MG-MVS | | | 87.11 30 | 86.27 40 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 42 | 94.49 38 | 78.74 60 | 83.87 61 | 92.94 106 | 64.34 77 | 96.94 96 | 75.19 126 | 94.09 36 | 95.66 42 |
|
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 39 | 96.26 24 | 72.84 22 | 99.38 1 | 92.64 4 | 95.93 8 | 97.08 7 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 11 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
DP-MVS Recon | | | 82.73 97 | 81.65 103 | 85.98 79 | 97.31 4 | 67.06 101 | 95.15 34 | 91.99 136 | 69.08 225 | 76.50 127 | 93.89 89 | 54.48 180 | 98.20 32 | 70.76 160 | 85.66 121 | 92.69 145 |
|
testtj | | | 86.62 40 | 86.66 39 | 86.50 63 | 96.95 5 | 65.70 139 | 94.41 48 | 93.45 78 | 67.74 234 | 86.19 34 | 96.39 20 | 64.38 76 | 97.91 42 | 87.33 41 | 93.14 53 | 95.90 38 |
|
ETH3 D test6400 | | | 90.27 5 | 90.44 6 | 89.75 6 | 96.82 6 | 74.33 7 | 95.89 16 | 94.80 26 | 77.13 78 | 89.13 18 | 97.38 2 | 74.49 15 | 98.48 24 | 92.32 9 | 95.98 6 | 96.46 21 |
|
CNVR-MVS | | | 90.32 4 | 90.89 4 | 88.61 16 | 96.76 7 | 70.65 22 | 96.47 12 | 94.83 23 | 84.83 8 | 89.07 19 | 96.80 12 | 70.86 29 | 99.06 11 | 92.64 4 | 95.71 9 | 96.12 30 |
|
NCCC | | | 89.07 12 | 89.46 12 | 87.91 21 | 96.60 8 | 69.05 49 | 96.38 13 | 94.64 33 | 84.42 9 | 86.74 30 | 96.20 25 | 66.56 56 | 98.76 18 | 89.03 28 | 94.56 29 | 95.92 37 |
|
IU-MVS | | | | | | 96.46 9 | 69.91 34 | | 95.18 13 | 80.75 33 | 95.28 1 | | | | 92.34 6 | 95.36 12 | 96.47 20 |
|
SED-MVS | | | 89.94 7 | 90.36 7 | 88.70 13 | 96.45 10 | 69.38 42 | 96.89 4 | 94.44 40 | 71.65 183 | 92.11 3 | 97.21 5 | 76.79 7 | 99.11 4 | 92.34 6 | 95.36 12 | 97.62 2 |
|
test_241102_ONE | | | | | | 96.45 10 | 69.38 42 | | 94.44 40 | 71.65 183 | 92.11 3 | 97.05 8 | 76.79 7 | 99.11 4 | | | |
|
test_0728_SECOND | | | | | 88.70 13 | 96.45 10 | 70.43 25 | 96.64 8 | 94.37 47 | | | | | 99.15 2 | 91.91 10 | 94.90 19 | 96.51 18 |
|
DVP-MVS | | | 89.41 10 | 89.73 11 | 88.45 18 | 96.40 13 | 69.99 30 | 96.64 8 | 94.52 36 | 71.92 169 | 90.55 12 | 96.93 10 | 73.77 17 | 99.08 9 | 91.91 10 | 94.90 19 | 96.29 26 |
|
test0726 | | | | | | 96.40 13 | 69.99 30 | 96.76 6 | 94.33 48 | 71.92 169 | 91.89 6 | 97.11 7 | 73.77 17 | | | | |
|
AdaColmap | | | 78.94 156 | 77.00 170 | 84.76 119 | 96.34 15 | 65.86 135 | 92.66 118 | 87.97 268 | 62.18 273 | 70.56 181 | 92.37 122 | 43.53 260 | 97.35 69 | 64.50 218 | 82.86 140 | 91.05 176 |
|
test_part2 | | | | | | 96.29 16 | 68.16 71 | | | | 90.78 10 | | | | | | |
|
DPE-MVS | | | 88.77 13 | 89.21 13 | 87.45 33 | 96.26 17 | 67.56 85 | 94.17 52 | 94.15 54 | 68.77 228 | 90.74 11 | 97.27 3 | 76.09 10 | 98.49 23 | 90.58 17 | 94.91 18 | 96.30 25 |
|
MAR-MVS | | | 84.18 75 | 83.43 75 | 86.44 65 | 96.25 18 | 65.93 134 | 94.28 51 | 94.27 50 | 74.41 111 | 79.16 100 | 95.61 37 | 53.99 184 | 98.88 16 | 69.62 169 | 93.26 51 | 94.50 91 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 82.28 104 | 80.53 117 | 87.54 31 | 96.13 19 | 70.59 23 | 93.63 81 | 91.04 175 | 65.72 250 | 75.45 136 | 92.83 112 | 56.11 164 | 98.89 15 | 64.10 220 | 89.75 94 | 93.15 134 |
|
APDe-MVS | | | 87.54 23 | 87.84 20 | 86.65 56 | 96.07 20 | 66.30 124 | 94.84 44 | 93.78 61 | 69.35 219 | 88.39 21 | 96.34 22 | 67.74 45 | 97.66 54 | 90.62 16 | 93.44 49 | 96.01 34 |
|
PAPR | | | 85.15 58 | 84.47 62 | 87.18 39 | 96.02 21 | 68.29 66 | 91.85 147 | 93.00 100 | 76.59 86 | 79.03 101 | 95.00 55 | 61.59 106 | 97.61 58 | 78.16 109 | 89.00 96 | 95.63 43 |
|
APD-MVS | | | 85.93 49 | 85.99 45 | 85.76 89 | 95.98 22 | 65.21 150 | 93.59 83 | 92.58 116 | 66.54 243 | 86.17 35 | 95.88 30 | 63.83 83 | 97.00 88 | 86.39 49 | 92.94 54 | 95.06 69 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 79.48 2 | 87.95 18 | 88.00 18 | 87.79 24 | 95.86 23 | 68.32 65 | 95.74 20 | 94.11 56 | 83.82 11 | 83.49 62 | 96.19 26 | 64.53 75 | 98.44 26 | 83.42 70 | 94.88 22 | 96.61 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DP-MVS | | | 69.90 255 | 66.48 261 | 80.14 224 | 95.36 24 | 62.93 209 | 89.56 218 | 76.11 322 | 50.27 320 | 57.69 290 | 85.23 206 | 39.68 271 | 95.73 136 | 33.35 330 | 71.05 222 | 81.78 300 |
|
114514_t | | | 79.17 152 | 77.67 158 | 83.68 146 | 95.32 25 | 65.53 145 | 92.85 110 | 91.60 153 | 63.49 262 | 67.92 217 | 90.63 144 | 46.65 243 | 95.72 140 | 67.01 192 | 83.54 138 | 89.79 188 |
|
Regformer-1 | | | 87.24 27 | 87.60 25 | 86.15 76 | 95.14 26 | 65.83 137 | 93.95 65 | 95.12 15 | 82.11 21 | 84.25 53 | 95.73 33 | 67.88 43 | 98.35 29 | 85.60 53 | 88.64 99 | 94.26 96 |
|
Regformer-2 | | | 87.00 34 | 87.43 27 | 85.71 92 | 95.14 26 | 64.73 164 | 93.95 65 | 94.95 20 | 81.69 26 | 84.03 59 | 95.73 33 | 67.35 47 | 98.19 33 | 85.40 55 | 88.64 99 | 94.20 98 |
|
HPM-MVS++ | | | 89.37 11 | 89.95 10 | 87.64 26 | 95.10 28 | 68.23 70 | 95.24 31 | 94.49 38 | 82.43 17 | 88.90 20 | 96.35 21 | 71.89 28 | 98.63 20 | 88.76 30 | 96.40 4 | 96.06 31 |
|
CSCG | | | 86.87 35 | 86.26 41 | 88.72 12 | 95.05 29 | 70.79 21 | 93.83 76 | 95.33 11 | 68.48 232 | 77.63 114 | 94.35 77 | 73.04 20 | 98.45 25 | 84.92 59 | 93.71 45 | 96.92 9 |
|
LFMVS | | | 84.34 70 | 82.73 91 | 89.18 11 | 94.76 30 | 73.25 10 | 94.99 41 | 91.89 140 | 71.90 171 | 82.16 68 | 93.49 96 | 47.98 235 | 97.05 83 | 82.55 78 | 84.82 126 | 97.25 5 |
|
CDPH-MVS | | | 85.71 52 | 85.46 53 | 86.46 64 | 94.75 31 | 67.19 97 | 93.89 70 | 92.83 105 | 70.90 202 | 83.09 64 | 95.28 45 | 63.62 87 | 97.36 68 | 80.63 92 | 94.18 35 | 94.84 77 |
|
test_prior3 | | | 87.38 25 | 87.70 22 | 86.42 66 | 94.71 32 | 67.35 92 | 95.10 36 | 93.10 96 | 75.40 99 | 85.25 47 | 95.61 37 | 67.94 40 | 96.84 100 | 87.47 38 | 94.77 23 | 95.05 70 |
|
test_prior | | | | | 86.42 66 | 94.71 32 | 67.35 92 | | 93.10 96 | | | | | 96.84 100 | | | 95.05 70 |
|
test12 | | | | | 87.09 42 | 94.60 34 | 68.86 53 | | 92.91 102 | | 82.67 66 | | 65.44 66 | 97.55 59 | | 93.69 46 | 94.84 77 |
|
test_yl | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 35 | 69.24 45 | 95.78 17 | 95.09 18 | 69.19 222 | 81.09 77 | 92.88 110 | 57.00 150 | 97.44 63 | 81.11 90 | 81.76 148 | 96.23 28 |
|
DCV-MVSNet | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 35 | 69.24 45 | 95.78 17 | 95.09 18 | 69.19 222 | 81.09 77 | 92.88 110 | 57.00 150 | 97.44 63 | 81.11 90 | 81.76 148 | 96.23 28 |
|
CANet | | | 89.61 9 | 89.99 9 | 88.46 17 | 94.39 37 | 69.71 38 | 96.53 11 | 93.78 61 | 86.89 4 | 89.68 15 | 95.78 31 | 65.94 60 | 99.10 7 | 92.99 2 | 93.91 40 | 96.58 15 |
|
test_8 | | | | | | 94.19 38 | 67.19 97 | 94.15 55 | 93.42 81 | 71.87 174 | 85.38 45 | 95.35 41 | 68.19 36 | 96.95 95 | | | |
|
TEST9 | | | | | | 94.18 39 | 67.28 94 | 94.16 53 | 93.51 75 | 71.75 181 | 85.52 43 | 95.33 42 | 68.01 39 | 97.27 76 | | | |
|
train_agg | | | 87.21 28 | 87.42 28 | 86.60 57 | 94.18 39 | 67.28 94 | 94.16 53 | 93.51 75 | 71.87 174 | 85.52 43 | 95.33 42 | 68.19 36 | 97.27 76 | 89.09 25 | 94.90 19 | 95.25 63 |
|
Regformer-3 | | | 85.80 51 | 85.92 46 | 85.46 99 | 94.17 41 | 65.09 157 | 92.95 106 | 95.11 16 | 81.13 30 | 81.68 71 | 95.04 53 | 65.82 62 | 98.32 30 | 83.02 72 | 84.36 130 | 92.97 140 |
|
Regformer-4 | | | 85.45 54 | 85.69 51 | 84.73 120 | 94.17 41 | 63.23 202 | 92.95 106 | 94.83 23 | 80.66 34 | 81.29 74 | 95.04 53 | 65.12 68 | 98.08 36 | 82.74 74 | 84.36 130 | 92.88 144 |
|
agg_prior1 | | | 87.02 33 | 87.26 30 | 86.28 73 | 94.16 43 | 66.97 105 | 94.08 58 | 93.31 84 | 71.85 176 | 84.49 51 | 95.39 40 | 68.91 33 | 96.75 104 | 88.84 29 | 94.32 34 | 95.13 66 |
|
agg_prior | | | | | | 94.16 43 | 66.97 105 | | 93.31 84 | | 84.49 51 | | | 96.75 104 | | | |
|
PAPM_NR | | | 82.97 94 | 81.84 101 | 86.37 69 | 94.10 45 | 66.76 112 | 87.66 250 | 92.84 104 | 69.96 213 | 74.07 146 | 93.57 94 | 63.10 96 | 97.50 61 | 70.66 162 | 90.58 87 | 94.85 76 |
|
VNet | | | 86.20 45 | 85.65 52 | 87.84 23 | 93.92 46 | 69.99 30 | 95.73 22 | 95.94 6 | 78.43 62 | 86.00 37 | 93.07 103 | 58.22 136 | 97.00 88 | 85.22 56 | 84.33 133 | 96.52 17 |
|
9.14 | | | | 87.63 23 | | 93.86 47 | | 94.41 48 | 94.18 53 | 72.76 147 | 86.21 33 | 96.51 16 | 66.64 54 | 97.88 45 | 90.08 19 | 94.04 37 | |
|
xxxxxxxxxxxxxcwj | | | 87.14 29 | 87.19 31 | 86.99 45 | 93.84 48 | 67.89 77 | 95.05 38 | 84.72 294 | 78.19 64 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
save fliter | | | | | | 93.84 48 | 67.89 77 | 95.05 38 | 92.66 111 | 78.19 64 | | | | | | | |
|
PVSNet_BlendedMVS | | | 83.38 89 | 83.43 75 | 83.22 155 | 93.76 50 | 67.53 87 | 94.06 59 | 93.61 71 | 79.13 52 | 81.00 80 | 85.14 207 | 63.19 94 | 97.29 73 | 87.08 44 | 73.91 201 | 84.83 267 |
|
PVSNet_Blended | | | 86.73 39 | 86.86 36 | 86.31 72 | 93.76 50 | 67.53 87 | 96.33 14 | 93.61 71 | 82.34 18 | 81.00 80 | 93.08 101 | 63.19 94 | 97.29 73 | 87.08 44 | 91.38 77 | 94.13 104 |
|
HFP-MVS | | | 84.73 64 | 84.40 65 | 85.72 90 | 93.75 52 | 65.01 158 | 93.50 87 | 93.19 90 | 72.19 163 | 79.22 98 | 94.93 58 | 59.04 131 | 97.67 51 | 81.55 83 | 92.21 63 | 94.49 92 |
|
#test# | | | 84.98 61 | 84.74 61 | 85.72 90 | 93.75 52 | 65.01 158 | 94.09 57 | 93.19 90 | 73.55 132 | 79.22 98 | 94.93 58 | 59.04 131 | 97.67 51 | 82.66 75 | 92.21 63 | 94.49 92 |
|
