | 66.37 160 | 89.17 92 | 90.19 147 | 69.38 199 | 75.40 206 | 89.46 140 | 44.17 305 | 93.15 168 | 76.78 113 | 80.70 208 | 90.14 177 |
|
jajsoiax | | | 79.29 160 | 77.96 167 | 83.27 144 | 84.68 237 | 66.57 157 | 89.25 91 | 90.16 148 | 69.20 205 | 75.46 203 | 89.49 137 | 45.75 297 | 93.13 170 | 76.84 112 | 80.80 206 | 90.11 180 |
|
MIMVSNet | | | 70.69 273 | 69.30 272 | 74.88 292 | 84.52 238 | 56.35 305 | 75.87 316 | 79.42 316 | 64.59 260 | 67.76 286 | 82.41 286 | 41.10 321 | 81.54 321 | 46.64 329 | 81.34 199 | 86.75 276 |
|
MSDG | | | 73.36 253 | 70.99 262 | 80.49 219 | 84.51 239 | 65.80 170 | 80.71 277 | 86.13 241 | 65.70 248 | 65.46 309 | 83.74 271 | 44.60 301 | 90.91 238 | 51.13 303 | 76.89 247 | 84.74 303 |
|
mvs_anonymous | | | 79.42 156 | 79.11 144 | 80.34 222 | 84.45 240 | 57.97 279 | 82.59 259 | 87.62 217 | 67.40 229 | 76.17 190 | 88.56 163 | 68.47 80 | 89.59 257 | 70.65 163 | 86.05 150 | 93.47 70 |
|
EI-MVSNet | | | 80.52 135 | 79.98 124 | 82.12 181 | 84.28 241 | 63.19 223 | 86.41 181 | 88.95 188 | 74.18 118 | 78.69 132 | 87.54 188 | 66.62 94 | 92.43 190 | 72.57 150 | 80.57 210 | 90.74 156 |
|
CVMVSNet | | | 72.99 258 | 72.58 247 | 74.25 298 | 84.28 241 | 50.85 337 | 86.41 181 | 83.45 275 | 44.56 345 | 73.23 235 | 87.54 188 | 49.38 271 | 85.70 297 | 65.90 205 | 78.44 231 | 86.19 284 |
|
pm-mvs1 | | | 77.25 208 | 76.68 203 | 78.93 246 | 84.22 243 | 58.62 271 | 86.41 181 | 88.36 202 | 71.37 164 | 73.31 233 | 88.01 179 | 61.22 166 | 89.15 265 | 64.24 217 | 73.01 298 | 89.03 218 |
|
EPNet | | | 83.72 75 | 82.92 83 | 86.14 66 | 84.22 243 | 69.48 99 | 91.05 50 | 85.27 248 | 81.30 7 | 76.83 171 | 91.65 85 | 66.09 101 | 95.56 62 | 76.00 119 | 93.85 62 | 93.38 72 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v8 | | | 79.97 146 | 79.02 146 | 82.80 168 | 84.09 245 | 64.50 194 | 87.96 138 | 90.29 146 | 74.13 120 | 75.24 213 | 86.81 206 | 62.88 137 | 93.89 136 | 74.39 130 | 75.40 273 | 90.00 188 |
|
v10 | | | 79.74 149 | 78.67 150 | 82.97 161 | 84.06 246 | 64.95 186 | 87.88 143 | 90.62 133 | 73.11 138 | 75.11 216 | 86.56 221 | 61.46 159 | 94.05 126 | 73.68 135 | 75.55 267 | 89.90 194 |
|
SCA | | | 74.22 243 | 72.33 250 | 79.91 229 | 84.05 247 | 62.17 236 | 79.96 285 | 79.29 317 | 66.30 241 | 72.38 245 | 80.13 308 | 51.95 242 | 88.60 274 | 59.25 257 | 77.67 238 | 88.96 223 |
|
test_djsdf | | | 80.30 139 | 79.32 140 | 83.27 144 | 83.98 248 | 65.37 180 | 90.50 60 | 90.38 139 | 68.55 220 | 76.19 187 | 88.70 156 | 56.44 206 | 93.46 156 | 78.98 88 | 80.14 216 | 90.97 149 |
|
1314 | | | 76.53 217 | 75.30 222 | 80.21 225 | 83.93 249 | 62.32 234 | 84.66 221 | 88.81 190 | 60.23 301 | 70.16 267 | 84.07 265 | 55.30 210 | 90.73 242 | 67.37 191 | 83.21 179 | 87.59 255 |
|
MS-PatchMatch | | | 73.83 247 | 72.67 246 | 77.30 271 | 83.87 250 | 66.02 164 | 81.82 265 | 84.66 254 | 61.37 295 | 68.61 283 | 82.82 282 | 47.29 283 | 88.21 278 | 59.27 256 | 84.32 165 | 77.68 341 |
|
v1144 | | | 80.03 144 | 79.03 145 | 83.01 158 | 83.78 251 | 64.51 192 | 87.11 160 | 90.57 135 | 71.96 154 | 78.08 148 | 86.20 230 | 61.41 160 | 93.94 130 | 74.93 127 | 77.23 241 | 90.60 161 |
|
OurMVSNet-221017-0 | | | 74.26 242 | 72.42 249 | 79.80 232 | 83.76 252 | 59.59 264 | 85.92 195 | 86.64 232 | 66.39 240 | 66.96 295 | 87.58 185 | 39.46 326 | 91.60 217 | 65.76 207 | 69.27 316 | 88.22 241 |
|
v2v482 | | | 80.23 140 | 79.29 141 | 83.05 156 | 83.62 253 | 64.14 200 | 87.04 161 | 89.97 152 | 73.61 128 | 78.18 145 | 87.22 197 | 61.10 168 | 93.82 137 | 76.11 116 | 76.78 251 | 91.18 142 |
|
XXY-MVS | | | 75.41 235 | 75.56 213 | 74.96 291 | 83.59 254 | 57.82 283 | 80.59 279 | 83.87 267 | 66.54 239 | 74.93 221 | 88.31 169 | 63.24 129 | 80.09 326 | 62.16 233 | 76.85 249 | 86.97 271 |
