| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 33 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 14 | 85.07 54 | 99.27 1 | 99.54 1 |
|
| UniMVSNet_ETH3D | | | 89.12 61 | 90.72 43 | 84.31 153 | 97.00 2 | 64.33 232 | 89.67 69 | 88.38 202 | 88.84 13 | 94.29 18 | 97.57 3 | 90.48 13 | 91.26 185 | 72.57 205 | 97.65 59 | 97.34 14 |
|
| PMVS |  | 80.48 6 | 90.08 37 | 90.66 44 | 88.34 78 | 96.71 3 | 92.97 1 | 90.31 54 | 89.57 188 | 88.51 17 | 90.11 93 | 95.12 43 | 90.98 6 | 88.92 250 | 77.55 140 | 97.07 80 | 83.13 342 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MTAPA | | | 91.52 14 | 91.60 18 | 91.29 26 | 96.59 4 | 86.29 17 | 92.02 29 | 91.81 125 | 84.07 44 | 92.00 63 | 94.40 70 | 86.63 51 | 95.28 54 | 88.59 5 | 98.31 23 | 92.30 179 |
|
| PEN-MVS | | | 90.03 41 | 91.88 14 | 84.48 145 | 96.57 5 | 58.88 303 | 88.95 84 | 93.19 73 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 47 | 95.60 35 | 78.69 123 | 98.72 8 | 98.97 3 |
|
| PS-CasMVS | | | 90.06 39 | 91.92 11 | 84.47 146 | 96.56 6 | 58.83 306 | 89.04 83 | 92.74 94 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 45 | 95.57 37 | 79.42 118 | 98.74 5 | 99.00 2 |
|
| DTE-MVSNet | | | 89.98 43 | 91.91 13 | 84.21 155 | 96.51 7 | 57.84 313 | 88.93 85 | 92.84 91 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 48 | 95.99 10 | 79.05 120 | 98.57 14 | 98.80 6 |
|
| CP-MVSNet | | | 89.27 58 | 90.91 40 | 84.37 147 | 96.34 8 | 58.61 309 | 88.66 92 | 92.06 112 | 90.78 6 | 95.67 7 | 95.17 41 | 81.80 112 | 95.54 40 | 79.00 121 | 98.69 9 | 98.95 4 |
|
| WR-MVS_H | | | 89.91 46 | 91.31 29 | 85.71 123 | 96.32 9 | 62.39 257 | 89.54 74 | 93.31 67 | 90.21 10 | 95.57 9 | 95.66 28 | 81.42 116 | 95.90 15 | 80.94 99 | 98.80 2 | 98.84 5 |
|
| MP-MVS |  | | 91.14 24 | 90.91 40 | 91.83 18 | 96.18 10 | 86.88 13 | 92.20 26 | 93.03 84 | 82.59 61 | 88.52 128 | 94.37 72 | 86.74 50 | 95.41 49 | 86.32 39 | 98.21 28 | 93.19 140 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| FOURS1 | | | | | | 96.08 11 | 87.41 10 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
| mPP-MVS | | | 91.69 11 | 91.47 22 | 92.37 5 | 96.04 12 | 88.48 7 | 92.72 17 | 92.60 98 | 83.09 56 | 91.54 69 | 94.25 77 | 87.67 41 | 95.51 43 | 87.21 28 | 98.11 34 | 93.12 144 |
|
| MP-MVS-pluss | | | 90.81 26 | 91.08 33 | 89.99 46 | 95.97 13 | 79.88 71 | 88.13 98 | 94.51 17 | 75.79 139 | 92.94 43 | 94.96 45 | 88.36 28 | 95.01 63 | 90.70 2 | 98.40 19 | 95.09 63 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 46 | 96.29 16 | 88.16 33 | 94.17 91 | 86.07 45 | 98.48 17 | 97.22 18 |
|
| ACMMP_NAP | | | 90.65 28 | 91.07 35 | 89.42 58 | 95.93 15 | 79.54 76 | 89.95 61 | 93.68 55 | 77.65 119 | 91.97 64 | 94.89 47 | 88.38 27 | 95.45 47 | 89.27 3 | 97.87 49 | 93.27 136 |
|
| HPM-MVS_fast | | | 92.50 4 | 92.54 5 | 92.37 5 | 95.93 15 | 85.81 29 | 92.99 12 | 94.23 23 | 85.21 35 | 92.51 54 | 95.13 42 | 90.65 9 | 95.34 51 | 88.06 8 | 98.15 33 | 95.95 40 |
|
| MSP-MVS | | | 89.08 62 | 88.16 73 | 91.83 18 | 95.76 17 | 86.14 21 | 92.75 16 | 93.90 45 | 78.43 111 | 89.16 117 | 92.25 149 | 72.03 222 | 96.36 3 | 88.21 7 | 90.93 260 | 92.98 150 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| region2R | | | 91.44 18 | 91.30 30 | 91.87 17 | 95.75 18 | 85.90 25 | 92.63 20 | 93.30 68 | 81.91 67 | 90.88 85 | 94.21 78 | 87.75 39 | 95.87 18 | 87.60 18 | 97.71 57 | 93.83 111 |
|
| ACMMPR | | | 91.49 15 | 91.35 26 | 91.92 14 | 95.74 19 | 85.88 26 | 92.58 21 | 93.25 71 | 81.99 65 | 91.40 71 | 94.17 82 | 87.51 42 | 95.87 18 | 87.74 13 | 97.76 54 | 93.99 102 |
|
| ZNCC-MVS | | | 91.26 20 | 91.34 27 | 91.01 30 | 95.73 20 | 83.05 52 | 92.18 27 | 94.22 25 | 80.14 88 | 91.29 75 | 93.97 91 | 87.93 38 | 95.87 18 | 88.65 4 | 97.96 44 | 94.12 98 |
|
| TSAR-MVS + MP. | | | 88.14 71 | 87.82 77 | 89.09 64 | 95.72 21 | 76.74 108 | 92.49 24 | 91.19 142 | 67.85 243 | 86.63 169 | 94.84 49 | 79.58 134 | 95.96 13 | 87.62 16 | 94.50 179 | 94.56 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| PGM-MVS | | | 91.20 22 | 90.95 39 | 91.93 13 | 95.67 22 | 85.85 27 | 90.00 57 | 93.90 45 | 80.32 85 | 91.74 68 | 94.41 69 | 88.17 32 | 95.98 11 | 86.37 38 | 97.99 39 | 93.96 105 |
|
| XVS | | | 91.54 13 | 91.36 24 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 64 | 85.07 36 | 89.99 97 | 94.03 88 | 86.57 52 | 95.80 24 | 87.35 24 | 97.62 61 | 94.20 91 |
|
| X-MVStestdata | | | 85.04 121 | 82.70 170 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 64 | 85.07 36 | 89.99 97 | 16.05 409 | 86.57 52 | 95.80 24 | 87.35 24 | 97.62 61 | 94.20 91 |
|
| HPM-MVS |  | | 92.13 7 | 92.20 9 | 91.91 15 | 95.58 25 | 84.67 42 | 93.51 8 | 94.85 14 | 82.88 59 | 91.77 67 | 93.94 97 | 90.55 12 | 95.73 30 | 88.50 6 | 98.23 27 | 95.33 53 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| ACMMP |  | | 91.91 10 | 91.87 15 | 92.03 11 | 95.53 26 | 85.91 24 | 93.35 11 | 94.16 29 | 82.52 62 | 92.39 57 | 94.14 83 | 89.15 23 | 95.62 34 | 87.35 24 | 98.24 26 | 94.56 76 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| GST-MVS | | | 90.96 25 | 91.01 36 | 90.82 33 | 95.45 27 | 82.73 55 | 91.75 34 | 93.74 51 | 80.98 79 | 91.38 72 | 93.80 101 | 87.20 46 | 95.80 24 | 87.10 31 | 97.69 58 | 93.93 106 |
|
| HFP-MVS | | | 91.30 19 | 91.39 23 | 91.02 29 | 95.43 28 | 84.66 43 | 92.58 21 | 93.29 69 | 81.99 65 | 91.47 70 | 93.96 94 | 88.35 29 | 95.56 38 | 87.74 13 | 97.74 56 | 92.85 153 |
|
| SMA-MVS |  | | 90.31 34 | 90.48 46 | 89.83 50 | 95.31 29 | 79.52 77 | 90.98 43 | 93.24 72 | 75.37 146 | 92.84 47 | 95.28 37 | 85.58 64 | 96.09 7 | 87.92 10 | 97.76 54 | 93.88 109 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CP-MVS | | | 91.67 12 | 91.58 19 | 91.96 12 | 95.29 30 | 87.62 9 | 93.38 9 | 93.36 62 | 83.16 55 | 91.06 79 | 94.00 90 | 88.26 30 | 95.71 31 | 87.28 27 | 98.39 20 | 92.55 166 |
|
| VDDNet | | | 84.35 135 | 85.39 123 | 81.25 222 | 95.13 31 | 59.32 296 | 85.42 142 | 81.11 292 | 86.41 27 | 87.41 151 | 96.21 19 | 73.61 197 | 90.61 210 | 66.33 258 | 96.85 84 | 93.81 115 |
|
| CPTT-MVS | | | 89.39 54 | 88.98 65 | 90.63 36 | 95.09 32 | 86.95 12 | 92.09 28 | 92.30 106 | 79.74 91 | 87.50 150 | 92.38 142 | 81.42 116 | 93.28 128 | 83.07 73 | 97.24 76 | 91.67 204 |
|
| ACMM | | 79.39 9 | 90.65 28 | 90.99 37 | 89.63 54 | 95.03 33 | 83.53 47 | 89.62 71 | 93.35 63 | 79.20 100 | 93.83 27 | 93.60 109 | 90.81 7 | 92.96 139 | 85.02 56 | 98.45 18 | 92.41 173 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UA-Net | | | 91.49 15 | 91.53 20 | 91.39 23 | 94.98 34 | 82.95 54 | 93.52 7 | 92.79 92 | 88.22 18 | 88.53 127 | 97.64 2 | 83.45 83 | 94.55 78 | 86.02 48 | 98.60 12 | 96.67 26 |