Anonymous202405211 | | | 77.96 175 | 75.33 190 | 85.87 84 | 93.73 54 | 64.52 166 | 94.85 43 | 85.36 290 | 62.52 271 | 76.11 128 | 90.18 151 | 29.43 317 | 97.29 73 | 68.51 180 | 77.24 186 | 95.81 40 |
|
SD-MVS | | | 87.49 24 | 87.49 26 | 87.50 32 | 93.60 55 | 68.82 55 | 93.90 69 | 92.63 114 | 76.86 82 | 87.90 23 | 95.76 32 | 66.17 57 | 97.63 56 | 89.06 26 | 91.48 76 | 96.05 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ETH3D-3000-0.1 | | | 87.61 22 | 87.89 19 | 86.75 52 | 93.58 56 | 67.21 96 | 94.31 50 | 94.14 55 | 72.92 144 | 87.13 26 | 96.62 14 | 67.81 44 | 97.94 39 | 90.13 18 | 94.42 32 | 95.09 68 |
|
ACMMPR | | | 84.37 68 | 84.06 67 | 85.28 106 | 93.56 57 | 64.37 176 | 93.50 87 | 93.15 93 | 72.19 163 | 78.85 105 | 94.86 62 | 56.69 157 | 97.45 62 | 81.55 83 | 92.20 65 | 94.02 111 |
|
region2R | | | 84.36 69 | 84.03 68 | 85.36 104 | 93.54 58 | 64.31 178 | 93.43 90 | 92.95 101 | 72.16 166 | 78.86 104 | 94.84 63 | 56.97 152 | 97.53 60 | 81.38 87 | 92.11 67 | 94.24 97 |
|
TSAR-MVS + GP. | | | 87.96 17 | 88.37 16 | 86.70 55 | 93.51 59 | 65.32 147 | 95.15 34 | 93.84 60 | 78.17 66 | 85.93 38 | 94.80 65 | 75.80 11 | 98.21 31 | 89.38 21 | 88.78 97 | 96.59 13 |
|
PHI-MVS | | | 86.83 37 | 86.85 37 | 86.78 51 | 93.47 60 | 65.55 144 | 95.39 29 | 95.10 17 | 71.77 180 | 85.69 42 | 96.52 15 | 62.07 103 | 98.77 17 | 86.06 51 | 95.60 10 | 96.03 33 |
|
SR-MVS | | | 82.81 96 | 82.58 93 | 83.50 152 | 93.35 61 | 61.16 236 | 92.23 129 | 91.28 166 | 64.48 256 | 81.27 75 | 95.28 45 | 53.71 188 | 95.86 131 | 82.87 73 | 88.77 98 | 93.49 125 |
|
EPNet | | | 87.84 20 | 88.38 15 | 86.23 74 | 93.30 62 | 66.05 129 | 95.26 30 | 94.84 22 | 87.09 3 | 88.06 22 | 94.53 70 | 66.79 53 | 97.34 70 | 83.89 67 | 91.68 72 | 95.29 56 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
XVS | | | 83.87 82 | 83.47 73 | 85.05 111 | 93.22 63 | 63.78 188 | 92.92 108 | 92.66 111 | 73.99 118 | 78.18 108 | 94.31 80 | 55.25 170 | 97.41 65 | 79.16 101 | 91.58 74 | 93.95 113 |
|
X-MVStestdata | | | 76.86 189 | 74.13 207 | 85.05 111 | 93.22 63 | 63.78 188 | 92.92 108 | 92.66 111 | 73.99 118 | 78.18 108 | 10.19 349 | 55.25 170 | 97.41 65 | 79.16 101 | 91.58 74 | 93.95 113 |
|
SMA-MVS | | | 88.14 14 | 88.29 17 | 87.67 25 | 93.21 65 | 68.72 57 | 93.85 72 | 94.03 57 | 74.18 116 | 91.74 7 | 96.67 13 | 65.61 65 | 98.42 28 | 89.24 24 | 96.08 5 | 95.88 39 |
|
原ACMM1 | | | | | 84.42 130 | 93.21 65 | 64.27 181 | | 93.40 83 | 65.39 251 | 79.51 95 | 92.50 116 | 58.11 138 | 96.69 106 | 65.27 214 | 93.96 38 | 92.32 155 |
|
MVS_111021_HR | | | 86.19 46 | 85.80 49 | 87.37 35 | 93.17 67 | 69.79 36 | 93.99 63 | 93.76 64 | 79.08 54 | 78.88 103 | 93.99 87 | 62.25 102 | 98.15 34 | 85.93 52 | 91.15 81 | 94.15 103 |
|
CP-MVS | | | 83.71 86 | 83.40 78 | 84.65 124 | 93.14 68 | 63.84 186 | 94.59 46 | 92.28 122 | 71.03 200 | 77.41 117 | 94.92 60 | 55.21 173 | 96.19 117 | 81.32 88 | 90.70 85 | 93.91 115 |
|
DELS-MVS | | | 90.05 6 | 90.09 8 | 89.94 4 | 93.14 68 | 73.88 8 | 97.01 3 | 94.40 45 | 88.32 2 | 85.71 41 | 94.91 61 | 74.11 16 | 98.91 13 | 87.26 43 | 95.94 7 | 97.03 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ZNCC-MVS | | | 85.33 56 | 85.08 57 | 86.06 77 | 93.09 70 | 65.65 141 | 93.89 70 | 93.41 82 | 73.75 126 | 79.94 89 | 94.68 68 | 60.61 115 | 98.03 37 | 82.63 77 | 93.72 44 | 94.52 90 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 8 | 91.38 3 | 84.72 122 | 93.00 71 | 58.16 273 | 96.72 7 | 94.41 43 | 86.50 5 | 90.25 14 | 97.83 1 | 75.46 12 | 98.67 19 | 92.78 3 | 95.49 11 | 97.32 4 |
|
PLC | | 68.80 14 | 75.23 215 | 73.68 213 | 79.86 232 | 92.93 72 | 58.68 270 | 90.64 194 | 88.30 259 | 60.90 281 | 64.43 252 | 90.53 145 | 42.38 264 | 94.57 171 | 56.52 257 | 76.54 190 | 86.33 237 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DWT-MVSNet_test | | | 83.95 80 | 82.80 89 | 87.41 34 | 92.90 73 | 70.07 29 | 89.12 229 | 94.42 42 | 82.15 20 | 77.64 113 | 91.77 130 | 70.81 30 | 96.22 116 | 65.03 215 | 81.36 152 | 95.94 35 |
|
MSP-MVS | | | 90.38 3 | 91.87 1 | 85.88 82 | 92.83 74 | 64.03 185 | 93.06 99 | 94.33 48 | 82.19 19 | 93.65 2 | 96.15 27 | 85.89 1 | 97.19 78 | 91.02 15 | 97.75 1 | 96.43 22 |
|
mPP-MVS | | | 82.96 95 | 82.44 95 | 84.52 127 | 92.83 74 | 62.92 211 | 92.76 111 | 91.85 142 | 71.52 191 | 75.61 134 | 94.24 82 | 53.48 192 | 96.99 91 | 78.97 104 | 90.73 84 | 93.64 122 |
|
GST-MVS | | | 84.63 67 | 84.29 66 | 85.66 94 | 92.82 76 | 65.27 148 | 93.04 101 | 93.13 94 | 73.20 136 | 78.89 102 | 94.18 83 | 59.41 127 | 97.85 46 | 81.45 85 | 92.48 62 | 93.86 117 |
|
WTY-MVS | | | 86.32 43 | 85.81 48 | 87.85 22 | 92.82 76 | 69.37 44 | 95.20 32 | 95.25 12 | 82.71 15 | 81.91 69 | 94.73 66 | 67.93 42 | 97.63 56 | 79.55 98 | 82.25 144 | 96.54 16 |
|
PGM-MVS | | | 83.25 90 | 82.70 92 | 84.92 114 | 92.81 78 | 64.07 184 | 90.44 197 | 92.20 130 | 71.28 195 | 77.23 120 | 94.43 71 | 55.17 174 | 97.31 72 | 79.33 100 | 91.38 77 | 93.37 126 |
|
EI-MVSNet-Vis-set | | | 83.77 84 | 83.67 70 | 84.06 137 | 92.79 79 | 63.56 198 | 91.76 152 | 94.81 25 | 79.65 44 | 77.87 110 | 94.09 84 | 63.35 92 | 97.90 43 | 79.35 99 | 79.36 162 | 90.74 178 |
|
SF-MVS | | | 87.03 32 | 87.09 33 | 86.84 47 | 92.70 80 | 67.45 91 | 93.64 80 | 93.76 64 | 70.78 206 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
MVSTER | | | 82.47 101 | 82.05 98 | 83.74 142 | 92.68 81 | 69.01 50 | 91.90 144 | 93.21 87 | 79.83 39 | 72.14 168 | 85.71 203 | 74.72 13 | 94.72 168 | 75.72 122 | 72.49 211 | 87.50 214 |
|
MP-MVS | | | 85.02 59 | 84.97 58 | 85.17 110 | 92.60 82 | 64.27 181 | 93.24 94 | 92.27 123 | 73.13 138 | 79.63 94 | 94.43 71 | 61.90 104 | 97.17 79 | 85.00 57 | 92.56 59 | 94.06 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
thres200 | | | 79.66 144 | 78.33 147 | 83.66 148 | 92.54 83 | 65.82 138 | 93.06 99 | 96.31 3 | 74.90 108 | 73.30 151 | 88.66 164 | 59.67 123 | 95.61 144 | 47.84 286 | 78.67 169 | 89.56 193 |
|
APD-MVS_3200maxsize | | | 81.64 114 | 81.32 106 | 82.59 168 | 92.36 84 | 58.74 269 | 91.39 166 | 91.01 176 | 63.35 263 | 79.72 93 | 94.62 69 | 51.82 202 | 96.14 119 | 79.71 96 | 87.93 104 | 92.89 143 |
|
新几何1 | | | | | 84.73 120 | 92.32 85 | 64.28 180 | | 91.46 159 | 59.56 291 | 79.77 92 | 92.90 108 | 56.95 153 | 96.57 109 | 63.40 224 | 92.91 55 | 93.34 127 |
|
1121 | | | 81.25 118 | 80.05 120 | 84.87 117 | 92.30 86 | 64.31 178 | 87.91 246 | 91.39 161 | 59.44 292 | 79.94 89 | 92.91 107 | 57.09 146 | 97.01 86 | 66.63 194 | 92.81 57 | 93.29 130 |
|
EI-MVSNet-UG-set | | | 83.14 92 | 82.96 85 | 83.67 147 | 92.28 87 | 63.19 204 | 91.38 168 | 94.68 31 | 79.22 49 | 76.60 125 | 93.75 90 | 62.64 99 | 97.76 49 | 78.07 110 | 78.01 173 | 90.05 186 |
|
HPM-MVS | | | 83.25 90 | 82.95 86 | 84.17 135 | 92.25 88 | 62.88 213 | 90.91 185 | 91.86 141 | 70.30 210 | 77.12 121 | 93.96 88 | 56.75 155 | 96.28 114 | 82.04 80 | 91.34 79 | 93.34 127 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HY-MVS | | 76.49 5 | 84.28 71 | 83.36 80 | 87.02 44 | 92.22 89 | 67.74 81 | 84.65 269 | 94.50 37 | 79.15 51 | 82.23 67 | 87.93 178 | 66.88 51 | 96.94 96 | 80.53 93 | 82.20 145 | 96.39 24 |
|
tfpn200view9 | | | 78.79 160 | 77.43 163 | 82.88 159 | 92.21 90 | 64.49 167 | 92.05 137 | 96.28 4 | 73.48 133 | 71.75 174 | 88.26 172 | 60.07 119 | 95.32 154 | 45.16 295 | 77.58 178 | 88.83 196 |
|
thres400 | | | 78.68 163 | 77.43 163 | 82.43 170 | 92.21 90 | 64.49 167 | 92.05 137 | 96.28 4 | 73.48 133 | 71.75 174 | 88.26 172 | 60.07 119 | 95.32 154 | 45.16 295 | 77.58 178 | 87.48 215 |
|
PS-MVSNAJ | | | 88.14 14 | 87.61 24 | 89.71 7 | 92.06 92 | 76.72 1 | 95.75 19 | 93.26 86 | 83.86 10 | 89.55 16 | 96.06 28 | 53.55 189 | 97.89 44 | 91.10 13 | 93.31 50 | 94.54 88 |
|
MSLP-MVS++ | | | 86.27 44 | 85.91 47 | 87.35 36 | 92.01 93 | 68.97 52 | 95.04 40 | 92.70 108 | 79.04 55 | 81.50 73 | 96.50 17 | 58.98 133 | 96.78 102 | 83.49 69 | 93.93 39 | 96.29 26 |
|
ETH3D cwj APD-0.16 | | | 87.06 31 | 87.18 32 | 86.71 53 | 91.99 94 | 67.48 90 | 92.97 104 | 94.21 52 | 71.48 194 | 85.72 40 | 96.32 23 | 68.13 38 | 98.00 38 | 89.06 26 | 94.70 27 | 94.65 84 |
|
旧先验1 | | | | | | 91.94 95 | 60.74 243 | | 91.50 157 | | | 94.36 73 | 65.23 67 | | | 91.84 69 | 94.55 86 |
|
thres600view7 | | | 78.00 173 | 76.66 174 | 82.03 188 | 91.93 96 | 63.69 193 | 91.30 173 | 96.33 1 | 72.43 154 | 70.46 183 | 87.89 179 | 60.31 116 | 94.92 163 | 42.64 307 | 76.64 189 | 87.48 215 |
|
LS3D | | | 69.17 260 | 66.40 262 | 77.50 263 | 91.92 97 | 56.12 289 | 85.12 266 | 80.37 316 | 46.96 327 | 56.50 294 | 87.51 184 | 37.25 288 | 93.71 207 | 32.52 335 | 79.40 161 | 82.68 292 |
|
GG-mvs-BLEND | | | | | 86.53 62 | 91.91 98 | 69.67 40 | 75.02 318 | 94.75 28 | | 78.67 107 | 90.85 140 | 77.91 5 | 94.56 172 | 72.25 147 | 93.74 43 | 95.36 50 |
|
thres100view900 | | | 78.37 169 | 77.01 169 | 82.46 169 | 91.89 99 | 63.21 203 | 91.19 179 | 96.33 1 | 72.28 159 | 70.45 184 | 87.89 179 | 60.31 116 | 95.32 154 | 45.16 295 | 77.58 178 | 88.83 196 |
|
zzz-MVS | | | 84.73 64 | 84.47 62 | 85.50 97 | 91.89 99 | 65.16 152 | 91.55 159 | 92.23 125 | 75.32 101 | 80.53 84 | 95.21 51 | 56.06 165 | 97.16 80 | 84.86 60 | 92.55 60 | 94.18 99 |