|
v1192 | | | 79.59 151 | 78.43 157 | 83.07 155 | 83.55 255 | 64.52 191 | 86.93 165 | 90.58 134 | 70.83 170 | 77.78 152 | 85.90 234 | 59.15 185 | 93.94 130 | 73.96 134 | 77.19 243 | 90.76 154 |
|
v7n | | | 78.97 169 | 77.58 182 | 83.14 151 | 83.45 256 | 65.51 175 | 88.32 126 | 91.21 120 | 73.69 127 | 72.41 244 | 86.32 228 | 57.93 191 | 93.81 138 | 69.18 177 | 75.65 265 | 90.11 180 |
|
v144192 | | | 79.47 154 | 78.37 159 | 82.78 171 | 83.35 257 | 63.96 203 | 86.96 163 | 90.36 142 | 69.99 186 | 77.50 156 | 85.67 240 | 60.66 175 | 93.77 141 | 74.27 131 | 76.58 252 | 90.62 159 |
|
tpm2 | | | 73.26 254 | 71.46 256 | 78.63 249 | 83.34 258 | 56.71 298 | 80.65 278 | 80.40 308 | 56.63 328 | 73.55 231 | 82.02 293 | 51.80 246 | 91.24 228 | 56.35 284 | 78.42 232 | 87.95 244 |
|
v1921920 | | | 79.22 161 | 78.03 166 | 82.80 168 | 83.30 259 | 63.94 204 | 86.80 169 | 90.33 143 | 69.91 189 | 77.48 157 | 85.53 243 | 58.44 189 | 93.75 143 | 73.60 136 | 76.85 249 | 90.71 157 |
|
baseline2 | | | 75.70 230 | 73.83 238 | 81.30 202 | 83.26 260 | 61.79 242 | 82.57 260 | 80.65 303 | 66.81 231 | 66.88 296 | 83.42 275 | 57.86 193 | 92.19 200 | 63.47 220 | 79.57 219 | 89.91 193 |
|
v1240 | | | 78.99 168 | 77.78 174 | 82.64 174 | 83.21 261 | 63.54 212 | 86.62 176 | 90.30 145 | 69.74 195 | 77.33 160 | 85.68 239 | 57.04 203 | 93.76 142 | 73.13 145 | 76.92 245 | 90.62 159 |
|
XVG-ACMP-BASELINE | | | 76.11 226 | 74.27 233 | 81.62 192 | 83.20 262 | 64.67 190 | 83.60 247 | 89.75 159 | 69.75 193 | 71.85 250 | 87.09 202 | 32.78 344 | 92.11 203 | 69.99 170 | 80.43 212 | 88.09 243 |
|
MDTV_nov1_ep13 | | | | 69.97 271 | | 83.18 263 | 53.48 324 | 77.10 310 | 80.18 312 | 60.45 298 | 69.33 279 | 80.44 305 | 48.89 277 | 86.90 289 | 51.60 301 | 78.51 230 | |
|
PatchmatchNet |  | | 73.12 256 | 71.33 259 | 78.49 254 | 83.18 263 | 60.85 251 | 79.63 287 | 78.57 319 | 64.13 266 | 71.73 251 | 79.81 313 | 51.20 251 | 85.97 296 | 57.40 276 | 76.36 259 | 88.66 233 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Fast-Effi-MVS+-dtu | | | 78.02 192 | 76.49 205 | 82.62 175 | 83.16 265 | 66.96 153 | 86.94 164 | 87.45 222 | 72.45 144 | 71.49 254 | 84.17 263 | 54.79 215 | 91.58 218 | 67.61 188 | 80.31 213 | 89.30 210 |
|
gg-mvs-nofinetune | | | 69.95 281 | 67.96 284 | 75.94 281 | 83.07 266 | 54.51 317 | 77.23 309 | 70.29 343 | 63.11 276 | 70.32 263 | 62.33 346 | 43.62 307 | 88.69 273 | 53.88 292 | 87.76 124 | 84.62 306 |
|
MVSTER | | | 79.01 167 | 77.88 171 | 82.38 179 | 83.07 266 | 64.80 188 | 84.08 240 | 88.95 188 | 69.01 212 | 78.69 132 | 87.17 200 | 54.70 216 | 92.43 190 | 74.69 128 | 80.57 210 | 89.89 195 |
|
K. test v3 | | | 71.19 269 | 68.51 277 | 79.21 243 | 83.04 268 | 57.78 284 | 84.35 234 | 76.91 328 | 72.90 143 | 62.99 325 | 82.86 281 | 39.27 327 | 91.09 235 | 61.65 239 | 52.66 346 | 88.75 231 |
|
eth_miper_zixun_eth | | | 77.92 195 | 76.69 202 | 81.61 194 | 83.00 269 | 61.98 238 | 83.15 253 | 89.20 176 | 69.52 197 | 74.86 222 | 84.35 261 | 61.76 153 | 92.56 187 | 71.50 156 | 72.89 299 | 90.28 173 |
|
diffmvs | | | 82.10 98 | 81.88 100 | 82.76 173 | 83.00 269 | 63.78 207 | 83.68 243 | 89.76 158 | 72.94 142 | 82.02 95 | 89.85 128 | 65.96 105 | 90.79 240 | 82.38 67 | 87.30 132 | 93.71 56 |
|
FMVSNet5 | | | 69.50 283 | 67.96 284 | 74.15 299 | 82.97 271 | 55.35 313 | 80.01 284 | 82.12 291 | 62.56 285 | 63.02 323 | 81.53 295 | 36.92 335 | 81.92 319 | 48.42 317 | 74.06 288 | 85.17 299 |
|
DWT-MVSNet_test | | | 73.70 248 | 71.86 253 | 79.21 243 | 82.91 272 | 58.94 267 | 82.34 261 | 82.17 289 | 65.21 252 | 71.05 258 | 78.31 322 | 44.21 304 | 90.17 249 | 63.29 224 | 77.28 240 | 88.53 237 |
|