|
| HPM-MVS++ |  | | 88.93 64 | 88.45 71 | 90.38 40 | 94.92 35 | 85.85 27 | 89.70 66 | 91.27 139 | 78.20 113 | 86.69 168 | 92.28 148 | 80.36 128 | 95.06 61 | 86.17 44 | 96.49 99 | 90.22 240 |
|
| XVG-ACMP-BASELINE | | | 89.98 43 | 89.84 50 | 90.41 39 | 94.91 36 | 84.50 44 | 89.49 76 | 93.98 40 | 79.68 92 | 92.09 61 | 93.89 99 | 83.80 78 | 93.10 136 | 82.67 81 | 98.04 35 | 93.64 123 |
|
| EGC-MVSNET | | | 74.79 280 | 69.99 320 | 89.19 62 | 94.89 37 | 87.00 11 | 91.89 33 | 86.28 234 | 1.09 410 | 2.23 412 | 95.98 23 | 81.87 111 | 89.48 238 | 79.76 112 | 95.96 123 | 91.10 216 |
|
| SR-MVS | | | 92.23 6 | 92.34 7 | 91.91 15 | 94.89 37 | 87.85 8 | 92.51 23 | 93.87 48 | 88.20 19 | 93.24 38 | 94.02 89 | 90.15 16 | 95.67 33 | 86.82 33 | 97.34 73 | 92.19 187 |
|
| OPM-MVS | | | 89.80 47 | 89.97 48 | 89.27 60 | 94.76 39 | 79.86 72 | 86.76 121 | 92.78 93 | 78.78 106 | 92.51 54 | 93.64 108 | 88.13 34 | 93.84 104 | 84.83 58 | 97.55 66 | 94.10 100 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| LPG-MVS_test | | | 91.47 17 | 91.68 16 | 90.82 33 | 94.75 40 | 81.69 59 | 90.00 57 | 94.27 20 | 82.35 63 | 93.67 33 | 94.82 50 | 91.18 4 | 95.52 41 | 85.36 52 | 98.73 6 | 95.23 58 |
|
| LGP-MVS_train | | | | | 90.82 33 | 94.75 40 | 81.69 59 | | 94.27 20 | 82.35 63 | 93.67 33 | 94.82 50 | 91.18 4 | 95.52 41 | 85.36 52 | 98.73 6 | 95.23 58 |
|
| XVG-OURS-SEG-HR | | | 89.59 51 | 89.37 57 | 90.28 42 | 94.47 42 | 85.95 23 | 86.84 117 | 93.91 44 | 80.07 89 | 86.75 165 | 93.26 113 | 93.64 2 | 90.93 196 | 84.60 60 | 90.75 266 | 93.97 104 |
|
| ACMP | | 79.16 10 | 90.54 31 | 90.60 45 | 90.35 41 | 94.36 43 | 80.98 65 | 89.16 81 | 94.05 38 | 79.03 103 | 92.87 45 | 93.74 105 | 90.60 11 | 95.21 57 | 82.87 77 | 98.76 3 | 94.87 67 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| XVG-OURS | | | 89.18 59 | 88.83 67 | 90.23 43 | 94.28 44 | 86.11 22 | 85.91 132 | 93.60 58 | 80.16 87 | 89.13 119 | 93.44 111 | 83.82 77 | 90.98 194 | 83.86 67 | 95.30 150 | 93.60 125 |
|
| test_0728_SECOND | | | | | 86.79 99 | 94.25 45 | 72.45 151 | 90.54 48 | 94.10 36 | | | | | 95.88 16 | 86.42 36 | 97.97 42 | 92.02 193 |
|
| SED-MVS | | | 90.46 33 | 91.64 17 | 86.93 96 | 94.18 46 | 72.65 141 | 90.47 51 | 93.69 53 | 83.77 47 | 94.11 22 | 94.27 73 | 90.28 14 | 95.84 22 | 86.03 46 | 97.92 45 | 92.29 180 |
|
| IU-MVS | | | | | | 94.18 46 | 72.64 143 | | 90.82 151 | 56.98 339 | 89.67 106 | | | | 85.78 50 | 97.92 45 | 93.28 135 |
|
| test_241102_ONE | | | | | | 94.18 46 | 72.65 141 | | 93.69 53 | 83.62 49 | 94.11 22 | 93.78 103 | 90.28 14 | 95.50 45 | | | |
|
| DVP-MVS |  | | 90.06 39 | 91.32 28 | 86.29 108 | 94.16 49 | 72.56 147 | 90.54 48 | 91.01 146 | 83.61 50 | 93.75 30 | 94.65 55 | 89.76 18 | 95.78 27 | 86.42 36 | 97.97 42 | 90.55 234 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 94.16 49 | 72.56 147 | 90.63 45 | 93.90 45 | 83.61 50 | 93.75 30 | 94.49 63 | 89.76 18 | | | | |
|
| SR-MVS-dyc-post | | | 92.41 5 | 92.41 6 | 92.39 4 | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 29 | 88.75 14 | 93.79 28 | 94.43 66 | 88.83 24 | 95.51 43 | 87.16 29 | 97.60 63 | 92.73 156 |
|
| RE-MVS-def | | | | 92.61 4 | | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 29 | 88.75 14 | 93.79 28 | 94.43 66 | 90.64 10 | | 87.16 29 | 97.60 63 | 92.73 156 |
|
| MIMVSNet1 | | | 83.63 155 | 84.59 137 | 80.74 232 | 94.06 53 | 62.77 250 | 82.72 206 | 84.53 265 | 77.57 121 | 90.34 90 | 95.92 24 | 76.88 167 | 85.83 300 | 61.88 297 | 97.42 71 | 93.62 124 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 78 | 88.76 69 | 85.18 132 | 94.02 54 | 64.13 233 | 84.38 161 | 91.29 138 | 84.88 39 | 92.06 62 | 93.84 100 | 86.45 55 | 93.73 106 | 73.22 196 | 98.66 10 | 97.69 9 |
|
| 新几何1 | | | | | 82.95 190 | 93.96 55 | 78.56 84 | | 80.24 298 | 55.45 344 | 83.93 228 | 91.08 182 | 71.19 227 | 88.33 259 | 65.84 264 | 93.07 216 | 81.95 355 |
|
| SteuartSystems-ACMMP | | | 91.16 23 | 91.36 24 | 90.55 37 | 93.91 56 | 80.97 66 | 91.49 36 | 93.48 60 | 82.82 60 | 92.60 53 | 93.97 91 | 88.19 31 | 96.29 5 | 87.61 17 | 98.20 30 | 94.39 87 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_part2 | | | | | | 93.86 57 | 77.77 94 | | | | 92.84 47 | | | | | | |
|
| test_one_0601 | | | | | | 93.85 58 | 73.27 135 | | 94.11 35 | 86.57 25 | 93.47 37 | 94.64 58 | 88.42 26 | | | | |
|
| save fliter | | | | | | 93.75 59 | 77.44 99 | 86.31 128 | 89.72 182 | 70.80 209 | | | | | | | |
|
| LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 20 | 93.73 60 | 85.72 30 | 96.79 1 | 95.51 8 | 88.86 12 | 95.63 8 | 96.99 8 | 84.81 69 | 93.16 133 | 91.10 1 | 97.53 69 | 96.58 29 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| COLMAP_ROB |  | 83.01 3 | 91.97 9 | 91.95 10 | 92.04 10 | 93.68 61 | 86.15 20 | 93.37 10 | 95.10 12 | 90.28 9 | 92.11 60 | 95.03 44 | 89.75 20 | 94.93 65 | 79.95 110 | 98.27 25 | 95.04 64 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| DeepC-MVS | | 82.31 4 | 89.15 60 | 89.08 62 | 89.37 59 | 93.64 62 | 79.07 79 | 88.54 93 | 94.20 26 | 73.53 165 | 89.71 104 | 94.82 50 | 85.09 65 | 95.77 29 | 84.17 64 | 98.03 37 | 93.26 137 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| mvs_tets | | | 89.78 48 | 89.27 59 | 91.30 25 | 93.51 63 | 84.79 40 | 89.89 63 | 90.63 156 | 70.00 219 | 94.55 15 | 96.67 11 | 87.94 37 | 93.59 115 | 84.27 63 | 95.97 122 | 95.52 48 |
|
| HQP_MVS | | | 87.75 81 | 87.43 83 | 88.70 72 | 93.45 64 | 76.42 113 | 89.45 77 | 93.61 56 | 79.44 96 | 86.55 170 | 92.95 125 | 74.84 182 | 95.22 55 | 80.78 102 | 95.83 131 | 94.46 80 |
|
| plane_prior7 | | | | | | 93.45 64 | 77.31 102 | | | | | | | | | | |
|
| WR-MVS | | | 83.56 157 | 84.40 143 | 81.06 228 | 93.43 66 | 54.88 335 | 78.67 275 | 85.02 257 | 81.24 75 | 90.74 87 | 91.56 168 | 72.85 210 | 91.08 191 | 68.00 248 | 98.04 35 | 97.23 17 |
|
| DPE-MVS |  | | 90.53 32 | 91.08 33 | 88.88 66 | 93.38 67 | 78.65 83 | 89.15 82 | 94.05 38 | 84.68 40 | 93.90 24 | 94.11 86 | 88.13 34 | 96.30 4 | 84.51 61 | 97.81 51 | 91.70 203 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| jajsoiax | | | 89.41 53 | 88.81 68 | 91.19 28 | 93.38 67 | 84.72 41 | 89.70 66 | 90.29 170 | 69.27 223 | 94.39 16 | 96.38 15 | 86.02 62 | 93.52 119 | 83.96 65 | 95.92 127 | 95.34 52 |