|
MTAPA | | | 83.91 81 | 83.38 79 | 85.50 97 | 91.89 99 | 65.16 152 | 81.75 289 | 92.23 125 | 75.32 101 | 80.53 84 | 95.21 51 | 56.06 165 | 97.16 80 | 84.86 60 | 92.55 60 | 94.18 99 |
|
RRT_test8_iter05 | | | 80.61 126 | 79.62 128 | 83.60 149 | 91.87 102 | 66.90 107 | 93.42 92 | 93.68 68 | 77.09 80 | 68.83 206 | 85.63 204 | 66.82 52 | 95.42 151 | 76.46 120 | 62.74 275 | 88.48 203 |
|
canonicalmvs | | | 86.85 36 | 86.25 42 | 88.66 15 | 91.80 103 | 71.92 13 | 93.54 85 | 91.71 148 | 80.26 38 | 87.55 24 | 95.25 49 | 63.59 89 | 96.93 98 | 88.18 34 | 84.34 132 | 97.11 6 |
|
TSAR-MVS + MP. | | | 88.11 16 | 88.64 14 | 86.54 61 | 91.73 104 | 68.04 73 | 90.36 201 | 93.55 74 | 82.89 13 | 91.29 9 | 92.89 109 | 72.27 25 | 96.03 127 | 87.99 35 | 94.77 23 | 95.54 46 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP | | | 81.49 115 | 80.67 114 | 83.93 139 | 91.71 105 | 62.90 212 | 92.13 131 | 92.22 129 | 71.79 179 | 71.68 176 | 93.49 96 | 50.32 212 | 96.96 94 | 78.47 107 | 84.22 137 | 91.93 161 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
BH-RMVSNet | | | 79.46 149 | 77.65 159 | 84.89 115 | 91.68 106 | 65.66 140 | 93.55 84 | 88.09 265 | 72.93 143 | 73.37 150 | 91.12 137 | 46.20 248 | 96.12 120 | 56.28 259 | 85.61 122 | 92.91 142 |
|
baseline1 | | | 81.84 112 | 81.03 111 | 84.28 134 | 91.60 107 | 66.62 115 | 91.08 182 | 91.66 151 | 81.87 24 | 74.86 139 | 91.67 134 | 69.98 32 | 94.92 163 | 71.76 153 | 64.75 263 | 91.29 173 |
|
ACMMP_NAP | | | 86.05 47 | 85.80 49 | 86.80 50 | 91.58 108 | 67.53 87 | 91.79 149 | 93.49 77 | 74.93 107 | 84.61 49 | 95.30 44 | 59.42 126 | 97.92 41 | 86.13 50 | 94.92 17 | 94.94 75 |
|
MVS_Test | | | 84.16 76 | 83.20 81 | 87.05 43 | 91.56 109 | 69.82 35 | 89.99 213 | 92.05 133 | 77.77 70 | 82.84 65 | 86.57 193 | 63.93 82 | 96.09 121 | 74.91 132 | 89.18 95 | 95.25 63 |
|
HPM-MVS_fast | | | 80.25 133 | 79.55 132 | 82.33 175 | 91.55 110 | 59.95 255 | 91.32 172 | 89.16 233 | 65.23 254 | 74.71 140 | 93.07 103 | 47.81 237 | 95.74 135 | 74.87 134 | 88.23 101 | 91.31 172 |
|
CPTT-MVS | | | 79.59 145 | 79.16 140 | 80.89 214 | 91.54 111 | 59.80 257 | 92.10 133 | 88.54 256 | 60.42 284 | 72.96 153 | 93.28 98 | 48.27 231 | 92.80 230 | 78.89 106 | 86.50 117 | 90.06 185 |
|
CS-MVS | | | 86.61 41 | 86.85 37 | 85.88 82 | 91.52 112 | 66.25 126 | 95.42 27 | 92.25 124 | 80.36 37 | 84.10 58 | 94.82 64 | 62.88 98 | 96.08 123 | 88.25 33 | 92.07 68 | 95.30 55 |
|
CNLPA | | | 74.31 223 | 72.30 228 | 80.32 219 | 91.49 113 | 61.66 229 | 90.85 187 | 80.72 315 | 56.67 305 | 63.85 256 | 90.64 142 | 46.75 242 | 90.84 273 | 53.79 267 | 75.99 193 | 88.47 205 |
|
MP-MVS-pluss | | | 85.24 57 | 85.13 56 | 85.56 96 | 91.42 114 | 65.59 143 | 91.54 160 | 92.51 118 | 74.56 110 | 80.62 83 | 95.64 36 | 59.15 130 | 97.00 88 | 86.94 46 | 93.80 41 | 94.07 108 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
gg-mvs-nofinetune | | | 77.18 187 | 74.31 203 | 85.80 87 | 91.42 114 | 68.36 64 | 71.78 320 | 94.72 29 | 49.61 321 | 77.12 121 | 45.92 337 | 77.41 6 | 93.98 198 | 67.62 187 | 93.16 52 | 95.05 70 |
|
xiu_mvs_v2_base | | | 87.92 19 | 87.38 29 | 89.55 10 | 91.41 116 | 76.43 3 | 95.74 20 | 93.12 95 | 83.53 12 | 89.55 16 | 95.95 29 | 53.45 193 | 97.68 50 | 91.07 14 | 92.62 58 | 94.54 88 |
|
EIA-MVS | | | 84.84 63 | 84.88 59 | 84.69 123 | 91.30 117 | 62.36 220 | 93.85 72 | 92.04 134 | 79.45 45 | 79.33 97 | 94.28 81 | 62.42 101 | 96.35 113 | 80.05 95 | 91.25 80 | 95.38 49 |
|
alignmvs | | | 87.28 26 | 86.97 34 | 88.24 20 | 91.30 117 | 71.14 19 | 95.61 24 | 93.56 73 | 79.30 47 | 87.07 29 | 95.25 49 | 68.43 34 | 96.93 98 | 87.87 36 | 84.33 133 | 96.65 11 |
|
EPMVS | | | 78.49 168 | 75.98 183 | 86.02 78 | 91.21 119 | 69.68 39 | 80.23 300 | 91.20 167 | 75.25 103 | 72.48 163 | 78.11 285 | 54.65 178 | 93.69 208 | 57.66 255 | 83.04 139 | 94.69 80 |
|
FMVSNet3 | | | 77.73 179 | 76.04 182 | 82.80 160 | 91.20 120 | 68.99 51 | 91.87 145 | 91.99 136 | 73.35 135 | 67.04 230 | 83.19 227 | 56.62 158 | 92.14 252 | 59.80 247 | 69.34 230 | 87.28 221 |
|
Anonymous20240529 | | | 76.84 191 | 74.15 206 | 84.88 116 | 91.02 121 | 64.95 161 | 93.84 75 | 91.09 172 | 53.57 312 | 73.00 152 | 87.42 185 | 35.91 297 | 97.32 71 | 69.14 175 | 72.41 213 | 92.36 153 |
|
tpmvs | | | 72.88 237 | 69.76 248 | 82.22 180 | 90.98 122 | 67.05 102 | 78.22 312 | 88.30 259 | 63.10 267 | 64.35 253 | 74.98 304 | 55.09 175 | 94.27 183 | 43.25 301 | 69.57 229 | 85.34 262 |
|
MVS | | | 84.66 66 | 82.86 88 | 90.06 2 | 90.93 123 | 74.56 6 | 87.91 246 | 95.54 9 | 68.55 230 | 72.35 167 | 94.71 67 | 59.78 122 | 98.90 14 | 81.29 89 | 94.69 28 | 96.74 10 |
|
PVSNet | | 73.49 8 | 80.05 137 | 78.63 144 | 84.31 132 | 90.92 124 | 64.97 160 | 92.47 124 | 91.05 174 | 79.18 50 | 72.43 165 | 90.51 146 | 37.05 293 | 94.06 192 | 68.06 182 | 86.00 119 | 93.90 116 |
|
RRT_MVS | | | 77.38 184 | 76.59 175 | 79.77 235 | 90.91 125 | 63.61 197 | 91.15 180 | 90.91 177 | 72.28 159 | 72.06 170 | 87.28 188 | 43.92 258 | 89.04 293 | 73.32 136 | 67.47 245 | 86.67 230 |
|
3Dnovator+ | | 73.60 7 | 82.10 109 | 80.60 116 | 86.60 57 | 90.89 126 | 66.80 111 | 95.20 32 | 93.44 80 | 74.05 117 | 67.42 225 | 92.49 118 | 49.46 221 | 97.65 55 | 70.80 159 | 91.68 72 | 95.33 51 |
|
VDD-MVS | | | 83.06 93 | 81.81 102 | 86.81 49 | 90.86 127 | 67.70 82 | 95.40 28 | 91.50 157 | 75.46 96 | 81.78 70 | 92.34 123 | 40.09 270 | 97.13 82 | 86.85 47 | 82.04 146 | 95.60 44 |
|
BH-w/o | | | 80.49 130 | 79.30 137 | 84.05 138 | 90.83 128 | 64.36 177 | 93.60 82 | 89.42 223 | 74.35 113 | 69.09 199 | 90.15 152 | 55.23 172 | 95.61 144 | 64.61 217 | 86.43 118 | 92.17 159 |
|
ET-MVSNet_ETH3D | | | 84.01 78 | 83.15 84 | 86.58 59 | 90.78 129 | 70.89 20 | 94.74 45 | 94.62 34 | 81.44 27 | 58.19 286 | 93.64 92 | 73.64 19 | 92.35 249 | 82.66 75 | 78.66 170 | 96.50 19 |
|
Anonymous20231211 | | | 73.08 232 | 70.39 242 | 81.13 204 | 90.62 130 | 63.33 200 | 91.40 164 | 90.06 204 | 51.84 316 | 64.46 251 | 80.67 262 | 36.49 295 | 94.07 191 | 63.83 222 | 64.17 268 | 85.98 248 |
|
TR-MVS | | | 78.77 161 | 77.37 166 | 82.95 158 | 90.49 131 | 60.88 238 | 93.67 79 | 90.07 201 | 70.08 212 | 74.51 141 | 91.37 135 | 45.69 249 | 95.70 141 | 60.12 245 | 80.32 157 | 92.29 156 |
|
SteuartSystems-ACMMP | | | 86.82 38 | 86.90 35 | 86.58 59 | 90.42 132 | 66.38 121 | 96.09 15 | 93.87 59 | 77.73 71 | 84.01 60 | 95.66 35 | 63.39 91 | 97.94 39 | 87.40 40 | 93.55 48 | 95.42 47 |
Skip Steuart: Steuart Systems R&D Blog. |
TAPA-MVS | | 70.22 12 | 74.94 219 | 73.53 214 | 79.17 246 | 90.40 133 | 52.07 307 | 89.19 227 | 89.61 218 | 62.69 269 | 70.07 189 | 92.67 114 | 48.89 229 | 94.32 180 | 38.26 321 | 79.97 158 | 91.12 175 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_anonymous | | | 81.36 117 | 79.99 122 | 85.46 99 | 90.39 134 | 68.40 63 | 86.88 260 | 90.61 186 | 74.41 111 | 70.31 187 | 84.67 212 | 63.79 84 | 92.32 250 | 73.13 137 | 85.70 120 | 95.67 41 |
|
CANet_DTU | | | 84.09 77 | 83.52 71 | 85.81 86 | 90.30 135 | 66.82 109 | 91.87 145 | 89.01 241 | 85.27 6 | 86.09 36 | 93.74 91 | 47.71 238 | 96.98 92 | 77.90 112 | 89.78 93 | 93.65 121 |
|
Fast-Effi-MVS+ | | | 81.14 120 | 80.01 121 | 84.51 128 | 90.24 136 | 65.86 135 | 94.12 56 | 89.15 234 | 73.81 125 | 75.37 137 | 88.26 172 | 57.26 144 | 94.53 175 | 66.97 193 | 84.92 125 | 93.15 134 |
|
ETV-MVS | | | 86.01 48 | 86.11 44 | 85.70 93 | 90.21 137 | 67.02 104 | 93.43 90 | 91.92 139 | 81.21 29 | 84.13 57 | 94.07 86 | 60.93 112 | 95.63 142 | 89.28 23 | 89.81 91 | 94.46 94 |
|
tpmrst | | | 80.57 127 | 79.14 141 | 84.84 118 | 90.10 138 | 68.28 67 | 81.70 290 | 89.72 216 | 77.63 73 | 75.96 129 | 79.54 277 | 64.94 72 | 92.71 233 | 75.43 124 | 77.28 185 | 93.55 123 |
|
PVSNet_Blended_VisFu | | | 83.97 79 | 83.50 72 | 85.39 103 | 90.02 139 | 66.59 117 | 93.77 77 | 91.73 146 | 77.43 77 | 77.08 123 | 89.81 157 | 63.77 85 | 96.97 93 | 79.67 97 | 88.21 102 | 92.60 148 |
|
UGNet | | | 79.87 141 | 78.68 143 | 83.45 154 | 89.96 140 | 61.51 231 | 92.13 131 | 90.79 179 | 76.83 83 | 78.85 105 | 86.33 196 | 38.16 279 | 96.17 118 | 67.93 184 | 87.17 109 | 92.67 146 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CHOSEN 1792x2688 | | | 84.98 61 | 83.45 74 | 89.57 9 | 89.94 141 | 75.14 5 | 92.07 136 | 92.32 121 | 81.87 24 | 75.68 131 | 88.27 171 | 60.18 118 | 98.60 21 | 80.46 94 | 90.27 90 | 94.96 74 |
|
abl_6 | | | 79.82 142 | 79.20 139 | 81.70 194 | 89.85 142 | 58.34 271 | 88.47 239 | 90.07 201 | 62.56 270 | 77.71 112 | 93.08 101 | 47.65 239 | 96.78 102 | 77.94 111 | 85.45 123 | 89.99 187 |
|
BH-untuned | | | 78.68 163 | 77.08 167 | 83.48 153 | 89.84 143 | 63.74 190 | 92.70 114 | 88.59 254 | 71.57 189 | 66.83 233 | 88.65 165 | 51.75 204 | 95.39 152 | 59.03 250 | 84.77 127 | 91.32 171 |
|
test222 | | | | | | 89.77 144 | 61.60 230 | 89.55 219 | 89.42 223 | 56.83 304 | 77.28 119 | 92.43 120 | 52.76 196 | | | 91.14 82 | 93.09 136 |
|
PMMVS | | | 81.98 111 | 82.04 99 | 81.78 190 | 89.76 145 | 56.17 288 | 91.13 181 | 90.69 182 | 77.96 68 | 80.09 88 | 93.57 94 | 46.33 246 | 94.99 159 | 81.41 86 | 87.46 107 | 94.17 101 |