cl_fuxian | | | 78.75 172 | 77.91 169 | 81.26 203 | 82.89 273 | 61.56 244 | 84.09 239 | 89.13 180 | 69.97 187 | 75.56 199 | 84.29 262 | 66.36 98 | 92.09 204 | 73.47 140 | 75.48 269 | 90.12 179 |
|
sss | | | 73.60 249 | 73.64 239 | 73.51 302 | 82.80 274 | 55.01 314 | 76.12 312 | 81.69 295 | 62.47 286 | 74.68 224 | 85.85 237 | 57.32 199 | 78.11 333 | 60.86 246 | 80.93 203 | 87.39 258 |
|
GA-MVS | | | 76.87 214 | 75.17 223 | 81.97 187 | 82.75 275 | 62.58 230 | 81.44 272 | 86.35 238 | 72.16 152 | 74.74 223 | 82.89 280 | 46.20 292 | 92.02 206 | 68.85 181 | 81.09 202 | 91.30 140 |
|
v148 | | | 78.72 173 | 77.80 173 | 81.47 196 | 82.73 276 | 61.96 239 | 86.30 185 | 88.08 207 | 73.26 137 | 76.18 188 | 85.47 245 | 62.46 143 | 92.36 194 | 71.92 153 | 73.82 292 | 90.09 182 |
|
IterMVS-SCA-FT | | | 75.43 234 | 73.87 237 | 80.11 226 | 82.69 277 | 64.85 187 | 81.57 270 | 83.47 274 | 69.16 206 | 70.49 261 | 84.15 264 | 51.95 242 | 88.15 279 | 69.23 176 | 72.14 304 | 87.34 260 |
|
miper_ehance_all_eth | | | 78.59 177 | 77.76 176 | 81.08 209 | 82.66 278 | 61.56 244 | 83.65 244 | 89.15 178 | 68.87 215 | 75.55 200 | 83.79 270 | 66.49 96 | 92.03 205 | 73.25 143 | 76.39 256 | 89.64 203 |
|
CostFormer | | | 75.24 237 | 73.90 236 | 79.27 241 | 82.65 279 | 58.27 274 | 80.80 274 | 82.73 286 | 61.57 292 | 75.33 211 | 83.13 278 | 55.52 208 | 91.07 236 | 64.98 213 | 78.34 233 | 88.45 238 |
|
EPNet_dtu | | | 75.46 233 | 74.86 224 | 77.23 273 | 82.57 280 | 54.60 315 | 86.89 166 | 83.09 282 | 71.64 157 | 66.25 306 | 85.86 236 | 55.99 207 | 88.04 281 | 54.92 288 | 86.55 143 | 89.05 217 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 73.23 255 | 71.46 256 | 78.54 252 | 82.50 281 | 59.85 261 | 82.18 263 | 82.84 285 | 58.96 312 | 71.15 257 | 89.41 144 | 45.48 299 | 84.77 305 | 58.82 263 | 71.83 306 | 91.02 148 |
|
cl-mvsnet_ | | | 77.72 199 | 76.76 199 | 80.58 217 | 82.49 282 | 60.48 256 | 83.09 254 | 87.87 212 | 69.22 203 | 74.38 227 | 85.22 250 | 62.10 150 | 91.53 220 | 71.09 158 | 75.41 272 | 89.73 202 |
|
cl-mvsnet1 | | | 77.72 199 | 76.76 199 | 80.58 217 | 82.48 283 | 60.48 256 | 83.09 254 | 87.86 213 | 69.22 203 | 74.38 227 | 85.24 249 | 62.10 150 | 91.53 220 | 71.09 158 | 75.40 273 | 89.74 201 |
|
tpm cat1 | | | 70.57 274 | 68.31 279 | 77.35 270 | 82.41 284 | 57.95 280 | 78.08 303 | 80.22 311 | 52.04 340 | 68.54 284 | 77.66 328 | 52.00 241 | 87.84 283 | 51.77 299 | 72.07 305 | 86.25 282 |
|
cl-mvsnet2 | | | 78.07 190 | 77.01 191 | 81.23 204 | 82.37 285 | 61.83 241 | 83.55 248 | 87.98 209 | 68.96 213 | 75.06 218 | 83.87 266 | 61.40 161 | 91.88 212 | 73.53 137 | 76.39 256 | 89.98 191 |
|
MVS_0304 | | | 72.48 261 | 70.89 264 | 77.24 272 | 82.20 286 | 59.68 262 | 84.11 238 | 83.49 273 | 67.10 230 | 66.87 297 | 80.59 304 | 35.00 341 | 87.40 286 | 59.07 260 | 79.58 218 | 84.63 305 |
|
tpm | | | 72.37 264 | 71.71 255 | 74.35 297 | 82.19 287 | 52.00 329 | 79.22 292 | 77.29 326 | 64.56 261 | 72.95 238 | 83.68 273 | 51.35 249 | 83.26 315 | 58.33 268 | 75.80 263 | 87.81 249 |
|
tpmvs | | | 71.09 270 | 69.29 273 | 76.49 278 | 82.04 288 | 56.04 308 | 78.92 296 | 81.37 298 | 64.05 269 | 67.18 294 | 78.28 323 | 49.74 268 | 89.77 253 | 49.67 313 | 72.37 301 | 83.67 313 |
|
pmmvs4 | | | 74.03 246 | 71.91 252 | 80.39 220 | 81.96 289 | 68.32 126 | 81.45 271 | 82.14 290 | 59.32 309 | 69.87 273 | 85.13 252 | 52.40 233 | 88.13 280 | 60.21 250 | 74.74 283 | 84.73 304 |
|
TinyColmap | | | 67.30 297 | 64.81 301 | 74.76 294 | 81.92 290 | 56.68 299 | 80.29 282 | 81.49 297 | 60.33 299 | 56.27 344 | 83.22 277 | 24.77 351 | 87.66 285 | 45.52 333 | 69.47 315 | 79.95 336 |
|
ITE_SJBPF | | | | | 78.22 256 | 81.77 291 | 60.57 254 | | 83.30 276 | 69.25 202 | 67.54 289 | 87.20 198 | 36.33 337 | 87.28 288 | 54.34 290 | 74.62 284 | 86.80 274 |
|