|
| PS-MVSNAJss | | | 88.31 69 | 87.90 76 | 89.56 56 | 93.31 69 | 77.96 92 | 87.94 101 | 91.97 115 | 70.73 210 | 94.19 21 | 96.67 11 | 76.94 161 | 94.57 76 | 83.07 73 | 96.28 107 | 96.15 32 |
|
| test222 | | | | | | 93.31 69 | 76.54 109 | 79.38 262 | 77.79 309 | 52.59 358 | 82.36 252 | 90.84 193 | 66.83 252 | | | 91.69 244 | 81.25 363 |
|
| tt0805 | | | 88.09 73 | 89.79 51 | 82.98 188 | 93.26 71 | 63.94 236 | 91.10 41 | 89.64 185 | 85.07 36 | 90.91 83 | 91.09 181 | 89.16 22 | 91.87 171 | 82.03 88 | 95.87 129 | 93.13 142 |
|
| DU-MVS | | | 86.80 90 | 86.99 91 | 86.21 112 | 93.24 72 | 67.02 206 | 83.16 194 | 92.21 107 | 81.73 69 | 90.92 81 | 91.97 154 | 77.20 155 | 93.99 97 | 74.16 177 | 98.35 21 | 97.61 10 |
|
| NR-MVSNet | | | 86.00 104 | 86.22 103 | 85.34 130 | 93.24 72 | 64.56 229 | 82.21 226 | 90.46 160 | 80.99 78 | 88.42 131 | 91.97 154 | 77.56 150 | 93.85 102 | 72.46 206 | 98.65 11 | 97.61 10 |
|
| OurMVSNet-221017-0 | | | 90.01 42 | 89.74 52 | 90.83 32 | 93.16 74 | 80.37 68 | 91.91 32 | 93.11 77 | 81.10 77 | 95.32 10 | 97.24 5 | 72.94 209 | 94.85 67 | 85.07 54 | 97.78 52 | 97.26 15 |
|
| UniMVSNet (Re) | | | 86.87 87 | 86.98 92 | 86.55 103 | 93.11 75 | 68.48 192 | 83.80 176 | 92.87 89 | 80.37 83 | 89.61 110 | 91.81 161 | 77.72 148 | 94.18 89 | 75.00 171 | 98.53 15 | 96.99 23 |
|
| APD-MVS_3200maxsize | | | 92.05 8 | 92.24 8 | 91.48 21 | 93.02 76 | 85.17 35 | 92.47 25 | 95.05 13 | 87.65 22 | 93.21 39 | 94.39 71 | 90.09 17 | 95.08 60 | 86.67 35 | 97.60 63 | 94.18 94 |
|
| ACMH+ | | 77.89 11 | 90.73 27 | 91.50 21 | 88.44 75 | 93.00 77 | 76.26 116 | 89.65 70 | 95.55 7 | 87.72 21 | 93.89 26 | 94.94 46 | 91.62 3 | 93.44 123 | 78.35 126 | 98.76 3 | 95.61 47 |
|
| APDe-MVS |  | | 91.22 21 | 91.92 11 | 89.14 63 | 92.97 78 | 78.04 89 | 92.84 15 | 94.14 33 | 83.33 53 | 93.90 24 | 95.73 26 | 88.77 25 | 96.41 2 | 87.60 18 | 97.98 41 | 92.98 150 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| 114514_t | | | 83.10 168 | 82.54 175 | 84.77 139 | 92.90 79 | 69.10 190 | 86.65 123 | 90.62 157 | 54.66 349 | 81.46 269 | 90.81 194 | 76.98 160 | 94.38 82 | 72.62 204 | 96.18 112 | 90.82 223 |
|
| testdata | | | | | 79.54 251 | 92.87 80 | 72.34 152 | | 80.14 299 | 59.91 319 | 85.47 194 | 91.75 164 | 67.96 247 | 85.24 304 | 68.57 245 | 92.18 236 | 81.06 368 |
|
| CNVR-MVS | | | 87.81 80 | 87.68 78 | 88.21 80 | 92.87 80 | 77.30 103 | 85.25 144 | 91.23 140 | 77.31 123 | 87.07 159 | 91.47 170 | 82.94 88 | 94.71 70 | 84.67 59 | 96.27 109 | 92.62 163 |
|
| SF-MVS | | | 90.27 35 | 90.80 42 | 88.68 73 | 92.86 82 | 77.09 104 | 91.19 40 | 95.74 5 | 81.38 73 | 92.28 58 | 93.80 101 | 86.89 49 | 94.64 73 | 85.52 51 | 97.51 70 | 94.30 90 |
|
| UniMVSNet_NR-MVSNet | | | 86.84 89 | 87.06 89 | 86.17 114 | 92.86 82 | 67.02 206 | 82.55 213 | 91.56 128 | 83.08 57 | 90.92 81 | 91.82 160 | 78.25 143 | 93.99 97 | 74.16 177 | 98.35 21 | 97.49 13 |
|
| plane_prior1 | | | | | | 92.83 84 | | | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.60 143 | 92.81 85 | 74.01 128 | | 91.50 130 | 62.59 285 | 82.73 248 | 90.67 200 | 76.53 168 | 94.25 85 | 69.24 231 | 95.69 138 | 85.55 306 |
|
| plane_prior6 | | | | | | 92.61 86 | 76.54 109 | | | | | | 74.84 182 | | | | |
|
| APD-MVS |  | | 89.54 52 | 89.63 54 | 89.26 61 | 92.57 87 | 81.34 64 | 90.19 56 | 93.08 80 | 80.87 81 | 91.13 77 | 93.19 114 | 86.22 59 | 95.97 12 | 82.23 87 | 97.18 78 | 90.45 236 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| test_0402 | | | 88.65 65 | 89.58 56 | 85.88 119 | 92.55 88 | 72.22 155 | 84.01 167 | 89.44 190 | 88.63 16 | 94.38 17 | 95.77 25 | 86.38 58 | 93.59 115 | 79.84 111 | 95.21 151 | 91.82 199 |
|
| SixPastTwentyTwo | | | 87.20 85 | 87.45 82 | 86.45 105 | 92.52 89 | 69.19 188 | 87.84 103 | 88.05 209 | 81.66 70 | 94.64 14 | 96.53 14 | 65.94 257 | 94.75 69 | 83.02 75 | 96.83 86 | 95.41 50 |
|
| ACMH | | 76.49 14 | 89.34 55 | 91.14 31 | 83.96 160 | 92.50 90 | 70.36 175 | 89.55 72 | 93.84 49 | 81.89 68 | 94.70 13 | 95.44 33 | 90.69 8 | 88.31 260 | 83.33 69 | 98.30 24 | 93.20 139 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| VPNet | | | 80.25 218 | 81.68 185 | 75.94 301 | 92.46 91 | 47.98 373 | 76.70 302 | 81.67 289 | 73.45 167 | 84.87 205 | 92.82 129 | 74.66 187 | 86.51 284 | 61.66 300 | 96.85 84 | 93.33 133 |
|
| F-COLMAP | | | 84.97 125 | 83.42 155 | 89.63 54 | 92.39 92 | 83.40 48 | 88.83 87 | 91.92 117 | 73.19 177 | 80.18 290 | 89.15 233 | 77.04 159 | 93.28 128 | 65.82 265 | 92.28 232 | 92.21 185 |
|
| test_djsdf | | | 89.62 50 | 89.01 63 | 91.45 22 | 92.36 93 | 82.98 53 | 91.98 30 | 90.08 176 | 71.54 201 | 94.28 20 | 96.54 13 | 81.57 114 | 94.27 83 | 86.26 40 | 96.49 99 | 97.09 20 |
|
| TEST9 | | | | | | 92.34 94 | 79.70 74 | 83.94 169 | 90.32 165 | 65.41 269 | 84.49 211 | 90.97 185 | 82.03 106 | 93.63 110 | | | |
|
| train_agg | | | 85.98 105 | 85.28 125 | 88.07 82 | 92.34 94 | 79.70 74 | 83.94 169 | 90.32 165 | 65.79 258 | 84.49 211 | 90.97 185 | 81.93 108 | 93.63 110 | 81.21 95 | 96.54 96 | 90.88 221 |
|
| NCCC | | | 87.36 83 | 86.87 94 | 88.83 67 | 92.32 96 | 78.84 82 | 86.58 125 | 91.09 144 | 78.77 107 | 84.85 206 | 90.89 189 | 80.85 122 | 95.29 52 | 81.14 97 | 95.32 147 | 92.34 177 |
|
| mvsmamba | | | 87.87 77 | 87.23 85 | 89.78 51 | 92.31 97 | 76.51 112 | 91.09 42 | 91.87 119 | 72.61 187 | 92.16 59 | 95.23 40 | 66.01 256 | 95.59 36 | 86.02 48 | 97.78 52 | 97.24 16 |
|
| FC-MVSNet-test | | | 85.93 106 | 87.05 90 | 82.58 201 | 92.25 98 | 56.44 324 | 85.75 136 | 93.09 79 | 77.33 122 | 91.94 65 | 94.65 55 | 74.78 184 | 93.41 125 | 75.11 170 | 98.58 13 | 97.88 7 |
|
| CDPH-MVS | | | 86.17 103 | 85.54 120 | 88.05 83 | 92.25 98 | 75.45 121 | 83.85 173 | 92.01 113 | 65.91 257 | 86.19 179 | 91.75 164 | 83.77 79 | 94.98 64 | 77.43 143 | 96.71 90 | 93.73 118 |
|
| test1111 | | | 78.53 238 | 78.85 232 | 77.56 281 | 92.22 100 | 47.49 375 | 82.61 209 | 69.24 370 | 72.43 188 | 85.28 195 | 94.20 79 | 51.91 333 | 90.07 227 | 65.36 269 | 96.45 102 | 95.11 62 |
|
| ZD-MVS | | | | | | 92.22 100 | 80.48 67 | | 91.85 121 | 71.22 206 | 90.38 89 | 92.98 122 | 86.06 61 | 96.11 6 | 81.99 90 | 96.75 89 | |
|
| pmmvs6 | | | 86.52 95 | 88.06 74 | 81.90 211 | 92.22 100 | 62.28 260 | 84.66 154 | 89.15 193 | 83.54 52 | 89.85 101 | 97.32 4 | 88.08 36 | 86.80 279 | 70.43 222 | 97.30 75 | 96.62 27 |
|