|
DPM-MVS | | | 90.70 2 | 90.52 5 | 91.24 1 | 89.68 146 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 8 | 97.22 4 | 79.93 3 | 99.10 7 | 83.12 71 | 97.64 2 | 97.94 1 |
|
QAPM | | | 79.95 140 | 77.39 165 | 87.64 26 | 89.63 147 | 71.41 15 | 93.30 93 | 93.70 67 | 65.34 253 | 67.39 227 | 91.75 132 | 47.83 236 | 98.96 12 | 57.71 254 | 89.81 91 | 92.54 150 |
|
3Dnovator | | 73.91 6 | 82.69 100 | 80.82 112 | 88.31 19 | 89.57 148 | 71.26 16 | 92.60 119 | 94.39 46 | 78.84 57 | 67.89 219 | 92.48 119 | 48.42 230 | 98.52 22 | 68.80 179 | 94.40 33 | 95.15 65 |
|
Effi-MVS+ | | | 83.82 83 | 82.76 90 | 86.99 45 | 89.56 149 | 69.40 41 | 91.35 170 | 86.12 284 | 72.59 149 | 83.22 63 | 92.81 113 | 59.60 124 | 96.01 129 | 81.76 82 | 87.80 105 | 95.56 45 |
|
PatchmatchNet | | | 77.46 182 | 74.63 196 | 85.96 80 | 89.55 150 | 70.35 26 | 79.97 304 | 89.55 219 | 72.23 161 | 70.94 179 | 76.91 296 | 57.03 148 | 92.79 231 | 54.27 265 | 81.17 153 | 94.74 79 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 72.06 243 | 69.98 243 | 78.28 255 | 89.51 151 | 55.70 291 | 83.49 276 | 83.39 307 | 61.24 280 | 63.72 257 | 82.76 229 | 34.77 300 | 93.03 219 | 53.37 270 | 77.59 177 | 86.12 245 |
|
thisisatest0515 | | | 83.41 88 | 82.49 94 | 86.16 75 | 89.46 152 | 68.26 68 | 93.54 85 | 94.70 30 | 74.31 114 | 75.75 130 | 90.92 138 | 72.62 23 | 96.52 111 | 69.64 167 | 81.50 150 | 93.71 119 |
|
UA-Net | | | 80.02 138 | 79.65 127 | 81.11 205 | 89.33 153 | 57.72 277 | 86.33 263 | 89.00 242 | 77.44 76 | 81.01 79 | 89.15 161 | 59.33 128 | 95.90 130 | 61.01 239 | 84.28 135 | 89.73 190 |
|
dp | | | 75.01 218 | 72.09 230 | 83.76 141 | 89.28 154 | 66.22 128 | 79.96 305 | 89.75 211 | 71.16 197 | 67.80 221 | 77.19 293 | 51.81 203 | 92.54 241 | 50.39 276 | 71.44 220 | 92.51 151 |
|
sss | | | 82.71 99 | 82.38 96 | 83.73 144 | 89.25 155 | 59.58 260 | 92.24 128 | 94.89 21 | 77.96 68 | 79.86 91 | 92.38 121 | 56.70 156 | 97.05 83 | 77.26 115 | 80.86 156 | 94.55 86 |
|
MVSFormer | | | 83.75 85 | 82.88 87 | 86.37 69 | 89.24 156 | 71.18 17 | 89.07 230 | 90.69 182 | 65.80 248 | 87.13 26 | 94.34 78 | 64.99 70 | 92.67 236 | 72.83 140 | 91.80 70 | 95.27 60 |
|
lupinMVS | | | 87.74 21 | 87.77 21 | 87.63 30 | 89.24 156 | 71.18 17 | 96.57 10 | 92.90 103 | 82.70 16 | 87.13 26 | 95.27 47 | 64.99 70 | 95.80 132 | 89.34 22 | 91.80 70 | 95.93 36 |
|
IB-MVS | | 77.80 4 | 82.18 105 | 80.46 118 | 87.35 36 | 89.14 158 | 70.28 27 | 95.59 25 | 95.17 14 | 78.85 56 | 70.19 188 | 85.82 201 | 70.66 31 | 97.67 51 | 72.19 150 | 66.52 251 | 94.09 106 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13 | | | | 72.61 224 | | 89.06 159 | 68.48 61 | 80.33 298 | 90.11 200 | 71.84 177 | 71.81 173 | 75.92 301 | 53.01 195 | 93.92 201 | 48.04 285 | 73.38 203 | |
|
testdata | | | | | 81.34 200 | 89.02 160 | 57.72 277 | | 89.84 209 | 58.65 296 | 85.32 46 | 94.09 84 | 57.03 148 | 93.28 215 | 69.34 172 | 90.56 88 | 93.03 138 |
|
CostFormer | | | 82.33 103 | 81.15 107 | 85.86 85 | 89.01 161 | 68.46 62 | 82.39 287 | 93.01 98 | 75.59 94 | 80.25 87 | 81.57 246 | 72.03 27 | 94.96 160 | 79.06 103 | 77.48 182 | 94.16 102 |
|
GBi-Net | | | 75.65 209 | 73.83 211 | 81.10 206 | 88.85 162 | 65.11 154 | 90.01 210 | 90.32 190 | 70.84 203 | 67.04 230 | 80.25 269 | 48.03 232 | 91.54 266 | 59.80 247 | 69.34 230 | 86.64 231 |
|
test1 | | | 75.65 209 | 73.83 211 | 81.10 206 | 88.85 162 | 65.11 154 | 90.01 210 | 90.32 190 | 70.84 203 | 67.04 230 | 80.25 269 | 48.03 232 | 91.54 266 | 59.80 247 | 69.34 230 | 86.64 231 |
|
FMVSNet2 | | | 76.07 199 | 74.01 209 | 82.26 179 | 88.85 162 | 67.66 83 | 91.33 171 | 91.61 152 | 70.84 203 | 65.98 237 | 82.25 235 | 48.03 232 | 92.00 257 | 58.46 252 | 68.73 236 | 87.10 223 |
|
DeepC-MVS | | 77.85 3 | 85.52 53 | 85.24 55 | 86.37 69 | 88.80 165 | 66.64 114 | 92.15 130 | 93.68 68 | 81.07 31 | 76.91 124 | 93.64 92 | 62.59 100 | 98.44 26 | 85.50 54 | 92.84 56 | 94.03 110 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPP-MVSNet | | | 81.79 113 | 81.52 104 | 82.61 167 | 88.77 166 | 60.21 252 | 93.02 103 | 93.66 70 | 68.52 231 | 72.90 155 | 90.39 147 | 72.19 26 | 94.96 160 | 74.93 131 | 79.29 164 | 92.67 146 |
|
1112_ss | | | 80.56 128 | 79.83 125 | 82.77 161 | 88.65 167 | 60.78 240 | 92.29 126 | 88.36 258 | 72.58 150 | 72.46 164 | 94.95 56 | 65.09 69 | 93.42 214 | 66.38 200 | 77.71 175 | 94.10 105 |
|
tpm cat1 | | | 75.30 214 | 72.21 229 | 84.58 126 | 88.52 168 | 67.77 80 | 78.16 313 | 88.02 266 | 61.88 277 | 68.45 213 | 76.37 297 | 60.65 113 | 94.03 196 | 53.77 268 | 74.11 198 | 91.93 161 |
|
LCM-MVSNet-Re | | | 72.93 235 | 71.84 232 | 76.18 277 | 88.49 169 | 48.02 323 | 80.07 303 | 70.17 335 | 73.96 121 | 52.25 306 | 80.09 272 | 49.98 216 | 88.24 299 | 67.35 188 | 84.23 136 | 92.28 157 |
|
Vis-MVSNet | | | 80.92 124 | 79.98 123 | 83.74 142 | 88.48 170 | 61.80 226 | 93.44 89 | 88.26 263 | 73.96 121 | 77.73 111 | 91.76 131 | 49.94 217 | 94.76 165 | 65.84 206 | 90.37 89 | 94.65 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Vis-MVSNet (Re-imp) | | | 79.24 151 | 79.57 129 | 78.24 257 | 88.46 171 | 52.29 306 | 90.41 199 | 89.12 236 | 74.24 115 | 69.13 198 | 91.91 128 | 65.77 63 | 90.09 285 | 59.00 251 | 88.09 103 | 92.33 154 |
|
ab-mvs | | | 80.18 134 | 78.31 148 | 85.80 87 | 88.44 172 | 65.49 146 | 83.00 284 | 92.67 110 | 71.82 178 | 77.36 118 | 85.01 208 | 54.50 179 | 96.59 107 | 76.35 121 | 75.63 194 | 95.32 53 |
|
gm-plane-assit | | | | | | 88.42 173 | 67.04 103 | | | 78.62 61 | | 91.83 129 | | 97.37 67 | 76.57 118 | | |
|
MVS_111021_LR | | | 82.02 110 | 81.52 104 | 83.51 151 | 88.42 173 | 62.88 213 | 89.77 216 | 88.93 243 | 76.78 84 | 75.55 135 | 93.10 99 | 50.31 213 | 95.38 153 | 83.82 68 | 87.02 110 | 92.26 158 |
|
baseline | | | 85.01 60 | 84.44 64 | 86.71 53 | 88.33 175 | 68.73 56 | 90.24 205 | 91.82 144 | 81.05 32 | 81.18 76 | 92.50 116 | 63.69 86 | 96.08 123 | 84.45 62 | 86.71 114 | 95.32 53 |
|
tpm2 | | | 79.80 143 | 77.95 155 | 85.34 105 | 88.28 176 | 68.26 68 | 81.56 292 | 91.42 160 | 70.11 211 | 77.59 116 | 80.50 264 | 67.40 46 | 94.26 185 | 67.34 189 | 77.35 183 | 93.51 124 |
|
thisisatest0530 | | | 81.15 119 | 80.07 119 | 84.39 131 | 88.26 177 | 65.63 142 | 91.40 164 | 94.62 34 | 71.27 196 | 70.93 180 | 89.18 160 | 72.47 24 | 96.04 126 | 65.62 209 | 76.89 188 | 91.49 166 |
|
casdiffmvs | | | 85.37 55 | 84.87 60 | 86.84 47 | 88.25 178 | 69.07 48 | 93.04 101 | 91.76 145 | 81.27 28 | 80.84 82 | 92.07 126 | 64.23 78 | 96.06 125 | 84.98 58 | 87.43 108 | 95.39 48 |
|
Test_1112_low_res | | | 79.56 146 | 78.60 145 | 82.43 170 | 88.24 179 | 60.39 249 | 92.09 134 | 87.99 267 | 72.10 167 | 71.84 172 | 87.42 185 | 64.62 74 | 93.04 218 | 65.80 207 | 77.30 184 | 93.85 118 |
|
PAPM | | | 85.89 50 | 85.46 53 | 87.18 39 | 88.20 180 | 72.42 12 | 92.41 125 | 92.77 106 | 82.11 21 | 80.34 86 | 93.07 103 | 68.27 35 | 95.02 158 | 78.39 108 | 93.59 47 | 94.09 106 |
|
TESTMET0.1,1 | | | 82.41 102 | 81.98 100 | 83.72 145 | 88.08 181 | 63.74 190 | 92.70 114 | 93.77 63 | 79.30 47 | 77.61 115 | 87.57 183 | 58.19 137 | 94.08 190 | 73.91 135 | 86.68 115 | 93.33 129 |
|
ADS-MVSNet2 | | | 66.90 277 | 63.44 281 | 77.26 269 | 88.06 182 | 60.70 244 | 68.01 329 | 75.56 325 | 57.57 298 | 64.48 249 | 69.87 321 | 38.68 273 | 84.10 316 | 40.87 312 | 67.89 242 | 86.97 224 |
|
ADS-MVSNet | | | 68.54 265 | 64.38 277 | 81.03 210 | 88.06 182 | 66.90 107 | 68.01 329 | 84.02 300 | 57.57 298 | 64.48 249 | 69.87 321 | 38.68 273 | 89.21 292 | 40.87 312 | 67.89 242 | 86.97 224 |
|
EPNet_dtu | | | 78.80 159 | 79.26 138 | 77.43 265 | 88.06 182 | 49.71 319 | 91.96 143 | 91.95 138 | 77.67 72 | 76.56 126 | 91.28 136 | 58.51 135 | 90.20 283 | 56.37 258 | 80.95 155 | 92.39 152 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_enhance_ethall | | | 78.86 157 | 77.97 154 | 81.54 196 | 88.00 185 | 65.17 151 | 91.41 162 | 89.15 234 | 75.19 104 | 68.79 207 | 83.98 219 | 67.17 48 | 92.82 228 | 72.73 142 | 65.30 254 | 86.62 235 |
|
IS-MVSNet | | | 80.14 135 | 79.41 134 | 82.33 175 | 87.91 186 | 60.08 254 | 91.97 142 | 88.27 261 | 72.90 145 | 71.44 178 | 91.73 133 | 61.44 107 | 93.66 209 | 62.47 232 | 86.53 116 | 93.24 131 |
|
CLD-MVS | | | 82.73 97 | 82.35 97 | 83.86 140 | 87.90 187 | 67.65 84 | 95.45 26 | 92.18 132 | 85.06 7 | 72.58 160 | 92.27 124 | 52.46 199 | 95.78 133 | 84.18 63 | 79.06 165 | 88.16 209 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HyFIR lowres test | | | 81.03 122 | 79.56 130 | 85.43 101 | 87.81 188 | 68.11 72 | 90.18 206 | 90.01 206 | 70.65 207 | 72.95 154 | 86.06 199 | 63.61 88 | 94.50 177 | 75.01 130 | 79.75 160 | 93.67 120 |
|
1314 | | | 80.70 125 | 78.95 142 | 85.94 81 | 87.77 189 | 67.56 85 | 87.91 246 | 92.55 117 | 72.17 165 | 67.44 224 | 93.09 100 | 50.27 214 | 97.04 85 | 71.68 155 | 87.64 106 | 93.23 132 |
|
cl-mvsnet2 | | | 77.94 176 | 76.78 172 | 81.42 198 | 87.57 190 | 64.93 162 | 90.67 192 | 88.86 246 | 72.45 153 | 67.63 223 | 82.68 231 | 64.07 79 | 92.91 226 | 71.79 151 | 65.30 254 | 86.44 236 |
|