miper_enhance_ethall | | | 77.87 197 | 76.86 195 | 80.92 212 | 81.65 292 | 61.38 246 | 82.68 258 | 88.98 185 | 65.52 251 | 75.47 201 | 82.30 288 | 65.76 107 | 92.00 207 | 72.95 146 | 76.39 256 | 89.39 208 |
|
MVS-HIRNet | | | 59.14 315 | 57.67 318 | 63.57 330 | 81.65 292 | 43.50 351 | 71.73 329 | 65.06 353 | 39.59 350 | 51.43 348 | 57.73 350 | 38.34 331 | 82.58 318 | 39.53 345 | 73.95 289 | 64.62 349 |
|
GG-mvs-BLEND | | | | | 75.38 288 | 81.59 294 | 55.80 310 | 79.32 290 | 69.63 345 | | 67.19 293 | 73.67 339 | 43.24 308 | 88.90 272 | 50.41 305 | 84.50 162 | 81.45 329 |
|
IterMVS | | | 74.29 241 | 72.94 245 | 78.35 255 | 81.53 295 | 63.49 214 | 81.58 269 | 82.49 287 | 68.06 224 | 69.99 270 | 83.69 272 | 51.66 248 | 85.54 298 | 65.85 206 | 71.64 307 | 86.01 289 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CHOSEN 280x420 | | | 66.51 301 | 64.71 302 | 71.90 309 | 81.45 296 | 63.52 213 | 57.98 351 | 68.95 349 | 53.57 336 | 62.59 327 | 76.70 331 | 46.22 291 | 75.29 345 | 55.25 287 | 79.68 217 | 76.88 343 |
|
gm-plane-assit | | | | | | 81.40 297 | 53.83 322 | | | 62.72 284 | | 80.94 301 | | 92.39 192 | 63.40 222 | | |
|
pmmvs6 | | | 74.69 239 | 73.39 240 | 78.61 250 | 81.38 298 | 57.48 288 | 86.64 175 | 87.95 210 | 64.99 258 | 70.18 265 | 86.61 217 | 50.43 260 | 89.52 258 | 62.12 234 | 70.18 314 | 88.83 228 |
|
test-LLR | | | 72.94 259 | 72.43 248 | 74.48 295 | 81.35 299 | 58.04 277 | 78.38 299 | 77.46 324 | 66.66 235 | 69.95 271 | 79.00 317 | 48.06 279 | 79.24 327 | 66.13 201 | 84.83 158 | 86.15 285 |
|
test-mter | | | 71.41 268 | 70.39 269 | 74.48 295 | 81.35 299 | 58.04 277 | 78.38 299 | 77.46 324 | 60.32 300 | 69.95 271 | 79.00 317 | 36.08 338 | 79.24 327 | 66.13 201 | 84.83 158 | 86.15 285 |
|
CR-MVSNet | | | 73.37 251 | 71.27 260 | 79.67 235 | 81.32 301 | 65.19 182 | 75.92 314 | 80.30 309 | 59.92 304 | 72.73 240 | 81.19 296 | 52.50 231 | 86.69 290 | 59.84 252 | 77.71 236 | 87.11 269 |
|
RPMNet | | | 73.51 250 | 70.49 266 | 82.58 176 | 81.32 301 | 65.19 182 | 75.92 314 | 92.27 76 | 57.60 322 | 72.73 240 | 76.45 333 | 52.30 234 | 95.43 71 | 48.14 322 | 77.71 236 | 87.11 269 |
|
bset_n11_16_dypcd | | | 77.12 209 | 75.47 215 | 82.06 183 | 81.12 303 | 65.99 165 | 81.37 273 | 83.20 280 | 69.94 188 | 76.09 192 | 83.38 276 | 47.75 281 | 92.26 197 | 78.51 92 | 77.91 235 | 87.95 244 |
|
V42 | | | 79.38 159 | 78.24 163 | 82.83 165 | 81.10 304 | 65.50 176 | 85.55 204 | 89.82 156 | 71.57 161 | 78.21 143 | 86.12 231 | 60.66 175 | 93.18 167 | 75.64 121 | 75.46 271 | 89.81 199 |
|
lessismore_v0 | | | | | 78.97 245 | 81.01 305 | 57.15 291 | | 65.99 351 | | 61.16 330 | 82.82 282 | 39.12 328 | 91.34 226 | 59.67 253 | 46.92 351 | 88.43 239 |
|
Patchmtry | | | 70.74 272 | 69.16 274 | 75.49 287 | 80.72 306 | 54.07 320 | 74.94 323 | 80.30 309 | 58.34 316 | 70.01 268 | 81.19 296 | 52.50 231 | 86.54 291 | 53.37 294 | 71.09 311 | 85.87 292 |
|
PatchT | | | 68.46 292 | 67.85 286 | 70.29 318 | 80.70 307 | 43.93 350 | 72.47 327 | 74.88 333 | 60.15 302 | 70.55 259 | 76.57 332 | 49.94 265 | 81.59 320 | 50.58 304 | 74.83 282 | 85.34 295 |
|
USDC | | | 70.33 277 | 68.37 278 | 76.21 280 | 80.60 308 | 56.23 306 | 79.19 293 | 86.49 234 | 60.89 296 | 61.29 329 | 85.47 245 | 31.78 347 | 89.47 260 | 53.37 294 | 76.21 260 | 82.94 323 |
|
tpmrst | | | 72.39 262 | 72.13 251 | 73.18 306 | 80.54 309 | 49.91 340 | 79.91 286 | 79.08 318 | 63.11 276 | 71.69 252 | 79.95 310 | 55.32 209 | 82.77 317 | 65.66 208 | 73.89 290 | 86.87 272 |
|
anonymousdsp | | | 78.60 176 | 77.15 189 | 82.98 160 | 80.51 310 | 67.08 148 | 87.24 157 | 89.53 164 | 65.66 249 | 75.16 214 | 87.19 199 | 52.52 230 | 92.25 198 | 77.17 108 | 79.34 224 | 89.61 204 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 275 | 68.19 280 | 77.65 265 | 80.26 311 | 59.41 266 | 85.01 214 | 82.96 284 | 58.76 314 | 65.43 310 | 82.33 287 | 37.63 334 | 91.23 229 | 45.34 335 | 76.03 261 | 82.32 324 |