| EG-PatchMatch MVS | | | 84.08 145 | 84.11 147 | 83.98 159 | 92.22 100 | 72.61 146 | 82.20 228 | 87.02 226 | 72.63 186 | 88.86 120 | 91.02 183 | 78.52 139 | 91.11 190 | 73.41 193 | 91.09 254 | 88.21 272 |
|
| test_8 | | | | | | 92.09 104 | 78.87 81 | 83.82 174 | 90.31 167 | 65.79 258 | 84.36 215 | 90.96 187 | 81.93 108 | 93.44 123 | | | |
|
| Vis-MVSNet |  | | 86.86 88 | 86.58 97 | 87.72 85 | 92.09 104 | 77.43 100 | 87.35 109 | 92.09 111 | 78.87 105 | 84.27 222 | 94.05 87 | 78.35 142 | 93.65 108 | 80.54 106 | 91.58 248 | 92.08 191 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| IS-MVSNet | | | 86.66 93 | 86.82 96 | 86.17 114 | 92.05 106 | 66.87 209 | 91.21 39 | 88.64 199 | 86.30 28 | 89.60 111 | 92.59 136 | 69.22 238 | 94.91 66 | 73.89 184 | 97.89 48 | 96.72 25 |
|
| 旧先验1 | | | | | | 91.97 107 | 71.77 159 | | 81.78 288 | | | 91.84 158 | 73.92 194 | | | 93.65 204 | 83.61 332 |
|
| v7n | | | 90.13 36 | 90.96 38 | 87.65 88 | 91.95 108 | 71.06 169 | 89.99 59 | 93.05 81 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 90 | 94.08 95 | 86.25 42 | 97.63 60 | 97.82 8 |
|
| NP-MVS | | | | | | 91.95 108 | 74.55 125 | | | | | 90.17 216 | | | | | |
|
| OMC-MVS | | | 88.19 70 | 87.52 80 | 90.19 44 | 91.94 110 | 81.68 61 | 87.49 108 | 93.17 74 | 76.02 133 | 88.64 125 | 91.22 176 | 84.24 75 | 93.37 126 | 77.97 136 | 97.03 81 | 95.52 48 |
|
| OPU-MVS | | | | | 88.27 79 | 91.89 111 | 77.83 93 | 90.47 51 | | | | 91.22 176 | 81.12 119 | 94.68 71 | 74.48 174 | 95.35 144 | 92.29 180 |
|
| FIs | | | 85.35 115 | 86.27 102 | 82.60 200 | 91.86 112 | 57.31 317 | 85.10 148 | 93.05 81 | 75.83 138 | 91.02 80 | 93.97 91 | 73.57 198 | 92.91 143 | 73.97 183 | 98.02 38 | 97.58 12 |
|
| test2506 | | | 74.12 285 | 73.39 285 | 76.28 298 | 91.85 113 | 44.20 389 | 84.06 166 | 48.20 408 | 72.30 194 | 81.90 259 | 94.20 79 | 27.22 409 | 89.77 235 | 64.81 274 | 96.02 120 | 94.87 67 |
|
| ECVR-MVS |  | | 78.44 239 | 78.63 236 | 77.88 277 | 91.85 113 | 48.95 369 | 83.68 179 | 69.91 367 | 72.30 194 | 84.26 223 | 94.20 79 | 51.89 334 | 89.82 232 | 63.58 283 | 96.02 120 | 94.87 67 |
|
| 9.14 | | | | 89.29 58 | | 91.84 115 | | 88.80 88 | 95.32 11 | 75.14 148 | 91.07 78 | 92.89 127 | 87.27 44 | 93.78 105 | 83.69 68 | 97.55 66 | |
|
| MSLP-MVS++ | | | 85.00 124 | 86.03 107 | 81.90 211 | 91.84 115 | 71.56 166 | 86.75 122 | 93.02 85 | 75.95 136 | 87.12 154 | 89.39 227 | 77.98 144 | 89.40 245 | 77.46 141 | 94.78 171 | 84.75 315 |
|
| h-mvs33 | | | 84.25 139 | 82.76 169 | 88.72 70 | 91.82 117 | 82.60 56 | 84.00 168 | 84.98 259 | 71.27 203 | 86.70 166 | 90.55 204 | 63.04 274 | 93.92 100 | 78.26 129 | 94.20 189 | 89.63 250 |
|
| DP-MVS Recon | | | 84.05 146 | 83.22 158 | 86.52 104 | 91.73 118 | 75.27 122 | 83.23 192 | 92.40 102 | 72.04 197 | 82.04 257 | 88.33 243 | 77.91 146 | 93.95 99 | 66.17 259 | 95.12 156 | 90.34 239 |
|
| SD-MVS | | | 88.96 63 | 89.88 49 | 86.22 111 | 91.63 119 | 77.07 105 | 89.82 64 | 93.77 50 | 78.90 104 | 92.88 44 | 92.29 147 | 86.11 60 | 90.22 218 | 86.24 43 | 97.24 76 | 91.36 211 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| AllTest | | | 87.97 76 | 87.40 84 | 89.68 52 | 91.59 120 | 83.40 48 | 89.50 75 | 95.44 9 | 79.47 94 | 88.00 142 | 93.03 120 | 82.66 91 | 91.47 178 | 70.81 214 | 96.14 114 | 94.16 95 |
|
| TestCases | | | | | 89.68 52 | 91.59 120 | 83.40 48 | | 95.44 9 | 79.47 94 | 88.00 142 | 93.03 120 | 82.66 91 | 91.47 178 | 70.81 214 | 96.14 114 | 94.16 95 |
|
| MCST-MVS | | | 84.36 134 | 83.93 151 | 85.63 124 | 91.59 120 | 71.58 164 | 83.52 182 | 92.13 110 | 61.82 294 | 83.96 227 | 89.75 224 | 79.93 133 | 93.46 122 | 78.33 127 | 94.34 185 | 91.87 198 |
|
| agg_prior | | | | | | 91.58 123 | 77.69 96 | | 90.30 168 | | 84.32 217 | | | 93.18 132 | | | |
|
| PVSNet_Blended_VisFu | | | 81.55 195 | 80.49 210 | 84.70 142 | 91.58 123 | 73.24 136 | 84.21 162 | 91.67 127 | 62.86 283 | 80.94 275 | 87.16 267 | 67.27 249 | 92.87 145 | 69.82 227 | 88.94 288 | 87.99 278 |
|
| DVP-MVS++ | | | 90.07 38 | 91.09 32 | 87.00 94 | 91.55 125 | 72.64 143 | 96.19 2 | 94.10 36 | 85.33 33 | 93.49 35 | 94.64 58 | 81.12 119 | 95.88 16 | 87.41 22 | 95.94 125 | 92.48 169 |
|
| MSC_two_6792asdad | | | | | 88.81 68 | 91.55 125 | 77.99 90 | | 91.01 146 | | | | | 96.05 8 | 87.45 20 | 98.17 31 | 92.40 174 |
|
| No_MVS | | | | | 88.81 68 | 91.55 125 | 77.99 90 | | 91.01 146 | | | | | 96.05 8 | 87.45 20 | 98.17 31 | 92.40 174 |
|
| EPP-MVSNet | | | 85.47 113 | 85.04 128 | 86.77 100 | 91.52 128 | 69.37 183 | 91.63 35 | 87.98 211 | 81.51 72 | 87.05 160 | 91.83 159 | 66.18 255 | 95.29 52 | 70.75 217 | 96.89 83 | 95.64 45 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 84 | 86.21 104 | 90.49 38 | 91.48 129 | 84.90 38 | 83.41 185 | 92.38 104 | 70.25 216 | 89.35 116 | 90.68 198 | 82.85 89 | 94.57 76 | 79.55 115 | 95.95 124 | 92.00 194 |
|
| Baseline_NR-MVSNet | | | 84.00 148 | 85.90 111 | 78.29 269 | 91.47 130 | 53.44 343 | 82.29 222 | 87.00 229 | 79.06 102 | 89.55 112 | 95.72 27 | 77.20 155 | 86.14 293 | 72.30 207 | 98.51 16 | 95.28 55 |
|
| HyFIR lowres test | | | 75.12 274 | 72.66 294 | 82.50 204 | 91.44 131 | 65.19 224 | 72.47 345 | 87.31 216 | 46.79 380 | 80.29 286 | 84.30 309 | 52.70 330 | 92.10 165 | 51.88 361 | 86.73 318 | 90.22 240 |
|
| DP-MVS | | | 88.60 66 | 89.01 63 | 87.36 90 | 91.30 132 | 77.50 97 | 87.55 105 | 92.97 87 | 87.95 20 | 89.62 108 | 92.87 128 | 84.56 70 | 93.89 101 | 77.65 138 | 96.62 93 | 90.70 227 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 99 | 85.65 119 | 87.96 84 | 91.30 132 | 76.92 106 | 87.19 110 | 91.99 114 | 70.56 211 | 84.96 202 | 90.69 197 | 80.01 131 | 95.14 58 | 78.37 125 | 95.78 135 | 91.82 199 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator+ | | 83.92 2 | 89.97 45 | 89.66 53 | 90.92 31 | 91.27 134 | 81.66 62 | 91.25 38 | 94.13 34 | 88.89 11 | 88.83 122 | 94.26 76 | 77.55 151 | 95.86 21 | 84.88 57 | 95.87 129 | 95.24 57 |
|
| HQP-NCC | | | | | | 91.19 135 | | 84.77 149 | | 73.30 173 | 80.55 282 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 135 | | 84.77 149 | | 73.30 173 | 80.55 282 | | | | | | |
|
| HQP-MVS | | | 84.61 129 | 84.06 148 | 86.27 109 | 91.19 135 | 70.66 171 | 84.77 149 | 92.68 95 | 73.30 173 | 80.55 282 | 90.17 216 | 72.10 218 | 94.61 74 | 77.30 145 | 94.47 180 | 93.56 128 |
|
| VDD-MVS | | | 84.23 141 | 84.58 138 | 83.20 184 | 91.17 138 | 65.16 225 | 83.25 190 | 84.97 260 | 79.79 90 | 87.18 153 | 94.27 73 | 74.77 185 | 90.89 199 | 69.24 231 | 96.54 96 | 93.55 130 |
|