HQP-NCC | | | | | | 87.54 191 | | 94.06 59 | | 79.80 40 | 74.18 142 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 191 | | 94.06 59 | | 79.80 40 | 74.18 142 | | | | | | |
|
HQP-MVS | | | 81.14 120 | 80.64 115 | 82.64 166 | 87.54 191 | 63.66 195 | 94.06 59 | 91.70 149 | 79.80 40 | 74.18 142 | 90.30 149 | 51.63 206 | 95.61 144 | 77.63 113 | 78.90 166 | 88.63 200 |
|
NP-MVS | | | | | | 87.41 194 | 63.04 205 | | | | | 90.30 149 | | | | | |
|
diffmvs | | | 84.28 71 | 83.83 69 | 85.61 95 | 87.40 195 | 68.02 74 | 90.88 186 | 89.24 228 | 80.54 35 | 81.64 72 | 92.52 115 | 59.83 121 | 94.52 176 | 87.32 42 | 85.11 124 | 94.29 95 |
|
baseline2 | | | 83.68 87 | 83.42 77 | 84.48 129 | 87.37 196 | 66.00 131 | 90.06 209 | 95.93 7 | 79.71 43 | 69.08 200 | 90.39 147 | 77.92 4 | 96.28 114 | 78.91 105 | 81.38 151 | 91.16 174 |
|
plane_prior6 | | | | | | 87.23 197 | 62.32 221 | | | | | | 50.66 210 | | | | |
|
tttt0517 | | | 79.50 147 | 78.53 146 | 82.41 173 | 87.22 198 | 61.43 233 | 89.75 217 | 94.76 27 | 69.29 220 | 67.91 218 | 88.06 177 | 72.92 21 | 95.63 142 | 62.91 228 | 73.90 202 | 90.16 184 |
|
plane_prior1 | | | | | | 87.15 199 | | | | | | | | | | | |
|
cascas | | | 78.18 171 | 75.77 186 | 85.41 102 | 87.14 200 | 69.11 47 | 92.96 105 | 91.15 169 | 66.71 242 | 70.47 182 | 86.07 198 | 37.49 287 | 96.48 112 | 70.15 165 | 79.80 159 | 90.65 179 |
|
CHOSEN 280x420 | | | 77.35 185 | 76.95 171 | 78.55 252 | 87.07 201 | 62.68 217 | 69.71 325 | 82.95 309 | 68.80 227 | 71.48 177 | 87.27 189 | 66.03 59 | 84.00 319 | 76.47 119 | 82.81 142 | 88.95 195 |
|
HQP_MVS | | | 80.34 132 | 79.75 126 | 82.12 183 | 86.94 202 | 62.42 218 | 93.13 97 | 91.31 163 | 78.81 58 | 72.53 161 | 89.14 162 | 50.66 210 | 95.55 148 | 76.74 116 | 78.53 171 | 88.39 206 |
|
plane_prior7 | | | | | | 86.94 202 | 61.51 231 | | | | | | | | | | |
|
test-LLR | | | 80.10 136 | 79.56 130 | 81.72 192 | 86.93 204 | 61.17 234 | 92.70 114 | 91.54 154 | 71.51 192 | 75.62 132 | 86.94 190 | 53.83 185 | 92.38 246 | 72.21 148 | 84.76 128 | 91.60 164 |
|
test-mter | | | 79.96 139 | 79.38 136 | 81.72 192 | 86.93 204 | 61.17 234 | 92.70 114 | 91.54 154 | 73.85 123 | 75.62 132 | 86.94 190 | 49.84 219 | 92.38 246 | 72.21 148 | 84.76 128 | 91.60 164 |
|
SCA | | | 75.82 207 | 72.76 221 | 85.01 113 | 86.63 206 | 70.08 28 | 81.06 294 | 89.19 231 | 71.60 188 | 70.01 190 | 77.09 294 | 45.53 250 | 90.25 278 | 60.43 242 | 73.27 204 | 94.68 81 |
|
xiu_mvs_v1_base_debu | | | 82.16 106 | 81.12 108 | 85.26 107 | 86.42 207 | 68.72 57 | 92.59 121 | 90.44 187 | 73.12 139 | 84.20 54 | 94.36 73 | 38.04 281 | 95.73 136 | 84.12 64 | 86.81 111 | 91.33 168 |
|
xiu_mvs_v1_base | | | 82.16 106 | 81.12 108 | 85.26 107 | 86.42 207 | 68.72 57 | 92.59 121 | 90.44 187 | 73.12 139 | 84.20 54 | 94.36 73 | 38.04 281 | 95.73 136 | 84.12 64 | 86.81 111 | 91.33 168 |
|
xiu_mvs_v1_base_debi | | | 82.16 106 | 81.12 108 | 85.26 107 | 86.42 207 | 68.72 57 | 92.59 121 | 90.44 187 | 73.12 139 | 84.20 54 | 94.36 73 | 38.04 281 | 95.73 136 | 84.12 64 | 86.81 111 | 91.33 168 |
|
F-COLMAP | | | 70.66 250 | 68.44 253 | 77.32 267 | 86.37 210 | 55.91 290 | 88.00 244 | 86.32 279 | 56.94 303 | 57.28 292 | 88.07 176 | 33.58 303 | 92.49 243 | 51.02 274 | 68.37 238 | 83.55 276 |
|
CDS-MVSNet | | | 81.43 116 | 80.74 113 | 83.52 150 | 86.26 211 | 64.45 170 | 92.09 134 | 90.65 185 | 75.83 93 | 73.95 148 | 89.81 157 | 63.97 81 | 92.91 226 | 71.27 156 | 82.82 141 | 93.20 133 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
VDDNet | | | 80.50 129 | 78.26 149 | 87.21 38 | 86.19 212 | 69.79 36 | 94.48 47 | 91.31 163 | 60.42 284 | 79.34 96 | 90.91 139 | 38.48 277 | 96.56 110 | 82.16 79 | 81.05 154 | 95.27 60 |
|
jason | | | 86.40 42 | 86.17 43 | 87.11 41 | 86.16 213 | 70.54 24 | 95.71 23 | 92.19 131 | 82.00 23 | 84.58 50 | 94.34 78 | 61.86 105 | 95.53 150 | 87.76 37 | 90.89 83 | 95.27 60 |
jason: jason. |
PCF-MVS | | 73.15 9 | 79.29 150 | 77.63 160 | 84.29 133 | 86.06 214 | 65.96 133 | 87.03 256 | 91.10 171 | 69.86 214 | 69.79 195 | 90.64 142 | 57.54 143 | 96.59 107 | 64.37 219 | 82.29 143 | 90.32 182 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 77.90 178 | 76.50 176 | 82.12 183 | 85.99 215 | 69.95 33 | 91.75 154 | 92.70 108 | 73.97 120 | 62.58 267 | 84.44 215 | 41.11 267 | 95.78 133 | 63.76 223 | 92.17 66 | 80.62 308 |
|
FIs | | | 79.47 148 | 79.41 134 | 79.67 237 | 85.95 216 | 59.40 262 | 91.68 156 | 93.94 58 | 78.06 67 | 68.96 203 | 88.28 170 | 66.61 55 | 91.77 261 | 66.20 203 | 74.99 195 | 87.82 211 |
|
VPA-MVSNet | | | 79.03 153 | 78.00 153 | 82.11 186 | 85.95 216 | 64.48 169 | 93.22 96 | 94.66 32 | 75.05 106 | 74.04 147 | 84.95 209 | 52.17 201 | 93.52 211 | 74.90 133 | 67.04 247 | 88.32 208 |
|
tpm | | | 78.58 166 | 77.03 168 | 83.22 155 | 85.94 218 | 64.56 165 | 83.21 282 | 91.14 170 | 78.31 63 | 73.67 149 | 79.68 275 | 64.01 80 | 92.09 255 | 66.07 204 | 71.26 221 | 93.03 138 |
|
OpenMVS | | 70.45 11 | 78.54 167 | 75.92 184 | 86.41 68 | 85.93 219 | 71.68 14 | 92.74 112 | 92.51 118 | 66.49 244 | 64.56 248 | 91.96 127 | 43.88 259 | 98.10 35 | 54.61 263 | 90.65 86 | 89.44 194 |
|
OMC-MVS | | | 78.67 165 | 77.91 157 | 80.95 212 | 85.76 220 | 57.40 281 | 88.49 238 | 88.67 251 | 73.85 123 | 72.43 165 | 92.10 125 | 49.29 223 | 94.55 173 | 72.73 142 | 77.89 174 | 90.91 177 |
|
miper_ehance_all_eth | | | 77.60 180 | 76.44 177 | 81.09 209 | 85.70 221 | 64.41 174 | 90.65 193 | 88.64 253 | 72.31 157 | 67.37 228 | 82.52 232 | 64.77 73 | 92.64 239 | 70.67 161 | 65.30 254 | 86.24 240 |
|
EI-MVSNet | | | 78.97 155 | 78.22 150 | 81.25 201 | 85.33 222 | 62.73 216 | 89.53 221 | 93.21 87 | 72.39 156 | 72.14 168 | 90.13 153 | 60.99 110 | 94.72 168 | 67.73 186 | 72.49 211 | 86.29 238 |
|
CVMVSNet | | | 74.04 225 | 74.27 204 | 73.33 293 | 85.33 222 | 43.94 333 | 89.53 221 | 88.39 257 | 54.33 311 | 70.37 185 | 90.13 153 | 49.17 225 | 84.05 317 | 61.83 236 | 79.36 162 | 91.99 160 |
|
ACMH | | 63.93 17 | 68.62 263 | 64.81 270 | 80.03 227 | 85.22 224 | 63.25 201 | 87.72 249 | 84.66 295 | 60.83 282 | 51.57 309 | 79.43 278 | 27.29 323 | 94.96 160 | 41.76 308 | 64.84 261 | 81.88 298 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
cl-mvsnet_ | | | 76.07 199 | 74.67 194 | 80.28 221 | 85.15 225 | 61.76 227 | 90.12 207 | 88.73 249 | 71.16 197 | 65.43 240 | 81.57 246 | 61.15 108 | 92.95 221 | 66.54 197 | 62.17 280 | 86.13 244 |
|
cl-mvsnet1 | | | 76.07 199 | 74.67 194 | 80.28 221 | 85.14 226 | 61.75 228 | 90.12 207 | 88.73 249 | 71.16 197 | 65.42 241 | 81.60 245 | 61.15 108 | 92.94 225 | 66.54 197 | 62.16 282 | 86.14 242 |
|
TAMVS | | | 80.37 131 | 79.45 133 | 83.13 157 | 85.14 226 | 63.37 199 | 91.23 175 | 90.76 181 | 74.81 109 | 72.65 158 | 88.49 166 | 60.63 114 | 92.95 221 | 69.41 171 | 81.95 147 | 93.08 137 |
|
MSDG | | | 69.54 258 | 65.73 264 | 80.96 211 | 85.11 228 | 63.71 192 | 84.19 271 | 83.28 308 | 56.95 302 | 54.50 297 | 84.03 217 | 31.50 311 | 96.03 127 | 42.87 305 | 69.13 233 | 83.14 286 |
|
cl_fuxian | | | 76.83 192 | 75.47 189 | 80.93 213 | 85.02 229 | 64.18 183 | 90.39 200 | 88.11 264 | 71.66 182 | 66.65 235 | 81.64 244 | 63.58 90 | 92.56 240 | 69.31 173 | 62.86 274 | 86.04 246 |
|
ACMP | | 71.68 10 | 75.58 212 | 74.23 205 | 79.62 239 | 84.97 230 | 59.64 258 | 90.80 189 | 89.07 239 | 70.39 209 | 62.95 263 | 87.30 187 | 38.28 278 | 93.87 203 | 72.89 139 | 71.45 219 | 85.36 261 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
FC-MVSNet-test | | | 77.99 174 | 78.08 152 | 77.70 260 | 84.89 231 | 55.51 292 | 90.27 203 | 93.75 66 | 76.87 81 | 66.80 234 | 87.59 182 | 65.71 64 | 90.23 282 | 62.89 229 | 73.94 200 | 87.37 218 |
|
PVSNet_0 | | 68.08 15 | 71.81 244 | 68.32 255 | 82.27 177 | 84.68 232 | 62.31 222 | 88.68 235 | 90.31 193 | 75.84 92 | 57.93 289 | 80.65 263 | 37.85 284 | 94.19 186 | 69.94 166 | 29.05 340 | 90.31 183 |
|
eth_miper_zixun_eth | | | 75.96 205 | 74.40 202 | 80.66 215 | 84.66 233 | 63.02 206 | 89.28 224 | 88.27 261 | 71.88 173 | 65.73 238 | 81.65 243 | 59.45 125 | 92.81 229 | 68.13 181 | 60.53 296 | 86.14 242 |
|
WR-MVS | | | 76.76 193 | 75.74 187 | 79.82 233 | 84.60 234 | 62.27 223 | 92.60 119 | 92.51 118 | 76.06 90 | 67.87 220 | 85.34 205 | 56.76 154 | 90.24 281 | 62.20 233 | 63.69 273 | 86.94 227 |
|
ACMH+ | | 65.35 16 | 67.65 272 | 64.55 273 | 76.96 271 | 84.59 235 | 57.10 284 | 88.08 243 | 80.79 314 | 58.59 297 | 53.00 303 | 81.09 258 | 26.63 325 | 92.95 221 | 46.51 290 | 61.69 289 | 80.82 305 |
|
VPNet | | | 78.82 158 | 77.53 162 | 82.70 163 | 84.52 236 | 66.44 120 | 93.93 67 | 92.23 125 | 80.46 36 | 72.60 159 | 88.38 169 | 49.18 224 | 93.13 217 | 72.47 146 | 63.97 271 | 88.55 202 |
|
IterMVS-LS | | | 76.49 195 | 75.18 192 | 80.43 218 | 84.49 237 | 62.74 215 | 90.64 194 | 88.80 247 | 72.40 155 | 65.16 243 | 81.72 242 | 60.98 111 | 92.27 251 | 67.74 185 | 64.65 265 | 86.29 238 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet_NR-MVSNet | | | 78.15 172 | 77.55 161 | 79.98 228 | 84.46 238 | 60.26 250 | 92.25 127 | 93.20 89 | 77.50 75 | 68.88 204 | 86.61 192 | 66.10 58 | 92.13 253 | 66.38 200 | 62.55 276 | 87.54 213 |
|