|
Anonymous20231206 | | | 68.60 289 | 67.80 288 | 71.02 316 | 80.23 312 | 50.75 338 | 78.30 302 | 80.47 306 | 56.79 327 | 66.11 307 | 82.63 285 | 46.35 290 | 78.95 329 | 43.62 338 | 75.70 264 | 83.36 316 |
|
miper_lstm_enhance | | | 74.11 244 | 73.11 244 | 77.13 274 | 80.11 313 | 59.62 263 | 72.23 328 | 86.92 230 | 66.76 233 | 70.40 262 | 82.92 279 | 56.93 204 | 82.92 316 | 69.06 179 | 72.63 300 | 88.87 226 |
|
MIMVSNet1 | | | 68.58 290 | 66.78 297 | 73.98 300 | 80.07 314 | 51.82 330 | 80.77 275 | 84.37 257 | 64.40 263 | 59.75 335 | 82.16 291 | 36.47 336 | 83.63 312 | 42.73 340 | 70.33 313 | 86.48 280 |
|
ADS-MVSNet2 | | | 66.20 306 | 63.33 308 | 74.82 293 | 79.92 315 | 58.75 270 | 67.55 343 | 75.19 332 | 53.37 337 | 65.25 312 | 75.86 334 | 42.32 314 | 80.53 325 | 41.57 342 | 68.91 318 | 85.18 297 |
|
ADS-MVSNet | | | 64.36 310 | 62.88 312 | 68.78 325 | 79.92 315 | 47.17 345 | 67.55 343 | 71.18 341 | 53.37 337 | 65.25 312 | 75.86 334 | 42.32 314 | 73.99 349 | 41.57 342 | 68.91 318 | 85.18 297 |
|
D2MVS | | | 74.82 238 | 73.21 242 | 79.64 236 | 79.81 317 | 62.56 231 | 80.34 281 | 87.35 223 | 64.37 264 | 68.86 280 | 82.66 284 | 46.37 289 | 90.10 250 | 67.91 186 | 81.24 201 | 86.25 282 |
|
our_test_3 | | | 69.14 285 | 67.00 295 | 75.57 285 | 79.80 318 | 58.80 269 | 77.96 304 | 77.81 322 | 59.55 307 | 62.90 326 | 78.25 324 | 47.43 282 | 83.97 309 | 51.71 300 | 67.58 322 | 83.93 312 |
|
ppachtmachnet_test | | | 70.04 280 | 67.34 293 | 78.14 257 | 79.80 318 | 61.13 247 | 79.19 293 | 80.59 304 | 59.16 311 | 65.27 311 | 79.29 314 | 46.75 288 | 87.29 287 | 49.33 314 | 66.72 323 | 86.00 291 |
|
dp | | | 66.80 298 | 65.43 300 | 70.90 317 | 79.74 320 | 48.82 343 | 75.12 321 | 74.77 334 | 59.61 306 | 64.08 319 | 77.23 329 | 42.89 310 | 80.72 324 | 48.86 316 | 66.58 325 | 83.16 318 |
|
EPMVS | | | 69.02 286 | 68.16 281 | 71.59 310 | 79.61 321 | 49.80 342 | 77.40 308 | 66.93 350 | 62.82 282 | 70.01 268 | 79.05 315 | 45.79 295 | 77.86 335 | 56.58 282 | 75.26 278 | 87.13 268 |
|
PVSNet_0 | | 57.27 20 | 61.67 314 | 59.27 317 | 68.85 324 | 79.61 321 | 57.44 289 | 68.01 342 | 73.44 339 | 55.93 331 | 58.54 337 | 70.41 343 | 44.58 302 | 77.55 336 | 47.01 326 | 35.91 352 | 71.55 346 |
|
CL-MVSNet_2432*1600 | | | 72.37 264 | 71.46 256 | 75.09 290 | 79.49 323 | 53.53 323 | 80.76 276 | 85.01 252 | 69.12 207 | 70.51 260 | 82.05 292 | 57.92 192 | 84.13 308 | 52.27 298 | 66.00 327 | 87.60 253 |
|
Patchmatch-test | | | 64.82 309 | 63.24 309 | 69.57 320 | 79.42 324 | 49.82 341 | 63.49 349 | 69.05 348 | 51.98 341 | 59.95 334 | 80.13 308 | 50.91 253 | 70.98 351 | 40.66 344 | 73.57 293 | 87.90 247 |
|
MDA-MVSNet-bldmvs | | | 66.68 299 | 63.66 307 | 75.75 282 | 79.28 325 | 60.56 255 | 73.92 325 | 78.35 320 | 64.43 262 | 50.13 349 | 79.87 312 | 44.02 306 | 83.67 311 | 46.10 331 | 56.86 341 | 83.03 321 |
|
TESTMET0.1,1 | | | 69.89 282 | 69.00 275 | 72.55 307 | 79.27 326 | 56.85 294 | 78.38 299 | 74.71 336 | 57.64 321 | 68.09 285 | 77.19 330 | 37.75 333 | 76.70 338 | 63.92 218 | 84.09 167 | 84.10 311 |
|
N_pmnet | | | 52.79 320 | 53.26 321 | 51.40 337 | 78.99 327 | 7.68 366 | 69.52 336 | 3.89 365 | 51.63 342 | 57.01 341 | 74.98 337 | 40.83 323 | 65.96 354 | 37.78 347 | 64.67 330 | 80.56 335 |
|
EU-MVSNet | | | 68.53 291 | 67.61 291 | 71.31 315 | 78.51 328 | 47.01 346 | 84.47 227 | 84.27 261 | 42.27 346 | 66.44 305 | 84.79 257 | 40.44 324 | 83.76 310 | 58.76 264 | 68.54 321 | 83.17 317 |
|
pmmvs5 | | | 71.55 267 | 70.20 270 | 75.61 284 | 77.83 329 | 56.39 303 | 81.74 267 | 80.89 299 | 57.76 320 | 67.46 290 | 84.49 259 | 49.26 274 | 85.32 301 | 57.08 279 | 75.29 277 | 85.11 300 |