| K. test v3 | | | 85.14 119 | 84.73 132 | 86.37 106 | 91.13 139 | 69.63 181 | 85.45 141 | 76.68 321 | 84.06 45 | 92.44 56 | 96.99 8 | 62.03 277 | 94.65 72 | 80.58 105 | 93.24 212 | 94.83 72 |
|
| lessismore_v0 | | | | | 85.95 116 | 91.10 140 | 70.99 170 | | 70.91 363 | | 91.79 66 | 94.42 68 | 61.76 278 | 92.93 141 | 79.52 117 | 93.03 217 | 93.93 106 |
|
| hse-mvs2 | | | 83.47 160 | 81.81 184 | 88.47 74 | 91.03 141 | 82.27 57 | 82.61 209 | 83.69 270 | 71.27 203 | 86.70 166 | 86.05 284 | 63.04 274 | 92.41 154 | 78.26 129 | 93.62 206 | 90.71 226 |
|
| TransMVSNet (Re) | | | 84.02 147 | 85.74 117 | 78.85 257 | 91.00 142 | 55.20 334 | 82.29 222 | 87.26 217 | 79.65 93 | 88.38 133 | 95.52 32 | 83.00 87 | 86.88 277 | 67.97 249 | 96.60 94 | 94.45 82 |
|
| AUN-MVS | | | 81.18 200 | 78.78 233 | 88.39 76 | 90.93 143 | 82.14 58 | 82.51 215 | 83.67 271 | 64.69 275 | 80.29 286 | 85.91 287 | 51.07 337 | 92.38 155 | 76.29 156 | 93.63 205 | 90.65 231 |
|
| PAPM_NR | | | 83.23 163 | 83.19 160 | 83.33 180 | 90.90 144 | 65.98 217 | 88.19 97 | 90.78 152 | 78.13 115 | 80.87 277 | 87.92 251 | 73.49 201 | 92.42 153 | 70.07 224 | 88.40 293 | 91.60 206 |
|
| CSCG | | | 86.26 98 | 86.47 99 | 85.60 125 | 90.87 145 | 74.26 127 | 87.98 100 | 91.85 121 | 80.35 84 | 89.54 114 | 88.01 247 | 79.09 136 | 92.13 162 | 75.51 164 | 95.06 158 | 90.41 237 |
|
| PLC |  | 73.85 16 | 82.09 183 | 80.31 212 | 87.45 89 | 90.86 146 | 80.29 69 | 85.88 133 | 90.65 155 | 68.17 237 | 76.32 322 | 86.33 278 | 73.12 208 | 92.61 150 | 61.40 302 | 90.02 276 | 89.44 253 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test12 | | | | | 86.57 102 | 90.74 147 | 72.63 145 | | 90.69 154 | | 82.76 247 | | 79.20 135 | 94.80 68 | | 95.32 147 | 92.27 182 |
|
| ITE_SJBPF | | | | | 90.11 45 | 90.72 148 | 84.97 37 | | 90.30 168 | 81.56 71 | 90.02 96 | 91.20 178 | 82.40 96 | 90.81 203 | 73.58 191 | 94.66 175 | 94.56 76 |
|
| DPM-MVS | | | 80.10 223 | 79.18 229 | 82.88 194 | 90.71 149 | 69.74 178 | 78.87 272 | 90.84 150 | 60.29 316 | 75.64 332 | 85.92 286 | 67.28 248 | 93.11 135 | 71.24 212 | 91.79 242 | 85.77 304 |
|
| TAMVS | | | 78.08 242 | 76.36 257 | 83.23 183 | 90.62 150 | 72.87 139 | 79.08 268 | 80.01 300 | 61.72 297 | 81.35 271 | 86.92 272 | 63.96 267 | 88.78 254 | 50.61 362 | 93.01 218 | 88.04 277 |
|
| test_prior | | | | | 86.32 107 | 90.59 151 | 71.99 158 | | 92.85 90 | | | | | 94.17 91 | | | 92.80 154 |
|
| ambc | | | | | 82.98 188 | 90.55 152 | 64.86 226 | 88.20 96 | 89.15 193 | | 89.40 115 | 93.96 94 | 71.67 225 | 91.38 184 | 78.83 122 | 96.55 95 | 92.71 159 |
|
| SSC-MVS | | | 77.55 247 | 81.64 186 | 65.29 367 | 90.46 153 | 20.33 413 | 73.56 338 | 68.28 372 | 85.44 32 | 88.18 138 | 94.64 58 | 70.93 228 | 81.33 332 | 71.25 211 | 92.03 237 | 94.20 91 |
|
| Anonymous20231211 | | | 88.40 67 | 89.62 55 | 84.73 140 | 90.46 153 | 65.27 222 | 88.86 86 | 93.02 85 | 87.15 23 | 93.05 42 | 97.10 6 | 82.28 102 | 92.02 166 | 76.70 150 | 97.99 39 | 96.88 24 |
|
| Test_1112_low_res | | | 73.90 287 | 73.08 288 | 76.35 296 | 90.35 155 | 55.95 325 | 73.40 341 | 86.17 236 | 50.70 373 | 73.14 348 | 85.94 285 | 58.31 301 | 85.90 297 | 56.51 326 | 83.22 355 | 87.20 289 |
|
| VPA-MVSNet | | | 83.47 160 | 84.73 132 | 79.69 248 | 90.29 156 | 57.52 316 | 81.30 238 | 88.69 198 | 76.29 129 | 87.58 149 | 94.44 65 | 80.60 126 | 87.20 271 | 66.60 257 | 96.82 87 | 94.34 88 |
|
| FMVSNet1 | | | 84.55 131 | 85.45 122 | 81.85 213 | 90.27 157 | 61.05 276 | 86.83 118 | 88.27 206 | 78.57 110 | 89.66 107 | 95.64 29 | 75.43 175 | 90.68 207 | 69.09 235 | 95.33 145 | 93.82 112 |
|
| Anonymous20240529 | | | 86.20 101 | 87.13 87 | 83.42 178 | 90.19 158 | 64.55 230 | 84.55 156 | 90.71 153 | 85.85 31 | 89.94 100 | 95.24 39 | 82.13 104 | 90.40 214 | 69.19 234 | 96.40 104 | 95.31 54 |
|
| MVS_111021_HR | | | 84.63 128 | 84.34 145 | 85.49 129 | 90.18 159 | 75.86 120 | 79.23 267 | 87.13 221 | 73.35 170 | 85.56 192 | 89.34 228 | 83.60 82 | 90.50 212 | 76.64 152 | 94.05 194 | 90.09 245 |
|
| GeoE | | | 85.45 114 | 85.81 114 | 84.37 147 | 90.08 160 | 67.07 205 | 85.86 134 | 91.39 135 | 72.33 193 | 87.59 148 | 90.25 211 | 84.85 68 | 92.37 156 | 78.00 134 | 91.94 241 | 93.66 120 |
|
| RPSCF | | | 88.00 75 | 86.93 93 | 91.22 27 | 90.08 160 | 89.30 4 | 89.68 68 | 91.11 143 | 79.26 99 | 89.68 105 | 94.81 53 | 82.44 94 | 87.74 264 | 76.54 153 | 88.74 291 | 96.61 28 |
|
| nrg030 | | | 87.85 79 | 88.49 70 | 85.91 117 | 90.07 162 | 69.73 179 | 87.86 102 | 94.20 26 | 74.04 157 | 92.70 52 | 94.66 54 | 85.88 63 | 91.50 177 | 79.72 113 | 97.32 74 | 96.50 30 |
|
| AdaColmap |  | | 83.66 154 | 83.69 154 | 83.57 175 | 90.05 163 | 72.26 154 | 86.29 129 | 90.00 178 | 78.19 114 | 81.65 266 | 87.16 267 | 83.40 84 | 94.24 86 | 61.69 299 | 94.76 174 | 84.21 324 |
|
| pm-mvs1 | | | 83.69 153 | 84.95 130 | 79.91 244 | 90.04 164 | 59.66 293 | 82.43 217 | 87.44 214 | 75.52 143 | 87.85 144 | 95.26 38 | 81.25 118 | 85.65 302 | 68.74 241 | 96.04 119 | 94.42 85 |
|
| CHOSEN 1792x2688 | | | 72.45 298 | 70.56 311 | 78.13 271 | 90.02 165 | 63.08 245 | 68.72 368 | 83.16 275 | 42.99 395 | 75.92 328 | 85.46 291 | 57.22 310 | 85.18 306 | 49.87 366 | 81.67 365 | 86.14 299 |
|
| WB-MVS | | | 76.06 265 | 80.01 223 | 64.19 370 | 89.96 166 | 20.58 412 | 72.18 347 | 68.19 373 | 83.21 54 | 86.46 177 | 93.49 110 | 70.19 231 | 78.97 346 | 65.96 260 | 90.46 272 | 93.02 147 |
|
| anonymousdsp | | | 89.73 49 | 88.88 66 | 92.27 7 | 89.82 167 | 86.67 14 | 90.51 50 | 90.20 173 | 69.87 220 | 95.06 11 | 96.14 21 | 84.28 74 | 93.07 137 | 87.68 15 | 96.34 105 | 97.09 20 |
|
| 1112_ss | | | 74.82 279 | 73.74 280 | 78.04 274 | 89.57 168 | 60.04 287 | 76.49 307 | 87.09 225 | 54.31 350 | 73.66 347 | 79.80 355 | 60.25 287 | 86.76 281 | 58.37 316 | 84.15 350 | 87.32 288 |
|
| CS-MVS | | | 88.14 71 | 87.67 79 | 89.54 57 | 89.56 169 | 79.18 78 | 90.47 51 | 94.77 15 | 79.37 98 | 84.32 217 | 89.33 229 | 83.87 76 | 94.53 79 | 82.45 83 | 94.89 166 | 94.90 65 |
|
| MM | | | 87.64 82 | 87.15 86 | 89.09 64 | 89.51 170 | 76.39 115 | 88.68 91 | 86.76 230 | 84.54 41 | 83.58 233 | 93.78 103 | 73.36 205 | 96.48 1 | 87.98 9 | 96.21 111 | 94.41 86 |
|
| APD_test1 | | | 88.40 67 | 87.91 75 | 89.88 47 | 89.50 171 | 86.65 16 | 89.98 60 | 91.91 118 | 84.26 42 | 90.87 86 | 93.92 98 | 82.18 103 | 89.29 246 | 73.75 187 | 94.81 170 | 93.70 119 |
|