FMVSNet5 | | | 68.04 269 | 65.66 265 | 75.18 281 | 84.43 239 | 57.89 274 | 83.54 275 | 86.26 281 | 61.83 278 | 53.64 302 | 73.30 309 | 37.15 291 | 85.08 313 | 48.99 281 | 61.77 285 | 82.56 294 |
|
MVS-HIRNet | | | 60.25 300 | 55.55 305 | 74.35 286 | 84.37 240 | 56.57 287 | 71.64 321 | 74.11 328 | 34.44 338 | 45.54 326 | 42.24 340 | 31.11 314 | 89.81 286 | 40.36 315 | 76.10 192 | 76.67 327 |
|
LPG-MVS_test | | | 75.82 207 | 74.58 198 | 79.56 241 | 84.31 241 | 59.37 263 | 90.44 197 | 89.73 214 | 69.49 217 | 64.86 244 | 88.42 167 | 38.65 275 | 94.30 181 | 72.56 144 | 72.76 208 | 85.01 265 |
|
LGP-MVS_train | | | | | 79.56 241 | 84.31 241 | 59.37 263 | | 89.73 214 | 69.49 217 | 64.86 244 | 88.42 167 | 38.65 275 | 94.30 181 | 72.56 144 | 72.76 208 | 85.01 265 |
|
ACMM | | 69.62 13 | 74.34 222 | 72.73 222 | 79.17 246 | 84.25 243 | 57.87 275 | 90.36 201 | 89.93 207 | 63.17 266 | 65.64 239 | 86.04 200 | 37.79 285 | 94.10 188 | 65.89 205 | 71.52 218 | 85.55 258 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet (Re) | | | 77.58 181 | 76.78 172 | 79.98 228 | 84.11 244 | 60.80 239 | 91.76 152 | 93.17 92 | 76.56 87 | 69.93 194 | 84.78 211 | 63.32 93 | 92.36 248 | 64.89 216 | 62.51 278 | 86.78 229 |
|
test_0402 | | | 64.54 287 | 61.09 292 | 74.92 282 | 84.10 245 | 60.75 242 | 87.95 245 | 79.71 318 | 52.03 315 | 52.41 305 | 77.20 292 | 32.21 309 | 91.64 263 | 23.14 339 | 61.03 292 | 72.36 332 |
|
LTVRE_ROB | | 59.60 19 | 66.27 280 | 63.54 280 | 74.45 285 | 84.00 246 | 51.55 309 | 67.08 332 | 83.53 304 | 58.78 295 | 54.94 296 | 80.31 267 | 34.54 301 | 93.23 216 | 40.64 314 | 68.03 240 | 78.58 322 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
miper_lstm_enhance | | | 73.05 233 | 71.73 234 | 77.03 270 | 83.80 247 | 58.32 272 | 81.76 288 | 88.88 244 | 69.80 215 | 61.01 271 | 78.23 284 | 57.19 145 | 87.51 305 | 65.34 213 | 59.53 299 | 85.27 264 |
|
Patchmatch-test | | | 65.86 282 | 60.94 293 | 80.62 216 | 83.75 248 | 58.83 268 | 58.91 339 | 75.26 327 | 44.50 333 | 50.95 313 | 77.09 294 | 58.81 134 | 87.90 302 | 35.13 327 | 64.03 269 | 95.12 67 |
|
nrg030 | | | 80.93 123 | 79.86 124 | 84.13 136 | 83.69 249 | 68.83 54 | 93.23 95 | 91.20 167 | 75.55 95 | 75.06 138 | 88.22 175 | 63.04 97 | 94.74 167 | 81.88 81 | 66.88 248 | 88.82 198 |
|
GA-MVS | | | 78.33 170 | 76.23 180 | 84.65 124 | 83.65 250 | 66.30 124 | 91.44 161 | 90.14 199 | 76.01 91 | 70.32 186 | 84.02 218 | 42.50 263 | 94.72 168 | 70.98 157 | 77.00 187 | 92.94 141 |
|
FMVSNet1 | | | 72.71 240 | 69.91 246 | 81.10 206 | 83.60 251 | 65.11 154 | 90.01 210 | 90.32 190 | 63.92 259 | 63.56 258 | 80.25 269 | 36.35 296 | 91.54 266 | 54.46 264 | 66.75 249 | 86.64 231 |
|
OPM-MVS | | | 79.00 154 | 78.09 151 | 81.73 191 | 83.52 252 | 63.83 187 | 91.64 158 | 90.30 194 | 76.36 89 | 71.97 171 | 89.93 156 | 46.30 247 | 95.17 157 | 75.10 127 | 77.70 176 | 86.19 241 |
|
tfpnnormal | | | 70.10 253 | 67.36 257 | 78.32 254 | 83.45 253 | 60.97 237 | 88.85 232 | 92.77 106 | 64.85 255 | 60.83 273 | 78.53 281 | 43.52 261 | 93.48 212 | 31.73 336 | 61.70 288 | 80.52 309 |
|
Effi-MVS+-dtu | | | 76.14 198 | 75.28 191 | 78.72 251 | 83.22 254 | 55.17 294 | 89.87 214 | 87.78 269 | 75.42 97 | 67.98 216 | 81.43 248 | 45.08 253 | 92.52 242 | 75.08 128 | 71.63 216 | 88.48 203 |
|
mvs-test1 | | | 78.74 162 | 77.95 155 | 81.14 203 | 83.22 254 | 57.13 283 | 93.96 64 | 87.78 269 | 75.42 97 | 72.68 157 | 90.80 141 | 45.08 253 | 94.54 174 | 75.08 128 | 77.49 181 | 91.74 163 |
|
CR-MVSNet | | | 73.79 229 | 70.82 240 | 82.70 163 | 83.15 256 | 67.96 75 | 70.25 322 | 84.00 301 | 73.67 130 | 69.97 192 | 72.41 312 | 57.82 140 | 89.48 289 | 52.99 271 | 73.13 205 | 90.64 180 |
|
RPMNet | | | 69.58 257 | 65.21 269 | 82.70 163 | 83.15 256 | 67.96 75 | 70.25 322 | 86.15 283 | 46.83 329 | 69.97 192 | 65.10 328 | 56.48 161 | 89.48 289 | 35.79 326 | 73.13 205 | 90.64 180 |
|
DU-MVS | | | 76.86 189 | 75.84 185 | 79.91 230 | 82.96 258 | 60.26 250 | 91.26 174 | 91.54 154 | 76.46 88 | 68.88 204 | 86.35 194 | 56.16 162 | 92.13 253 | 66.38 200 | 62.55 276 | 87.35 219 |
|
NR-MVSNet | | | 76.05 202 | 74.59 197 | 80.44 217 | 82.96 258 | 62.18 224 | 90.83 188 | 91.73 146 | 77.12 79 | 60.96 272 | 86.35 194 | 59.28 129 | 91.80 260 | 60.74 240 | 61.34 291 | 87.35 219 |
|
XXY-MVS | | | 77.94 176 | 76.44 177 | 82.43 170 | 82.60 260 | 64.44 171 | 92.01 139 | 91.83 143 | 73.59 131 | 70.00 191 | 85.82 201 | 54.43 181 | 94.76 165 | 69.63 168 | 68.02 241 | 88.10 210 |
|
TranMVSNet+NR-MVSNet | | | 75.86 206 | 74.52 200 | 79.89 231 | 82.44 261 | 60.64 246 | 91.37 169 | 91.37 162 | 76.63 85 | 67.65 222 | 86.21 197 | 52.37 200 | 91.55 265 | 61.84 235 | 60.81 294 | 87.48 215 |
|
IterMVS | | | 72.65 242 | 70.83 239 | 78.09 258 | 82.17 262 | 62.96 208 | 87.64 251 | 86.28 280 | 71.56 190 | 60.44 274 | 78.85 280 | 45.42 252 | 86.66 309 | 63.30 225 | 61.83 284 | 84.65 269 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Patchmtry | | | 67.53 274 | 63.93 278 | 78.34 253 | 82.12 263 | 64.38 175 | 68.72 326 | 84.00 301 | 48.23 326 | 59.24 279 | 72.41 312 | 57.82 140 | 89.27 291 | 46.10 292 | 56.68 308 | 81.36 301 |
|
PatchT | | | 69.11 261 | 65.37 268 | 80.32 219 | 82.07 264 | 63.68 194 | 67.96 331 | 87.62 271 | 50.86 319 | 69.37 196 | 65.18 327 | 57.09 146 | 88.53 297 | 41.59 310 | 66.60 250 | 88.74 199 |
|
MIMVSNet | | | 71.64 245 | 68.44 253 | 81.23 202 | 81.97 265 | 64.44 171 | 73.05 319 | 88.80 247 | 69.67 216 | 64.59 247 | 74.79 305 | 32.79 305 | 87.82 303 | 53.99 266 | 76.35 191 | 91.42 167 |
|
MVP-Stereo | | | 77.12 188 | 76.23 180 | 79.79 234 | 81.72 266 | 66.34 123 | 89.29 223 | 90.88 178 | 70.56 208 | 62.01 270 | 82.88 228 | 49.34 222 | 94.13 187 | 65.55 211 | 93.80 41 | 78.88 319 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IterMVS-SCA-FT | | | 71.55 246 | 69.97 244 | 76.32 275 | 81.48 267 | 60.67 245 | 87.64 251 | 85.99 285 | 66.17 246 | 59.50 278 | 78.88 279 | 45.53 250 | 83.65 321 | 62.58 231 | 61.93 283 | 84.63 270 |
|
COLMAP_ROB | | 57.96 20 | 62.98 295 | 59.65 296 | 72.98 296 | 81.44 268 | 53.00 303 | 83.75 273 | 75.53 326 | 48.34 325 | 48.81 318 | 81.40 250 | 24.14 328 | 90.30 277 | 32.95 332 | 60.52 297 | 75.65 329 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
JIA-IIPM | | | 66.06 281 | 62.45 287 | 76.88 272 | 81.42 269 | 54.45 298 | 57.49 340 | 88.67 251 | 49.36 322 | 63.86 255 | 46.86 336 | 56.06 165 | 90.25 278 | 49.53 280 | 68.83 234 | 85.95 249 |
|
WR-MVS_H | | | 70.59 251 | 69.94 245 | 72.53 299 | 81.03 270 | 51.43 310 | 87.35 254 | 92.03 135 | 67.38 239 | 60.23 275 | 80.70 260 | 55.84 169 | 83.45 323 | 46.33 291 | 58.58 303 | 82.72 290 |
|
Fast-Effi-MVS+-dtu | | | 75.04 217 | 73.37 216 | 80.07 226 | 80.86 271 | 59.52 261 | 91.20 178 | 85.38 289 | 71.90 171 | 65.20 242 | 84.84 210 | 41.46 266 | 92.97 220 | 66.50 199 | 72.96 207 | 87.73 212 |
|
Baseline_NR-MVSNet | | | 73.99 226 | 72.83 220 | 77.48 264 | 80.78 272 | 59.29 265 | 91.79 149 | 84.55 296 | 68.85 226 | 68.99 202 | 80.70 260 | 56.16 162 | 92.04 256 | 62.67 230 | 60.98 293 | 81.11 302 |
|
CP-MVSNet | | | 70.50 252 | 69.91 246 | 72.26 302 | 80.71 273 | 51.00 313 | 87.23 255 | 90.30 194 | 67.84 233 | 59.64 277 | 82.69 230 | 50.23 215 | 82.30 330 | 51.28 273 | 59.28 300 | 83.46 280 |
|
v8 | | | 75.35 213 | 73.26 217 | 81.61 195 | 80.67 274 | 66.82 109 | 89.54 220 | 89.27 227 | 71.65 183 | 63.30 261 | 80.30 268 | 54.99 176 | 94.06 192 | 67.33 190 | 62.33 279 | 83.94 273 |
|
PS-MVSNAJss | | | 77.26 186 | 76.31 179 | 80.13 225 | 80.64 275 | 59.16 266 | 90.63 196 | 91.06 173 | 72.80 146 | 68.58 211 | 84.57 214 | 53.55 189 | 93.96 199 | 72.97 138 | 71.96 215 | 87.27 222 |
|
TransMVSNet (Re) | | | 70.07 254 | 67.66 256 | 77.31 268 | 80.62 276 | 59.13 267 | 91.78 151 | 84.94 293 | 65.97 247 | 60.08 276 | 80.44 265 | 50.78 209 | 91.87 258 | 48.84 282 | 45.46 327 | 80.94 304 |
|
v2v482 | | | 77.42 183 | 75.65 188 | 82.73 162 | 80.38 277 | 67.13 100 | 91.85 147 | 90.23 196 | 75.09 105 | 69.37 196 | 83.39 225 | 53.79 187 | 94.44 178 | 71.77 152 | 65.00 260 | 86.63 234 |
|
MVS_0304 | | | 68.99 262 | 67.23 260 | 74.28 288 | 80.36 278 | 52.54 304 | 87.01 258 | 86.36 278 | 59.89 290 | 66.22 236 | 73.56 308 | 24.25 327 | 88.03 301 | 57.34 256 | 70.11 224 | 82.27 295 |
|
PS-CasMVS | | | 69.86 256 | 69.13 250 | 72.07 305 | 80.35 279 | 50.57 315 | 87.02 257 | 89.75 211 | 67.27 240 | 59.19 281 | 82.28 234 | 46.58 244 | 82.24 331 | 50.69 275 | 59.02 301 | 83.39 282 |
|
v10 | | | 74.77 220 | 72.54 226 | 81.46 197 | 80.33 280 | 66.71 113 | 89.15 228 | 89.08 238 | 70.94 201 | 63.08 262 | 79.86 273 | 52.52 198 | 94.04 195 | 65.70 208 | 62.17 280 | 83.64 275 |
|
test0.0.03 1 | | | 72.76 238 | 72.71 223 | 72.88 297 | 80.25 281 | 47.99 324 | 91.22 176 | 89.45 221 | 71.51 192 | 62.51 268 | 87.66 181 | 53.83 185 | 85.06 314 | 50.16 277 | 67.84 244 | 85.58 256 |
|
v1144 | | | 76.73 194 | 74.88 193 | 82.27 177 | 80.23 282 | 66.60 116 | 91.68 156 | 90.21 198 | 73.69 128 | 69.06 201 | 81.89 239 | 52.73 197 | 94.40 179 | 69.21 174 | 65.23 257 | 85.80 252 |
|