|
test0.0.03 1 | | | 68.00 293 | 67.69 290 | 68.90 323 | 77.55 330 | 47.43 344 | 75.70 317 | 72.95 340 | 66.66 235 | 66.56 300 | 82.29 289 | 48.06 279 | 75.87 342 | 44.97 336 | 74.51 285 | 83.41 315 |
|
Patchmatch-RL test | | | 70.24 278 | 67.78 289 | 77.61 266 | 77.43 331 | 59.57 265 | 71.16 330 | 70.33 342 | 62.94 280 | 68.65 282 | 72.77 340 | 50.62 257 | 85.49 299 | 69.58 174 | 66.58 325 | 87.77 250 |
|
pmmvs-eth3d | | | 70.50 276 | 67.83 287 | 78.52 253 | 77.37 332 | 66.18 162 | 81.82 265 | 81.51 296 | 58.90 313 | 63.90 321 | 80.42 306 | 42.69 312 | 86.28 294 | 58.56 265 | 65.30 329 | 83.11 319 |
|
JIA-IIPM | | | 66.32 303 | 62.82 313 | 76.82 276 | 77.09 333 | 61.72 243 | 65.34 346 | 75.38 331 | 58.04 319 | 64.51 316 | 62.32 347 | 42.05 318 | 86.51 292 | 51.45 302 | 69.22 317 | 82.21 325 |
|
Gipuma |  | | 45.18 323 | 41.86 326 | 55.16 335 | 77.03 334 | 51.52 333 | 32.50 357 | 80.52 305 | 32.46 354 | 27.12 355 | 35.02 355 | 9.52 362 | 75.50 343 | 22.31 354 | 60.21 339 | 38.45 353 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet_test_wron | | | 65.03 307 | 62.92 310 | 71.37 312 | 75.93 335 | 56.73 296 | 69.09 341 | 74.73 335 | 57.28 325 | 54.03 346 | 77.89 325 | 45.88 293 | 74.39 348 | 49.89 312 | 61.55 335 | 82.99 322 |
|
YYNet1 | | | 65.03 307 | 62.91 311 | 71.38 311 | 75.85 336 | 56.60 300 | 69.12 340 | 74.66 337 | 57.28 325 | 54.12 345 | 77.87 326 | 45.85 294 | 74.48 347 | 49.95 311 | 61.52 336 | 83.05 320 |
|
PMMVS | | | 69.34 284 | 68.67 276 | 71.35 314 | 75.67 337 | 62.03 237 | 75.17 318 | 73.46 338 | 50.00 343 | 68.68 281 | 79.05 315 | 52.07 240 | 78.13 332 | 61.16 244 | 82.77 185 | 73.90 344 |
|
testgi | | | 66.67 300 | 66.53 298 | 67.08 328 | 75.62 338 | 41.69 353 | 75.93 313 | 76.50 329 | 66.11 242 | 65.20 314 | 86.59 218 | 35.72 339 | 74.71 346 | 43.71 337 | 73.38 296 | 84.84 302 |
|
test20.03 | | | 67.45 295 | 66.95 296 | 68.94 322 | 75.48 339 | 44.84 349 | 77.50 307 | 77.67 323 | 66.66 235 | 63.01 324 | 83.80 269 | 47.02 285 | 78.40 331 | 42.53 341 | 68.86 320 | 83.58 314 |
|
KD-MVS_2432*1600 | | | 66.22 304 | 63.89 305 | 73.21 303 | 75.47 340 | 53.42 325 | 70.76 333 | 84.35 258 | 64.10 267 | 66.52 302 | 78.52 320 | 34.55 342 | 84.98 302 | 50.40 306 | 50.33 349 | 81.23 330 |
|
miper_refine_blended | | | 66.22 304 | 63.89 305 | 73.21 303 | 75.47 340 | 53.42 325 | 70.76 333 | 84.35 258 | 64.10 267 | 66.52 302 | 78.52 320 | 34.55 342 | 84.98 302 | 50.40 306 | 50.33 349 | 81.23 330 |
|
Anonymous20240521 | | | 68.80 288 | 67.22 294 | 73.55 301 | 74.33 342 | 54.11 319 | 83.18 252 | 85.61 245 | 58.15 317 | 61.68 328 | 80.94 301 | 30.71 348 | 81.27 322 | 57.00 280 | 73.34 297 | 85.28 296 |
|
DIV-MVS_2432*1600 | | | 68.81 287 | 67.59 292 | 72.46 308 | 74.29 343 | 45.45 347 | 77.93 305 | 87.00 228 | 63.12 275 | 63.99 320 | 78.99 319 | 42.32 314 | 84.77 305 | 56.55 283 | 64.09 332 | 87.16 267 |
|
PM-MVS | | | 66.41 302 | 64.14 304 | 73.20 305 | 73.92 344 | 56.45 301 | 78.97 295 | 64.96 354 | 63.88 273 | 64.72 315 | 80.24 307 | 19.84 355 | 83.44 313 | 66.24 200 | 64.52 331 | 79.71 337 |
|
UnsupCasMVSNet_bld | | | 63.70 312 | 61.53 316 | 70.21 319 | 73.69 345 | 51.39 335 | 72.82 326 | 81.89 292 | 55.63 332 | 57.81 339 | 71.80 342 | 38.67 329 | 78.61 330 | 49.26 315 | 52.21 347 | 80.63 333 |
|
UnsupCasMVSNet_eth | | | 67.33 296 | 65.99 299 | 71.37 312 | 73.48 346 | 51.47 334 | 75.16 319 | 85.19 249 | 65.20 253 | 60.78 331 | 80.93 303 | 42.35 313 | 77.20 337 | 57.12 278 | 53.69 345 | 85.44 294 |
|
TDRefinement | | | 67.49 294 | 64.34 303 | 76.92 275 | 73.47 347 | 61.07 248 | 84.86 218 | 82.98 283 | 59.77 305 | 58.30 338 | 85.13 252 | 26.06 350 | 87.89 282 | 47.92 324 | 60.59 338 | 81.81 328 |