| CS-MVS-test | | | 87.00 86 | 86.43 100 | 88.71 71 | 89.46 172 | 77.46 98 | 89.42 79 | 95.73 6 | 77.87 117 | 81.64 267 | 87.25 265 | 82.43 95 | 94.53 79 | 77.65 138 | 96.46 101 | 94.14 97 |
|
| PCF-MVS | | 74.62 15 | 82.15 182 | 80.92 205 | 85.84 120 | 89.43 173 | 72.30 153 | 80.53 246 | 91.82 123 | 57.36 336 | 87.81 145 | 89.92 220 | 77.67 149 | 93.63 110 | 58.69 314 | 95.08 157 | 91.58 207 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVP-Stereo | | | 75.81 268 | 73.51 284 | 82.71 197 | 89.35 174 | 73.62 130 | 80.06 250 | 85.20 251 | 60.30 315 | 73.96 344 | 87.94 249 | 57.89 306 | 89.45 241 | 52.02 356 | 74.87 390 | 85.06 312 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| CNLPA | | | 83.55 158 | 83.10 163 | 84.90 135 | 89.34 175 | 83.87 46 | 84.54 158 | 88.77 196 | 79.09 101 | 83.54 235 | 88.66 240 | 74.87 181 | 81.73 330 | 66.84 254 | 92.29 231 | 89.11 260 |
|
| EC-MVSNet | | | 88.01 74 | 88.32 72 | 87.09 92 | 89.28 176 | 72.03 157 | 90.31 54 | 96.31 3 | 80.88 80 | 85.12 197 | 89.67 225 | 84.47 72 | 95.46 46 | 82.56 82 | 96.26 110 | 93.77 117 |
|
| TSAR-MVS + GP. | | | 83.95 149 | 82.69 171 | 87.72 85 | 89.27 177 | 81.45 63 | 83.72 178 | 81.58 291 | 74.73 151 | 85.66 189 | 86.06 283 | 72.56 215 | 92.69 148 | 75.44 166 | 95.21 151 | 89.01 266 |
|
| MVS_111021_LR | | | 84.28 138 | 83.76 153 | 85.83 121 | 89.23 178 | 83.07 51 | 80.99 242 | 83.56 273 | 72.71 185 | 86.07 182 | 89.07 234 | 81.75 113 | 86.19 291 | 77.11 147 | 93.36 207 | 88.24 271 |
|
| MVS_0304 | | | 86.35 97 | 85.92 110 | 87.66 87 | 89.21 179 | 73.16 138 | 88.40 95 | 83.63 272 | 81.27 74 | 80.87 277 | 94.12 85 | 71.49 226 | 95.71 31 | 87.79 12 | 96.50 98 | 94.11 99 |
|
| LFMVS | | | 80.15 222 | 80.56 208 | 78.89 256 | 89.19 180 | 55.93 326 | 85.22 145 | 73.78 341 | 82.96 58 | 84.28 221 | 92.72 134 | 57.38 308 | 90.07 227 | 63.80 282 | 95.75 136 | 90.68 229 |
|
| iter_conf05 | | | 83.19 164 | 82.97 165 | 83.85 163 | 89.06 181 | 61.92 267 | 82.41 218 | 93.28 70 | 65.43 264 | 84.98 201 | 89.78 222 | 68.44 244 | 94.48 81 | 76.66 151 | 96.64 91 | 95.15 61 |
|
| CLD-MVS | | | 83.18 165 | 82.64 172 | 84.79 138 | 89.05 182 | 67.82 200 | 77.93 284 | 92.52 100 | 68.33 234 | 85.07 198 | 81.54 341 | 82.06 105 | 92.96 139 | 69.35 230 | 97.91 47 | 93.57 127 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| LS3D | | | 90.60 30 | 90.34 47 | 91.38 24 | 89.03 183 | 84.23 45 | 93.58 6 | 94.68 16 | 90.65 7 | 90.33 91 | 93.95 96 | 84.50 71 | 95.37 50 | 80.87 100 | 95.50 141 | 94.53 79 |
|
| CDS-MVSNet | | | 77.32 250 | 75.40 266 | 83.06 186 | 89.00 184 | 72.48 150 | 77.90 285 | 82.17 285 | 60.81 310 | 78.94 303 | 83.49 318 | 59.30 294 | 88.76 255 | 54.64 342 | 92.37 228 | 87.93 280 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tttt0517 | | | 81.07 201 | 79.58 225 | 85.52 127 | 88.99 185 | 66.45 213 | 87.03 114 | 75.51 329 | 73.76 161 | 88.32 135 | 90.20 213 | 37.96 390 | 94.16 93 | 79.36 119 | 95.13 154 | 95.93 41 |
|
| tfpnnormal | | | 81.79 192 | 82.95 166 | 78.31 267 | 88.93 186 | 55.40 330 | 80.83 245 | 82.85 279 | 76.81 126 | 85.90 187 | 94.14 83 | 74.58 188 | 86.51 284 | 66.82 255 | 95.68 139 | 93.01 148 |
|
| testing3 | | | 71.53 307 | 70.79 309 | 73.77 314 | 88.89 187 | 41.86 396 | 76.60 306 | 59.12 398 | 72.83 182 | 80.97 273 | 82.08 335 | 19.80 414 | 87.33 270 | 65.12 271 | 91.68 245 | 92.13 190 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 244 | 77.79 245 | 77.92 276 | 88.82 188 | 51.29 360 | 83.28 188 | 71.97 355 | 74.04 157 | 82.23 254 | 89.78 222 | 57.38 308 | 89.41 244 | 57.22 323 | 95.41 142 | 93.05 146 |
|
| SDMVSNet | | | 81.90 190 | 83.17 161 | 78.10 272 | 88.81 189 | 62.45 256 | 76.08 314 | 86.05 239 | 73.67 162 | 83.41 236 | 93.04 118 | 82.35 97 | 80.65 337 | 70.06 225 | 95.03 159 | 91.21 213 |
|
| sd_testset | | | 79.95 226 | 81.39 196 | 75.64 304 | 88.81 189 | 58.07 311 | 76.16 313 | 82.81 280 | 73.67 162 | 83.41 236 | 93.04 118 | 80.96 121 | 77.65 350 | 58.62 315 | 95.03 159 | 91.21 213 |
|
| TAPA-MVS | | 77.73 12 | 85.71 110 | 84.83 131 | 88.37 77 | 88.78 191 | 79.72 73 | 87.15 112 | 93.50 59 | 69.17 224 | 85.80 188 | 89.56 226 | 80.76 123 | 92.13 162 | 73.21 201 | 95.51 140 | 93.25 138 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| iter_conf05_11 | | | 85.73 109 | 85.77 116 | 85.60 125 | 88.77 192 | 67.74 201 | 91.49 36 | 94.17 28 | 71.86 200 | 88.07 139 | 92.18 152 | 68.84 242 | 95.06 61 | 81.20 96 | 95.33 145 | 93.99 102 |
|
| testf1 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 193 | 85.64 31 | 90.61 46 | 93.17 74 | 86.02 29 | 93.12 40 | 95.30 35 | 84.94 66 | 89.44 242 | 74.12 180 | 96.10 117 | 94.45 82 |
|
| APD_test2 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 193 | 85.64 31 | 90.61 46 | 93.17 74 | 86.02 29 | 93.12 40 | 95.30 35 | 84.94 66 | 89.44 242 | 74.12 180 | 96.10 117 | 94.45 82 |
|
| FPMVS | | | 72.29 301 | 72.00 300 | 73.14 318 | 88.63 195 | 85.00 36 | 74.65 329 | 67.39 375 | 71.94 199 | 77.80 313 | 87.66 256 | 50.48 340 | 75.83 357 | 49.95 364 | 79.51 373 | 58.58 402 |
|
| dcpmvs_2 | | | 84.23 141 | 85.14 126 | 81.50 219 | 88.61 196 | 61.98 266 | 82.90 202 | 93.11 77 | 68.66 232 | 92.77 50 | 92.39 141 | 78.50 140 | 87.63 266 | 76.99 149 | 92.30 229 | 94.90 65 |
|
| ETV-MVS | | | 84.31 136 | 83.91 152 | 85.52 127 | 88.58 197 | 70.40 174 | 84.50 160 | 93.37 61 | 78.76 108 | 84.07 225 | 78.72 365 | 80.39 127 | 95.13 59 | 73.82 186 | 92.98 219 | 91.04 217 |
|
| BH-untuned | | | 80.96 203 | 80.99 203 | 80.84 231 | 88.55 198 | 68.23 193 | 80.33 249 | 88.46 200 | 72.79 184 | 86.55 170 | 86.76 273 | 74.72 186 | 91.77 174 | 61.79 298 | 88.99 286 | 82.52 349 |
|
| Anonymous202405211 | | | 80.51 210 | 81.19 202 | 78.49 264 | 88.48 199 | 57.26 318 | 76.63 304 | 82.49 282 | 81.21 76 | 84.30 220 | 92.24 150 | 67.99 246 | 86.24 288 | 62.22 292 | 95.13 154 | 91.98 196 |
|
| ab-mvs | | | 79.67 227 | 80.56 208 | 76.99 287 | 88.48 199 | 56.93 320 | 84.70 153 | 86.06 238 | 68.95 228 | 80.78 279 | 93.08 117 | 75.30 177 | 84.62 310 | 56.78 324 | 90.90 261 | 89.43 254 |
|
| PHI-MVS | | | 86.38 96 | 85.81 114 | 88.08 81 | 88.44 201 | 77.34 101 | 89.35 80 | 93.05 81 | 73.15 178 | 84.76 207 | 87.70 255 | 78.87 138 | 94.18 89 | 80.67 104 | 96.29 106 | 92.73 156 |
|
| xiu_mvs_v1_base_debu | | | 80.84 204 | 80.14 218 | 82.93 191 | 88.31 202 | 71.73 160 | 79.53 258 | 87.17 218 | 65.43 264 | 79.59 292 | 82.73 329 | 76.94 161 | 90.14 223 | 73.22 196 | 88.33 295 | 86.90 292 |
|