v148 | | | 76.19 197 | 74.47 201 | 81.36 199 | 80.05 283 | 64.44 171 | 91.75 154 | 90.23 196 | 73.68 129 | 67.13 229 | 80.84 259 | 55.92 168 | 93.86 205 | 68.95 177 | 61.73 287 | 85.76 255 |
|
v1192 | | | 75.98 204 | 73.92 210 | 82.15 182 | 79.73 284 | 66.24 127 | 91.22 176 | 89.75 211 | 72.67 148 | 68.49 212 | 81.42 249 | 49.86 218 | 94.27 183 | 67.08 191 | 65.02 259 | 85.95 249 |
|
AllTest | | | 61.66 296 | 58.06 298 | 72.46 300 | 79.57 285 | 51.42 311 | 80.17 301 | 68.61 337 | 51.25 317 | 45.88 322 | 81.23 252 | 19.86 336 | 86.58 310 | 38.98 318 | 57.01 306 | 79.39 316 |
|
TestCases | | | | | 72.46 300 | 79.57 285 | 51.42 311 | | 68.61 337 | 51.25 317 | 45.88 322 | 81.23 252 | 19.86 336 | 86.58 310 | 38.98 318 | 57.01 306 | 79.39 316 |
|
MDA-MVSNet-bldmvs | | | 61.54 298 | 57.70 300 | 73.05 295 | 79.53 287 | 57.00 285 | 83.08 283 | 81.23 312 | 57.57 298 | 34.91 338 | 72.45 311 | 32.79 305 | 86.26 312 | 35.81 325 | 41.95 331 | 75.89 328 |
|
v144192 | | | 76.05 202 | 74.03 208 | 82.12 183 | 79.50 288 | 66.55 118 | 91.39 166 | 89.71 217 | 72.30 158 | 68.17 214 | 81.33 251 | 51.75 204 | 94.03 196 | 67.94 183 | 64.19 267 | 85.77 253 |
|
v1921920 | | | 75.63 211 | 73.49 215 | 82.06 187 | 79.38 289 | 66.35 122 | 91.07 184 | 89.48 220 | 71.98 168 | 67.99 215 | 81.22 254 | 49.16 226 | 93.90 202 | 66.56 196 | 64.56 266 | 85.92 251 |
|
PEN-MVS | | | 69.46 259 | 68.56 252 | 72.17 304 | 79.27 290 | 49.71 319 | 86.90 259 | 89.24 228 | 67.24 241 | 59.08 282 | 82.51 233 | 47.23 241 | 83.54 322 | 48.42 284 | 57.12 304 | 83.25 283 |
|
v1240 | | | 75.21 216 | 72.98 219 | 81.88 189 | 79.20 291 | 66.00 131 | 90.75 191 | 89.11 237 | 71.63 187 | 67.41 226 | 81.22 254 | 47.36 240 | 93.87 203 | 65.46 212 | 64.72 264 | 85.77 253 |
|
pmmvs4 | | | 73.92 227 | 71.81 233 | 80.25 223 | 79.17 292 | 65.24 149 | 87.43 253 | 87.26 275 | 67.64 238 | 63.46 259 | 83.91 220 | 48.96 228 | 91.53 269 | 62.94 227 | 65.49 253 | 83.96 272 |
|
D2MVS | | | 73.80 228 | 72.02 231 | 79.15 248 | 79.15 293 | 62.97 207 | 88.58 237 | 90.07 201 | 72.94 142 | 59.22 280 | 78.30 282 | 42.31 265 | 92.70 235 | 65.59 210 | 72.00 214 | 81.79 299 |
|
V42 | | | 76.46 196 | 74.55 199 | 82.19 181 | 79.14 294 | 67.82 79 | 90.26 204 | 89.42 223 | 73.75 126 | 68.63 210 | 81.89 239 | 51.31 208 | 94.09 189 | 71.69 154 | 64.84 261 | 84.66 268 |
|
pm-mvs1 | | | 72.89 236 | 71.09 238 | 78.26 256 | 79.10 295 | 57.62 279 | 90.80 189 | 89.30 226 | 67.66 236 | 62.91 264 | 81.78 241 | 49.11 227 | 92.95 221 | 60.29 244 | 58.89 302 | 84.22 271 |
|
our_test_3 | | | 68.29 267 | 64.69 272 | 79.11 249 | 78.92 296 | 64.85 163 | 88.40 241 | 85.06 291 | 60.32 286 | 52.68 304 | 76.12 299 | 40.81 268 | 89.80 288 | 44.25 300 | 55.65 309 | 82.67 293 |
|
ppachtmachnet_test | | | 67.72 271 | 63.70 279 | 79.77 235 | 78.92 296 | 66.04 130 | 88.68 235 | 82.90 310 | 60.11 288 | 55.45 295 | 75.96 300 | 39.19 272 | 90.55 274 | 39.53 316 | 52.55 318 | 82.71 291 |
|
TinyColmap | | | 60.32 299 | 56.42 304 | 72.00 306 | 78.78 298 | 53.18 302 | 78.36 311 | 75.64 324 | 52.30 314 | 41.59 334 | 75.82 302 | 14.76 341 | 88.35 298 | 35.84 324 | 54.71 314 | 74.46 330 |
|
SixPastTwentyTwo | | | 64.92 285 | 61.78 291 | 74.34 287 | 78.74 299 | 49.76 318 | 83.42 279 | 79.51 319 | 62.86 268 | 50.27 314 | 77.35 289 | 30.92 315 | 90.49 276 | 45.89 293 | 47.06 325 | 82.78 287 |
|
EG-PatchMatch MVS | | | 68.55 264 | 65.41 267 | 77.96 259 | 78.69 300 | 62.93 209 | 89.86 215 | 89.17 232 | 60.55 283 | 50.27 314 | 77.73 288 | 22.60 332 | 94.06 192 | 47.18 289 | 72.65 210 | 76.88 326 |
|
pmmvs5 | | | 73.35 231 | 71.52 235 | 78.86 250 | 78.64 301 | 60.61 247 | 91.08 182 | 86.90 276 | 67.69 235 | 63.32 260 | 83.64 221 | 44.33 257 | 90.53 275 | 62.04 234 | 66.02 252 | 85.46 259 |
|
UniMVSNet_ETH3D | | | 72.74 239 | 70.53 241 | 79.36 243 | 78.62 302 | 56.64 286 | 85.01 267 | 89.20 230 | 63.77 261 | 64.84 246 | 84.44 215 | 34.05 302 | 91.86 259 | 63.94 221 | 70.89 223 | 89.57 192 |
|
XVG-OURS | | | 74.25 224 | 72.46 227 | 79.63 238 | 78.45 303 | 57.59 280 | 80.33 298 | 87.39 272 | 63.86 260 | 68.76 208 | 89.62 159 | 40.50 269 | 91.72 262 | 69.00 176 | 74.25 197 | 89.58 191 |
|
XVG-OURS-SEG-HR | | | 74.70 221 | 73.08 218 | 79.57 240 | 78.25 304 | 57.33 282 | 80.49 296 | 87.32 273 | 63.22 265 | 68.76 208 | 90.12 155 | 44.89 255 | 91.59 264 | 70.55 163 | 74.09 199 | 89.79 188 |
|
MDA-MVSNet_test_wron | | | 63.78 292 | 60.16 294 | 74.64 283 | 78.15 305 | 60.41 248 | 83.49 276 | 84.03 299 | 56.17 308 | 39.17 336 | 71.59 318 | 37.22 289 | 83.24 326 | 42.87 305 | 48.73 323 | 80.26 312 |
|
YYNet1 | | | 63.76 293 | 60.14 295 | 74.62 284 | 78.06 306 | 60.19 253 | 83.46 278 | 83.99 303 | 56.18 307 | 39.25 335 | 71.56 319 | 37.18 290 | 83.34 324 | 42.90 304 | 48.70 324 | 80.32 311 |
|
DTE-MVSNet | | | 68.46 266 | 67.33 258 | 71.87 307 | 77.94 307 | 49.00 322 | 86.16 264 | 88.58 255 | 66.36 245 | 58.19 286 | 82.21 236 | 46.36 245 | 83.87 320 | 44.97 298 | 55.17 311 | 82.73 289 |
|
USDC | | | 67.43 276 | 64.51 274 | 76.19 276 | 77.94 307 | 55.29 293 | 78.38 310 | 85.00 292 | 73.17 137 | 48.36 319 | 80.37 266 | 21.23 334 | 92.48 244 | 52.15 272 | 64.02 270 | 80.81 306 |
|
jajsoiax | | | 73.05 233 | 71.51 236 | 77.67 261 | 77.46 309 | 54.83 295 | 88.81 233 | 90.04 205 | 69.13 224 | 62.85 265 | 83.51 223 | 31.16 313 | 92.75 232 | 70.83 158 | 69.80 226 | 85.43 260 |
|
mvs_tets | | | 72.71 240 | 71.11 237 | 77.52 262 | 77.41 310 | 54.52 297 | 88.45 240 | 89.76 210 | 68.76 229 | 62.70 266 | 83.26 226 | 29.49 316 | 92.71 233 | 70.51 164 | 69.62 228 | 85.34 262 |
|
N_pmnet | | | 50.55 308 | 49.11 310 | 54.88 323 | 77.17 311 | 4.02 354 | 84.36 270 | 2.00 354 | 48.59 323 | 45.86 324 | 68.82 323 | 32.22 308 | 82.80 327 | 31.58 337 | 51.38 320 | 77.81 324 |
|
test_djsdf | | | 73.76 230 | 72.56 225 | 77.39 266 | 77.00 312 | 53.93 299 | 89.07 230 | 90.69 182 | 65.80 248 | 63.92 254 | 82.03 238 | 43.14 262 | 92.67 236 | 72.83 140 | 68.53 237 | 85.57 257 |
|
OpenMVS_ROB | | 61.12 18 | 66.39 279 | 62.92 284 | 76.80 273 | 76.51 313 | 57.77 276 | 89.22 225 | 83.41 306 | 55.48 309 | 53.86 301 | 77.84 287 | 26.28 326 | 93.95 200 | 34.90 328 | 68.76 235 | 78.68 321 |
|
v7n | | | 71.31 247 | 68.65 251 | 79.28 244 | 76.40 314 | 60.77 241 | 86.71 261 | 89.45 221 | 64.17 258 | 58.77 285 | 78.24 283 | 44.59 256 | 93.54 210 | 57.76 253 | 61.75 286 | 83.52 278 |
|
K. test v3 | | | 63.09 294 | 59.61 297 | 73.53 292 | 76.26 315 | 49.38 321 | 83.27 280 | 77.15 321 | 64.35 257 | 47.77 320 | 72.32 314 | 28.73 318 | 87.79 304 | 49.93 279 | 36.69 337 | 83.41 281 |
|
RPSCF | | | 64.24 289 | 61.98 290 | 71.01 308 | 76.10 316 | 45.00 330 | 75.83 317 | 75.94 323 | 46.94 328 | 58.96 283 | 84.59 213 | 31.40 312 | 82.00 332 | 47.76 287 | 60.33 298 | 86.04 246 |
|
OurMVSNet-221017-0 | | | 64.68 286 | 62.17 289 | 72.21 303 | 76.08 317 | 47.35 327 | 80.67 295 | 81.02 313 | 56.19 306 | 51.60 308 | 79.66 276 | 27.05 324 | 88.56 296 | 53.60 269 | 53.63 316 | 80.71 307 |
|
Anonymous20231206 | | | 67.53 274 | 65.78 263 | 72.79 298 | 74.95 318 | 47.59 326 | 88.23 242 | 87.32 273 | 61.75 279 | 58.07 288 | 77.29 291 | 37.79 285 | 87.29 307 | 42.91 303 | 63.71 272 | 83.48 279 |
|
ITE_SJBPF | | | | | 70.43 309 | 74.44 319 | 47.06 328 | | 77.32 320 | 60.16 287 | 54.04 300 | 83.53 222 | 23.30 331 | 84.01 318 | 43.07 302 | 61.58 290 | 80.21 313 |
|
EU-MVSNet | | | 64.01 290 | 63.01 283 | 67.02 317 | 74.40 320 | 38.86 341 | 83.27 280 | 86.19 282 | 45.11 331 | 54.27 298 | 81.15 257 | 36.91 294 | 80.01 335 | 48.79 283 | 57.02 305 | 82.19 297 |
|
XVG-ACMP-BASELINE | | | 68.04 269 | 65.53 266 | 75.56 279 | 74.06 321 | 52.37 305 | 78.43 309 | 85.88 286 | 62.03 274 | 58.91 284 | 81.21 256 | 20.38 335 | 91.15 272 | 60.69 241 | 68.18 239 | 83.16 285 |
|
anonymousdsp | | | 71.14 248 | 69.37 249 | 76.45 274 | 72.95 322 | 54.71 296 | 84.19 271 | 88.88 244 | 61.92 276 | 62.15 269 | 79.77 274 | 38.14 280 | 91.44 271 | 68.90 178 | 67.45 246 | 83.21 284 |
|
lessismore_v0 | | | | | 73.72 291 | 72.93 323 | 47.83 325 | | 61.72 345 | | 45.86 324 | 73.76 307 | 28.63 320 | 89.81 286 | 47.75 288 | 31.37 339 | 83.53 277 |
|
pmmvs6 | | | 67.57 273 | 64.76 271 | 76.00 278 | 72.82 324 | 53.37 301 | 88.71 234 | 86.78 277 | 53.19 313 | 57.58 291 | 78.03 286 | 35.33 299 | 92.41 245 | 55.56 261 | 54.88 313 | 82.21 296 |
|
testgi | | | 64.48 288 | 62.87 285 | 69.31 311 | 71.24 325 | 40.62 337 | 85.49 265 | 79.92 317 | 65.36 252 | 54.18 299 | 83.49 224 | 23.74 330 | 84.55 315 | 41.60 309 | 60.79 295 | 82.77 288 |
|
Patchmatch-RL test | | | 68.17 268 | 64.49 275 | 79.19 245 | 71.22 326 | 53.93 299 | 70.07 324 | 71.54 334 | 69.22 221 | 56.79 293 | 62.89 330 | 56.58 159 | 88.61 294 | 69.53 170 | 52.61 317 | 95.03 73 |
|
Gipuma | | | 34.91 314 | 31.44 316 | 45.30 327 | 70.99 327 | 39.64 340 | 19.85 347 | 72.56 331 | 20.10 344 | 16.16 345 | 21.47 346 | 5.08 350 | 71.16 339 | 13.07 343 | 43.70 330 | 25.08 343 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
UnsupCasMVSNet_eth | | | 65.79 283 | 63.10 282 | 73.88 289 | 70.71 328 | 50.29 317 | 81.09 293 | 89.88 208 | 72.58 150 | 49.25 317 | 74.77 306 | 32.57 307 | 87.43 306 | 55.96 260 | 41.04 333 | 83.90 274 |