|
ambc | | | | | 75.24 289 | 73.16 348 | 50.51 339 | 63.05 350 | 87.47 221 | | 64.28 317 | 77.81 327 | 17.80 356 | 89.73 255 | 57.88 272 | 60.64 337 | 85.49 293 |
|
CMPMVS |  | 51.72 21 | 70.19 279 | 68.16 281 | 76.28 279 | 73.15 349 | 57.55 287 | 79.47 289 | 83.92 265 | 48.02 344 | 56.48 343 | 84.81 256 | 43.13 309 | 86.42 293 | 62.67 229 | 81.81 197 | 84.89 301 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
new-patchmatchnet | | | 61.73 313 | 61.73 315 | 61.70 331 | 72.74 350 | 24.50 363 | 69.16 339 | 78.03 321 | 61.40 293 | 56.72 342 | 75.53 336 | 38.42 330 | 76.48 340 | 45.95 332 | 57.67 340 | 84.13 310 |
|
LF4IMVS | | | 64.02 311 | 62.19 314 | 69.50 321 | 70.90 351 | 53.29 327 | 76.13 311 | 77.18 327 | 52.65 339 | 58.59 336 | 80.98 300 | 23.55 352 | 76.52 339 | 53.06 296 | 66.66 324 | 78.68 339 |
|
new_pmnet | | | 50.91 321 | 50.29 323 | 52.78 336 | 68.58 352 | 34.94 358 | 63.71 348 | 56.63 356 | 39.73 349 | 44.95 350 | 65.47 345 | 21.93 353 | 58.48 355 | 34.98 349 | 56.62 342 | 64.92 348 |
|
DSMNet-mixed | | | 57.77 317 | 56.90 319 | 60.38 332 | 67.70 353 | 35.61 356 | 69.18 338 | 53.97 357 | 32.30 355 | 57.49 340 | 79.88 311 | 40.39 325 | 68.57 353 | 38.78 346 | 72.37 301 | 76.97 342 |
|
FPMVS | | | 53.68 319 | 51.64 322 | 59.81 333 | 65.08 354 | 51.03 336 | 69.48 337 | 69.58 346 | 41.46 347 | 40.67 351 | 72.32 341 | 16.46 358 | 70.00 352 | 24.24 353 | 65.42 328 | 58.40 350 |
|
pmmvs3 | | | 57.79 316 | 54.26 320 | 68.37 326 | 64.02 355 | 56.72 297 | 75.12 321 | 65.17 352 | 40.20 348 | 52.93 347 | 69.86 344 | 20.36 354 | 75.48 344 | 45.45 334 | 55.25 344 | 72.90 345 |
|
wuyk23d | | | 16.82 331 | 15.94 334 | 19.46 343 | 58.74 356 | 31.45 359 | 39.22 355 | 3.74 366 | 6.84 360 | 6.04 362 | 2.70 362 | 1.27 367 | 24.29 361 | 10.54 360 | 14.40 360 | 2.63 358 |
|
PMMVS2 | | | 40.82 325 | 38.86 328 | 46.69 338 | 53.84 357 | 16.45 364 | 48.61 354 | 49.92 358 | 37.49 351 | 31.67 353 | 60.97 349 | 8.14 364 | 56.42 356 | 28.42 351 | 30.72 353 | 67.19 347 |
|
LCM-MVSNet | | | 54.25 318 | 49.68 324 | 67.97 327 | 53.73 358 | 45.28 348 | 66.85 345 | 80.78 301 | 35.96 352 | 39.45 352 | 62.23 348 | 8.70 363 | 78.06 334 | 48.24 321 | 51.20 348 | 80.57 334 |
|
E-PMN | | | 31.77 326 | 30.64 329 | 35.15 340 | 52.87 359 | 27.67 360 | 57.09 352 | 47.86 359 | 24.64 356 | 16.40 360 | 33.05 356 | 11.23 360 | 54.90 357 | 14.46 358 | 18.15 356 | 22.87 355 |
|
EMVS | | | 30.81 327 | 29.65 330 | 34.27 341 | 50.96 360 | 25.95 362 | 56.58 353 | 46.80 360 | 24.01 357 | 15.53 361 | 30.68 357 | 12.47 359 | 54.43 358 | 12.81 359 | 17.05 357 | 22.43 356 |
|
ANet_high | | | 50.57 322 | 46.10 325 | 63.99 329 | 48.67 361 | 39.13 354 | 70.99 332 | 80.85 300 | 61.39 294 | 31.18 354 | 57.70 351 | 17.02 357 | 73.65 350 | 31.22 350 | 15.89 358 | 79.18 338 |
|
MVE |  | 26.22 23 | 30.37 328 | 25.89 332 | 43.81 339 | 44.55 362 | 35.46 357 | 28.87 358 | 39.07 361 | 18.20 358 | 18.58 359 | 40.18 354 | 2.68 366 | 47.37 359 | 17.07 357 | 23.78 355 | 48.60 352 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 37.38 22 | 44.16 324 | 40.28 327 | 55.82 334 | 40.82 363 | 42.54 352 | 65.12 347 | 63.99 355 | 34.43 353 | 24.48 356 | 57.12 352 | 3.92 365 | 76.17 341 | 17.10 356 | 55.52 343 | 48.75 351 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepMVS_CX |  | | | | 27.40 342 | 40.17 364 | 26.90 361 | | 24.59 364 | 17.44 359 | 23.95 357 | 48.61 353 | 9.77 361 | 26.48 360 | 18.06 355 | 24.47 354 | 28.83 354 |
|
tmp_tt | | | 18.61 330 | 21.40 333 | 10.23 344 | 4.82 365 | 10.11 365 | 34.70 356 | 30.74 363 | 1.48 361 | 23.91 358 | 26.07 358 | 28.42 349 | 13.41 362 | 27.12 352 | 15.35 359 | 7.17 357 |
|