| xiu_mvs_v1_base | | | 80.84 204 | 80.14 218 | 82.93 191 | 88.31 202 | 71.73 160 | 79.53 258 | 87.17 218 | 65.43 264 | 79.59 292 | 82.73 329 | 76.94 161 | 90.14 223 | 73.22 196 | 88.33 295 | 86.90 292 |
|
| xiu_mvs_v1_base_debi | | | 80.84 204 | 80.14 218 | 82.93 191 | 88.31 202 | 71.73 160 | 79.53 258 | 87.17 218 | 65.43 264 | 79.59 292 | 82.73 329 | 76.94 161 | 90.14 223 | 73.22 196 | 88.33 295 | 86.90 292 |
|
| MG-MVS | | | 80.32 216 | 80.94 204 | 78.47 265 | 88.18 205 | 52.62 350 | 82.29 222 | 85.01 258 | 72.01 198 | 79.24 301 | 92.54 139 | 69.36 236 | 93.36 127 | 70.65 219 | 89.19 285 | 89.45 252 |
|
| PM-MVS | | | 80.20 220 | 79.00 230 | 83.78 166 | 88.17 206 | 86.66 15 | 81.31 236 | 66.81 381 | 69.64 221 | 88.33 134 | 90.19 214 | 64.58 262 | 83.63 321 | 71.99 209 | 90.03 275 | 81.06 368 |
|
| v10 | | | 86.54 94 | 87.10 88 | 84.84 136 | 88.16 207 | 63.28 243 | 86.64 124 | 92.20 108 | 75.42 145 | 92.81 49 | 94.50 62 | 74.05 193 | 94.06 96 | 83.88 66 | 96.28 107 | 97.17 19 |
|
| sasdasda | | | 85.50 111 | 86.14 105 | 83.58 173 | 87.97 208 | 67.13 203 | 87.55 105 | 94.32 18 | 73.44 168 | 88.47 129 | 87.54 258 | 86.45 55 | 91.06 192 | 75.76 162 | 93.76 199 | 92.54 167 |
|
| canonicalmvs | | | 85.50 111 | 86.14 105 | 83.58 173 | 87.97 208 | 67.13 203 | 87.55 105 | 94.32 18 | 73.44 168 | 88.47 129 | 87.54 258 | 86.45 55 | 91.06 192 | 75.76 162 | 93.76 199 | 92.54 167 |
|
| EIA-MVS | | | 82.19 180 | 81.23 201 | 85.10 133 | 87.95 210 | 69.17 189 | 83.22 193 | 93.33 64 | 70.42 212 | 78.58 305 | 79.77 357 | 77.29 154 | 94.20 88 | 71.51 210 | 88.96 287 | 91.93 197 |
|
| VNet | | | 79.31 228 | 80.27 213 | 76.44 295 | 87.92 211 | 53.95 339 | 75.58 320 | 84.35 266 | 74.39 155 | 82.23 254 | 90.72 196 | 72.84 211 | 84.39 313 | 60.38 308 | 93.98 195 | 90.97 218 |
|
| v8 | | | 86.22 100 | 86.83 95 | 84.36 149 | 87.82 212 | 62.35 259 | 86.42 127 | 91.33 137 | 76.78 127 | 92.73 51 | 94.48 64 | 73.41 202 | 93.72 107 | 83.10 72 | 95.41 142 | 97.01 22 |
|
| alignmvs | | | 83.94 150 | 83.98 150 | 83.80 164 | 87.80 213 | 67.88 199 | 84.54 158 | 91.42 134 | 73.27 176 | 88.41 132 | 87.96 248 | 72.33 216 | 90.83 202 | 76.02 160 | 94.11 192 | 92.69 160 |
|
| v1192 | | | 84.57 130 | 84.69 136 | 84.21 155 | 87.75 214 | 62.88 247 | 83.02 197 | 91.43 132 | 69.08 226 | 89.98 99 | 90.89 189 | 72.70 213 | 93.62 113 | 82.41 84 | 94.97 163 | 96.13 33 |
|
| PatchMatch-RL | | | 74.48 282 | 73.22 287 | 78.27 270 | 87.70 215 | 85.26 34 | 75.92 316 | 70.09 365 | 64.34 276 | 76.09 326 | 81.25 343 | 65.87 258 | 78.07 349 | 53.86 344 | 83.82 352 | 71.48 388 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 173 | 81.93 182 | 84.50 144 | 87.68 216 | 73.35 132 | 86.14 131 | 77.70 310 | 61.64 299 | 85.02 199 | 91.62 166 | 77.75 147 | 86.24 288 | 82.79 79 | 87.07 312 | 93.91 108 |
|
| v1144 | | | 84.54 132 | 84.72 134 | 84.00 158 | 87.67 217 | 62.55 254 | 82.97 199 | 90.93 149 | 70.32 215 | 89.80 102 | 90.99 184 | 73.50 199 | 93.48 121 | 81.69 94 | 94.65 176 | 95.97 38 |
|
| v1240 | | | 84.30 137 | 84.51 140 | 83.65 170 | 87.65 218 | 61.26 273 | 82.85 204 | 91.54 129 | 67.94 241 | 90.68 88 | 90.65 201 | 71.71 224 | 93.64 109 | 82.84 78 | 94.78 171 | 96.07 35 |
|
| v1921920 | | | 84.23 141 | 84.37 144 | 83.79 165 | 87.64 219 | 61.71 268 | 82.91 201 | 91.20 141 | 67.94 241 | 90.06 94 | 90.34 208 | 72.04 221 | 93.59 115 | 82.32 85 | 94.91 164 | 96.07 35 |
|
| v144192 | | | 84.24 140 | 84.41 142 | 83.71 169 | 87.59 220 | 61.57 269 | 82.95 200 | 91.03 145 | 67.82 244 | 89.80 102 | 90.49 205 | 73.28 206 | 93.51 120 | 81.88 93 | 94.89 166 | 96.04 37 |
|
| MGCFI-Net | | | 85.04 121 | 85.95 108 | 82.31 207 | 87.52 221 | 63.59 239 | 86.23 130 | 93.96 41 | 73.46 166 | 88.07 139 | 87.83 253 | 86.46 54 | 90.87 201 | 76.17 157 | 93.89 197 | 92.47 171 |
|
| Fast-Effi-MVS+ | | | 81.04 202 | 80.57 207 | 82.46 205 | 87.50 222 | 63.22 244 | 78.37 279 | 89.63 186 | 68.01 238 | 81.87 260 | 82.08 335 | 82.31 99 | 92.65 149 | 67.10 251 | 88.30 299 | 91.51 209 |
|
| pmmvs-eth3d | | | 78.42 240 | 77.04 251 | 82.57 203 | 87.44 223 | 74.41 126 | 80.86 244 | 79.67 301 | 55.68 343 | 84.69 208 | 90.31 210 | 60.91 282 | 85.42 303 | 62.20 293 | 91.59 247 | 87.88 281 |
|
| IterMVS-LS | | | 84.73 127 | 84.98 129 | 83.96 160 | 87.35 224 | 63.66 237 | 83.25 190 | 89.88 180 | 76.06 131 | 89.62 108 | 92.37 145 | 73.40 204 | 92.52 151 | 78.16 131 | 94.77 173 | 95.69 43 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| thres100view900 | | | 75.45 270 | 75.05 270 | 76.66 294 | 87.27 225 | 51.88 355 | 81.07 241 | 73.26 346 | 75.68 140 | 83.25 239 | 86.37 277 | 45.54 362 | 88.80 251 | 51.98 357 | 90.99 256 | 89.31 256 |
|
| MIMVSNet | | | 71.09 311 | 71.59 303 | 69.57 343 | 87.23 226 | 50.07 367 | 78.91 270 | 71.83 356 | 60.20 318 | 71.26 357 | 91.76 163 | 55.08 324 | 76.09 355 | 41.06 392 | 87.02 315 | 82.54 348 |
|
| Effi-MVS+ | | | 83.90 151 | 84.01 149 | 83.57 175 | 87.22 227 | 65.61 221 | 86.55 126 | 92.40 102 | 78.64 109 | 81.34 272 | 84.18 311 | 83.65 81 | 92.93 141 | 74.22 176 | 87.87 303 | 92.17 188 |
|
| BH-RMVSNet | | | 80.53 209 | 80.22 216 | 81.49 220 | 87.19 228 | 66.21 215 | 77.79 287 | 86.23 235 | 74.21 156 | 83.69 230 | 88.50 241 | 73.25 207 | 90.75 204 | 63.18 288 | 87.90 302 | 87.52 285 |
|
| thisisatest0530 | | | 79.07 229 | 77.33 249 | 84.26 154 | 87.13 229 | 64.58 228 | 83.66 180 | 75.95 324 | 68.86 229 | 85.22 196 | 87.36 263 | 38.10 388 | 93.57 118 | 75.47 165 | 94.28 187 | 94.62 74 |
|
| Effi-MVS+-dtu | | | 85.82 108 | 83.38 156 | 93.14 3 | 87.13 229 | 91.15 2 | 87.70 104 | 88.42 201 | 74.57 153 | 83.56 234 | 85.65 288 | 78.49 141 | 94.21 87 | 72.04 208 | 92.88 221 | 94.05 101 |
|
| v2v482 | | | 84.09 144 | 84.24 146 | 83.62 171 | 87.13 229 | 61.40 270 | 82.71 207 | 89.71 183 | 72.19 196 | 89.55 112 | 91.41 171 | 70.70 230 | 93.20 131 | 81.02 98 | 93.76 199 | 96.25 31 |
|
| jason | | | 77.42 249 | 75.75 263 | 82.43 206 | 87.10 232 | 69.27 184 | 77.99 283 | 81.94 287 | 51.47 367 | 77.84 311 | 85.07 301 | 60.32 286 | 89.00 248 | 70.74 218 | 89.27 284 | 89.03 264 |
| jason: jason. |
| PS-MVSNAJ | | | 77.04 253 | 76.53 256 | 78.56 262 | 87.09 233 | 61.40 270 | 75.26 323 | 87.13 221 | 61.25 305 | 74.38 343 | 77.22 377 | 76.94 161 | 90.94 195 | 64.63 277 | 84.83 345 | 83.35 337 |
|