|
CMPMVS | | 48.56 21 | 66.77 278 | 64.41 276 | 73.84 290 | 70.65 329 | 50.31 316 | 77.79 314 | 85.73 288 | 45.54 330 | 44.76 328 | 82.14 237 | 35.40 298 | 90.14 284 | 63.18 226 | 74.54 196 | 81.07 303 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 63.83 291 | 62.65 286 | 67.38 316 | 70.58 330 | 39.94 338 | 86.57 262 | 84.17 298 | 63.29 264 | 51.86 307 | 77.30 290 | 37.09 292 | 82.47 328 | 38.87 320 | 54.13 315 | 79.73 314 |
|
testing_2 | | | 71.09 249 | 67.32 259 | 82.40 174 | 69.82 331 | 66.52 119 | 83.64 274 | 90.77 180 | 72.21 162 | 45.12 327 | 71.07 320 | 27.60 322 | 93.74 206 | 75.71 123 | 69.96 225 | 86.95 226 |
|
MIMVSNet1 | | | 60.16 301 | 57.33 301 | 68.67 312 | 69.71 332 | 44.13 332 | 78.92 307 | 84.21 297 | 55.05 310 | 44.63 329 | 71.85 316 | 23.91 329 | 81.54 334 | 32.63 334 | 55.03 312 | 80.35 310 |
|
pmmvs-eth3d | | | 65.53 284 | 62.32 288 | 75.19 280 | 69.39 333 | 59.59 259 | 82.80 285 | 83.43 305 | 62.52 271 | 51.30 311 | 72.49 310 | 32.86 304 | 87.16 308 | 55.32 262 | 50.73 321 | 78.83 320 |
|
UnsupCasMVSNet_bld | | | 61.60 297 | 57.71 299 | 73.29 294 | 68.73 334 | 51.64 308 | 78.61 308 | 89.05 240 | 57.20 301 | 46.11 321 | 61.96 331 | 28.70 319 | 88.60 295 | 50.08 278 | 38.90 335 | 79.63 315 |
|
new-patchmatchnet | | | 59.30 303 | 56.48 303 | 67.79 314 | 65.86 335 | 44.19 331 | 82.47 286 | 81.77 311 | 59.94 289 | 43.65 332 | 66.20 326 | 27.67 321 | 81.68 333 | 39.34 317 | 41.40 332 | 77.50 325 |
|
PM-MVS | | | 59.40 302 | 56.59 302 | 67.84 313 | 63.63 336 | 41.86 334 | 76.76 315 | 63.22 343 | 59.01 294 | 51.07 312 | 72.27 315 | 11.72 343 | 83.25 325 | 61.34 237 | 50.28 322 | 78.39 323 |
|
DSMNet-mixed | | | 56.78 304 | 54.44 306 | 63.79 319 | 63.21 337 | 29.44 345 | 64.43 334 | 64.10 342 | 42.12 335 | 51.32 310 | 71.60 317 | 31.76 310 | 75.04 337 | 36.23 323 | 65.20 258 | 86.87 228 |
|
new_pmnet | | | 49.31 309 | 46.44 311 | 57.93 321 | 62.84 338 | 40.74 336 | 68.47 328 | 62.96 344 | 36.48 337 | 35.09 337 | 57.81 333 | 14.97 340 | 72.18 338 | 32.86 333 | 46.44 326 | 60.88 338 |
|
LF4IMVS | | | 54.01 307 | 52.12 307 | 59.69 320 | 62.41 339 | 39.91 339 | 68.59 327 | 68.28 339 | 42.96 334 | 44.55 330 | 75.18 303 | 14.09 342 | 68.39 340 | 41.36 311 | 51.68 319 | 70.78 333 |
|
ambc | | | | | 69.61 310 | 61.38 340 | 41.35 335 | 49.07 343 | 85.86 287 | | 50.18 316 | 66.40 325 | 10.16 344 | 88.14 300 | 45.73 294 | 44.20 328 | 79.32 318 |
|
TDRefinement | | | 55.28 306 | 51.58 308 | 66.39 318 | 59.53 341 | 46.15 329 | 76.23 316 | 72.80 330 | 44.60 332 | 42.49 333 | 76.28 298 | 15.29 339 | 82.39 329 | 33.20 331 | 43.75 329 | 70.62 334 |
|
pmmvs3 | | | 55.51 305 | 51.50 309 | 67.53 315 | 57.90 342 | 50.93 314 | 80.37 297 | 73.66 329 | 40.63 336 | 44.15 331 | 64.75 329 | 16.30 338 | 78.97 336 | 44.77 299 | 40.98 334 | 72.69 331 |
|
DeepMVS_CX | | | | | 34.71 330 | 51.45 343 | 24.73 349 | | 28.48 353 | 31.46 339 | 17.49 344 | 52.75 334 | 5.80 349 | 42.60 349 | 18.18 341 | 19.42 341 | 36.81 341 |
|
FPMVS | | | 45.64 310 | 43.10 312 | 53.23 325 | 51.42 344 | 36.46 342 | 64.97 333 | 71.91 332 | 29.13 340 | 27.53 339 | 61.55 332 | 9.83 345 | 65.01 344 | 16.00 342 | 55.58 310 | 58.22 339 |
|
wuyk23d | | | 11.30 321 | 10.95 323 | 12.33 334 | 48.05 345 | 19.89 350 | 25.89 346 | 1.92 355 | 3.58 348 | 3.12 350 | 1.37 350 | 0.64 355 | 15.77 351 | 6.23 348 | 7.77 348 | 1.35 347 |
|
PMMVS2 | | | 37.93 313 | 33.61 315 | 50.92 326 | 46.31 346 | 24.76 348 | 60.55 338 | 50.05 346 | 28.94 341 | 20.93 341 | 47.59 335 | 4.41 352 | 65.13 343 | 25.14 338 | 18.55 342 | 62.87 337 |
|
E-PMN | | | 24.61 316 | 24.00 319 | 26.45 331 | 43.74 347 | 18.44 351 | 60.86 336 | 39.66 348 | 15.11 345 | 9.53 348 | 22.10 345 | 6.52 348 | 46.94 347 | 8.31 346 | 10.14 344 | 13.98 345 |
|
EMVS | | | 23.76 318 | 23.20 321 | 25.46 332 | 41.52 348 | 16.90 352 | 60.56 337 | 38.79 351 | 14.62 346 | 8.99 349 | 20.24 348 | 7.35 347 | 45.82 348 | 7.25 347 | 9.46 345 | 13.64 346 |
|
LCM-MVSNet | | | 40.54 311 | 35.79 313 | 54.76 324 | 36.92 349 | 30.81 344 | 51.41 341 | 69.02 336 | 22.07 342 | 24.63 340 | 45.37 338 | 4.56 351 | 65.81 342 | 33.67 329 | 34.50 338 | 67.67 335 |
|
ANet_high | | | 40.27 312 | 35.20 314 | 55.47 322 | 34.74 350 | 34.47 343 | 63.84 335 | 71.56 333 | 48.42 324 | 18.80 343 | 41.08 341 | 9.52 346 | 64.45 345 | 20.18 340 | 8.66 347 | 67.49 336 |
|
MVE | | 24.84 23 | 24.35 317 | 19.77 322 | 38.09 329 | 34.56 351 | 26.92 347 | 26.57 345 | 38.87 350 | 11.73 347 | 11.37 347 | 27.44 343 | 1.37 354 | 50.42 346 | 11.41 344 | 14.60 343 | 36.93 340 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS | | 26.43 22 | 31.84 315 | 28.16 317 | 42.89 328 | 25.87 352 | 27.58 346 | 50.92 342 | 49.78 347 | 21.37 343 | 14.17 346 | 40.81 342 | 2.01 353 | 66.62 341 | 9.61 345 | 38.88 336 | 34.49 342 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 22.26 319 | 23.75 320 | 17.80 333 | 5.23 353 | 12.06 353 | 35.26 344 | 39.48 349 | 2.82 349 | 18.94 342 | 44.20 339 | 22.23 333 | 24.64 350 | 36.30 322 | 9.31 346 | 16.69 344 |
|
testmvs | | | 7.23 323 | 9.62 325 | 0.06 336 | 0.04 354 | 0.02 356 | 84.98 268 | 0.02 356 | 0.03 350 | 0.18 351 | 1.21 351 | 0.01 357 | 0.02 352 | 0.14 349 | 0.01 349 | 0.13 349 |
|
test123 | | | 6.92 324 | 9.21 326 | 0.08 335 | 0.03 355 | 0.05 355 | 81.65 291 | 0.01 357 | 0.02 351 | 0.14 352 | 0.85 352 | 0.03 356 | 0.02 352 | 0.12 350 | 0.00 350 | 0.16 348 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
cdsmvs_eth3d_5k | | | 19.86 320 | 26.47 318 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 93.45 78 | 0.00 352 | 0.00 353 | 95.27 47 | 49.56 220 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 4.46 325 | 5.95 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 53.55 189 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
ab-mvs-re | | | 7.91 322 | 10.55 324 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 94.95 56 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
test_241102_TWO | | | | | | | | | 94.41 43 | 71.65 183 | 92.07 5 | 97.21 5 | 74.58 14 | 99.11 4 | 92.34 6 | 95.36 12 | 96.59 13 |
|
test_0728_THIRD | | | | | | | | | | 72.48 152 | 90.55 12 | 96.93 10 | 76.24 9 | 99.08 9 | 91.53 12 | 94.99 15 | 96.43 22 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 81 |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 94.26 51 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 350 | 0.00 350 |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 139 | | | | 94.68 81 |
|
sam_mvs | | | | | | | | | | | | | 54.91 177 | | | | |
|
MTGPA | | | | | | | | | 92.23 125 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 306 | | | | 20.70 347 | 53.05 194 | 91.50 270 | 60.43 242 | | |
|
test_post | | | | | | | | | | | | 23.01 344 | 56.49 160 | 92.67 236 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 324 | 57.62 142 | 90.25 278 | | | |
|
MTMP | | | | | | | | 93.77 77 | 32.52 352 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 20 | 94.96 16 | 95.29 56 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 48 | 94.75 26 | 95.33 51 |
|
test_prior4 | | | | | | | 67.18 99 | 93.92 68 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 36 | | 75.40 99 | 85.25 47 | 95.61 37 | 67.94 40 | | 87.47 38 | 94.77 23 | |
|
旧先验2 | | | | | | | | 92.00 141 | | 59.37 293 | 87.54 25 | | | 93.47 213 | 75.39 125 | | |
|
新几何2 | | | | | | | | 91.41 162 | | | | | | | | | |
|
无先验 | | | | | | | | 92.71 113 | 92.61 115 | 62.03 274 | | | | 97.01 86 | 66.63 194 | | 93.97 112 |
|
原ACMM2 | | | | | | | | 92.01 139 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 121 | 61.26 238 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 60 | | | | |
|
testdata1 | | | | | | | | 89.21 226 | | 77.55 74 | | | | | | | |
|
plane_prior5 | | | | | | | | | 91.31 163 | | | | | 95.55 148 | 76.74 116 | 78.53 171 | 88.39 206 |
|
plane_prior4 | | | | | | | | | | | | 89.14 162 | | | | | |
|
plane_prior3 | | | | | | | 61.95 225 | | | 79.09 53 | 72.53 161 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 97 | | 78.81 58 | | | | | | | |
|
plane_prior | | | | | | | 62.42 218 | 93.85 72 | | 79.38 46 | | | | | | 78.80 168 | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 341 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 98 | | | | | | | | |
|
door | | | | | | | | | 66.57 340 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 195 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 113 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 142 | | | 95.61 144 | | | 88.63 200 |
|
HQP3-MVS | | | | | | | | | 91.70 149 | | | | | | | 78.90 166 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 206 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 256 | 80.13 302 | | 67.65 237 | 72.79 156 | | 54.33 182 | | 59.83 246 | | 92.58 149 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 216 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 227 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 183 | | | | |
|