testmvs | | | 6.04 334 | 8.02 337 | 0.10 346 | 0.08 366 | 0.03 368 | 69.74 335 | 0.04 367 | 0.05 362 | 0.31 363 | 1.68 363 | 0.02 369 | 0.04 363 | 0.24 361 | 0.02 361 | 0.25 360 |
|
test123 | | | 6.12 333 | 8.11 336 | 0.14 345 | 0.06 367 | 0.09 367 | 71.05 331 | 0.03 368 | 0.04 363 | 0.25 364 | 1.30 364 | 0.05 368 | 0.03 364 | 0.21 362 | 0.01 362 | 0.29 359 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 19.96 329 | 26.61 331 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 89.26 173 | 0.00 364 | 0.00 365 | 88.61 160 | 61.62 156 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 5.26 335 | 7.02 338 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 63.15 132 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
ab-mvs-re | | | 7.23 332 | 9.64 335 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 86.72 209 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 47 | 92.78 4 | 95.72 6 | 81.26 6 | 97.44 2 | 89.07 6 | 96.58 4 | 94.26 31 |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 8 | 95.78 4 | 81.46 5 | 97.40 4 | 89.42 2 | 96.57 5 | 94.67 16 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 223 |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 250 | | | | 88.96 223 |
|
sam_mvs | | | | | | | | | | | | | 50.01 263 | | | | |
|
MTGPA |  | | | | | | | | 92.02 87 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 297 | | | | 5.43 361 | 48.81 278 | 85.44 300 | 59.25 257 | | |
|
test_post | | | | | | | | | | | | 5.46 360 | 50.36 261 | 84.24 307 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 338 | 51.12 252 | 88.60 274 | | | |
|
MTMP | | | | | | | | 92.18 30 | 32.83 362 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 30 | 95.70 27 | 92.87 93 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 58 | 95.45 29 | 92.70 96 |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 99 | | | | | | | | | |
|
test_prior2 | | | | | | | | 88.85 104 | | 75.41 91 | 84.91 52 | 93.54 51 | 74.28 31 | | 83.31 50 | 95.86 18 | |
|
旧先验2 | | | | | | | | 86.56 178 | | 58.10 318 | 87.04 31 | | | 88.98 268 | 74.07 133 | | |
|
新几何2 | | | | | | | | 86.29 186 | | | | | | | | | |
|
无先验 | | | | | | | | 87.48 150 | 88.98 185 | 60.00 303 | | | | 94.12 123 | 67.28 192 | | 88.97 222 |
|
原ACMM2 | | | | | | | | 86.86 167 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 237 | 62.37 231 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 40 | | | | |
|
testdata1 | | | | | | | | 84.14 237 | | 75.71 85 | | | | | | | |
|
plane_prior5 | | | | | | | | | 92.44 68 | | | | | 95.38 75 | 78.71 90 | 86.32 146 | 91.33 138 |
|
plane_prior4 | | | | | | | | | | | | 91.00 107 | | | | | |
|
plane_prior3 | | | | | | | 68.60 122 | | | 78.44 30 | 78.92 129 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 46 | | 79.12 23 | | | | | | | |
|
plane_prior | | | | | | | 68.71 117 | 90.38 66 | | 77.62 36 | | | | | | 86.16 149 | |
|
n2 | | | | | | | | | 0.00 369 | | | | | | | | |
|
nn | | | | | | | | | 0.00 369 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 344 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
door | | | | | | | | | 69.44 347 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 150 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 104 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 163 | | | 95.11 85 | | | 91.03 146 |
|
HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 151 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 182 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 355 | 75.16 319 | | 55.10 333 | 66.53 301 | | 49.34 272 | | 53.98 291 | | 87.94 246 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 195 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 200 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 117 | | | | |
|