| casdiffmvs_mvg |  | | 86.72 91 | 87.51 81 | 84.36 149 | 87.09 233 | 65.22 223 | 84.16 163 | 94.23 23 | 77.89 116 | 91.28 76 | 93.66 107 | 84.35 73 | 92.71 146 | 80.07 107 | 94.87 169 | 95.16 60 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| xiu_mvs_v2_base | | | 77.19 251 | 76.75 254 | 78.52 263 | 87.01 235 | 61.30 272 | 75.55 321 | 87.12 224 | 61.24 306 | 74.45 341 | 78.79 364 | 77.20 155 | 90.93 196 | 64.62 278 | 84.80 346 | 83.32 338 |
|
| thres600view7 | | | 75.97 266 | 75.35 268 | 77.85 279 | 87.01 235 | 51.84 356 | 80.45 247 | 73.26 346 | 75.20 147 | 83.10 242 | 86.31 280 | 45.54 362 | 89.05 247 | 55.03 339 | 92.24 233 | 92.66 161 |
|
| CL-MVSNet_self_test | | | 76.81 256 | 77.38 248 | 75.12 307 | 86.90 237 | 51.34 358 | 73.20 342 | 80.63 297 | 68.30 235 | 81.80 264 | 88.40 242 | 66.92 251 | 80.90 334 | 55.35 336 | 94.90 165 | 93.12 144 |
|
| BH-w/o | | | 76.57 259 | 76.07 261 | 78.10 272 | 86.88 238 | 65.92 218 | 77.63 289 | 86.33 233 | 65.69 262 | 80.89 276 | 79.95 354 | 68.97 241 | 90.74 205 | 53.01 352 | 85.25 334 | 77.62 379 |
|
| fmvsm_s_conf0.1_n | | | 82.17 181 | 81.59 189 | 83.94 162 | 86.87 239 | 71.57 165 | 85.19 146 | 77.42 313 | 62.27 293 | 84.47 213 | 91.33 173 | 76.43 169 | 85.91 296 | 83.14 70 | 87.14 310 | 94.33 89 |
|
| MAR-MVS | | | 80.24 219 | 78.74 235 | 84.73 140 | 86.87 239 | 78.18 88 | 85.75 136 | 87.81 212 | 65.67 263 | 77.84 311 | 78.50 366 | 73.79 196 | 90.53 211 | 61.59 301 | 90.87 262 | 85.49 308 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| fmvsm_s_conf0.5_n_a | | | 82.21 179 | 81.51 194 | 84.32 152 | 86.56 241 | 73.35 132 | 85.46 140 | 77.30 314 | 61.81 295 | 84.51 210 | 90.88 191 | 77.36 153 | 86.21 290 | 82.72 80 | 86.97 317 | 93.38 131 |
|
| FE-MVS | | | 79.98 225 | 78.86 231 | 83.36 179 | 86.47 242 | 66.45 213 | 89.73 65 | 84.74 264 | 72.80 183 | 84.22 224 | 91.38 172 | 44.95 371 | 93.60 114 | 63.93 281 | 91.50 249 | 90.04 246 |
|
| QAPM | | | 82.59 172 | 82.59 174 | 82.58 201 | 86.44 243 | 66.69 210 | 89.94 62 | 90.36 164 | 67.97 240 | 84.94 204 | 92.58 138 | 72.71 212 | 92.18 161 | 70.63 220 | 87.73 305 | 88.85 267 |
|
| PAPM | | | 71.77 304 | 70.06 318 | 76.92 289 | 86.39 244 | 53.97 338 | 76.62 305 | 86.62 231 | 53.44 354 | 63.97 393 | 84.73 305 | 57.79 307 | 92.34 157 | 39.65 394 | 81.33 369 | 84.45 319 |
|
| GBi-Net | | | 82.02 185 | 82.07 179 | 81.85 213 | 86.38 245 | 61.05 276 | 86.83 118 | 88.27 206 | 72.43 188 | 86.00 183 | 95.64 29 | 63.78 268 | 90.68 207 | 65.95 261 | 93.34 208 | 93.82 112 |
|
| test1 | | | 82.02 185 | 82.07 179 | 81.85 213 | 86.38 245 | 61.05 276 | 86.83 118 | 88.27 206 | 72.43 188 | 86.00 183 | 95.64 29 | 63.78 268 | 90.68 207 | 65.95 261 | 93.34 208 | 93.82 112 |
|
| FMVSNet2 | | | 81.31 198 | 81.61 188 | 80.41 238 | 86.38 245 | 58.75 307 | 83.93 171 | 86.58 232 | 72.43 188 | 87.65 147 | 92.98 122 | 63.78 268 | 90.22 218 | 66.86 252 | 93.92 196 | 92.27 182 |
|
| 3Dnovator | | 80.37 7 | 84.80 126 | 84.71 135 | 85.06 134 | 86.36 248 | 74.71 124 | 88.77 89 | 90.00 178 | 75.65 141 | 84.96 202 | 93.17 115 | 74.06 192 | 91.19 187 | 78.28 128 | 91.09 254 | 89.29 258 |
|
| Anonymous20231206 | | | 71.38 309 | 71.88 301 | 69.88 340 | 86.31 249 | 54.37 336 | 70.39 361 | 74.62 332 | 52.57 359 | 76.73 318 | 88.76 237 | 59.94 289 | 72.06 364 | 44.35 387 | 93.23 213 | 83.23 340 |
|
| baseline | | | 85.20 118 | 85.93 109 | 83.02 187 | 86.30 250 | 62.37 258 | 84.55 156 | 93.96 41 | 74.48 154 | 87.12 154 | 92.03 153 | 82.30 100 | 91.94 167 | 78.39 124 | 94.21 188 | 94.74 73 |
|
| API-MVS | | | 82.28 177 | 82.61 173 | 81.30 221 | 86.29 251 | 69.79 177 | 88.71 90 | 87.67 213 | 78.42 112 | 82.15 256 | 84.15 312 | 77.98 144 | 91.59 176 | 65.39 268 | 92.75 223 | 82.51 350 |
|
| tfpn200view9 | | | 74.86 278 | 74.23 277 | 76.74 293 | 86.24 252 | 52.12 352 | 79.24 265 | 73.87 339 | 73.34 171 | 81.82 262 | 84.60 307 | 46.02 356 | 88.80 251 | 51.98 357 | 90.99 256 | 89.31 256 |
|
| thres400 | | | 75.14 272 | 74.23 277 | 77.86 278 | 86.24 252 | 52.12 352 | 79.24 265 | 73.87 339 | 73.34 171 | 81.82 262 | 84.60 307 | 46.02 356 | 88.80 251 | 51.98 357 | 90.99 256 | 92.66 161 |
|
| UGNet | | | 82.78 169 | 81.64 186 | 86.21 112 | 86.20 254 | 76.24 117 | 86.86 116 | 85.68 244 | 77.07 125 | 73.76 346 | 92.82 129 | 69.64 233 | 91.82 173 | 69.04 237 | 93.69 203 | 90.56 233 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| CANet | | | 83.79 152 | 82.85 168 | 86.63 101 | 86.17 255 | 72.21 156 | 83.76 177 | 91.43 132 | 77.24 124 | 74.39 342 | 87.45 261 | 75.36 176 | 95.42 48 | 77.03 148 | 92.83 222 | 92.25 184 |
|
| casdiffmvs |  | | 85.21 117 | 85.85 113 | 83.31 181 | 86.17 255 | 62.77 250 | 83.03 196 | 93.93 43 | 74.69 152 | 88.21 136 | 92.68 135 | 82.29 101 | 91.89 170 | 77.87 137 | 93.75 202 | 95.27 56 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FA-MVS(test-final) | | | 83.13 167 | 83.02 164 | 83.43 177 | 86.16 257 | 66.08 216 | 88.00 99 | 88.36 203 | 75.55 142 | 85.02 199 | 92.75 133 | 65.12 261 | 92.50 152 | 74.94 172 | 91.30 252 | 91.72 201 |
|
| bld_raw_dy_0_64 | | | 80.29 217 | 80.03 222 | 81.09 226 | 86.14 258 | 59.69 292 | 78.24 280 | 91.87 119 | 63.91 279 | 78.46 307 | 84.08 313 | 69.23 237 | 92.89 144 | 73.70 189 | 94.61 177 | 90.69 228 |
|
| TR-MVS | | | 76.77 257 | 75.79 262 | 79.72 247 | 86.10 259 | 65.79 219 | 77.14 295 | 83.02 277 | 65.20 272 | 81.40 270 | 82.10 333 | 66.30 253 | 90.73 206 | 55.57 333 | 85.27 333 | 82.65 344 |
|
| fmvsm_s_conf0.5_n | | | 81.91 189 | 81.30 198 | 83.75 167 | 86.02 260 | 71.56 166 | 84.73 152 | 77.11 317 | 62.44 290 | 84.00 226 | 90.68 198 | 76.42 170 | 85.89 298 | 83.14 70 | 87.11 311 | 93.81 115 |
|
| test_fmvsmconf0.01_n | | | 86.68 92 | 86.52 98 | 87.18 91 | 85.94 261 | 78.30 85 | 86.93 115 | 92.20 108 | 65.94 255 | 89.16 117 | 93.16 116 | 83.10 86 | 89.89 231 | 87.81 11 | 94.43 183 | 93.35 132 |
|
| LCM-MVSNet-Re | | | 83.48 159 | 85.06 127 | 78.75 259 | 85.94 261 | 55.75 329 | 80.05 251 | 94.27 20 | 76.47 128 | 96.09 5 | 94.54 61 | 83.31 85 | 89.75 237 | 59.95 309 | 94.89 166 | 90.75 224 |
|
| test_fmvsmvis_n_1920 | | | 85.22 116 | 85.36 124 | 84.81 137 | 85.80 263 | 76.13 119 | 85.15 147 | 92.32 105 | 61.40 301 | 91.33 73 | 90.85 192 | 83.76 80 | 86.16 292 | 84.31 62 | 93.28 211 | 92.15 189 |
|
| Fast-Effi-MVS+-dtu | | | 82.54 174 | 81.41 195 | 85.90 118 | 85.60 264 | 76.53 111 | 83.07 195 | 89.62 187 | 73.02 180 | 79.11 302 | 83.51 317 | 80.74 124 | 90.24 217 | 68.76 240 | 89.29 282 | 90.94 219 |
|
| v148 | | | 82.31 176 | 82.48 176 | 81.81 216 | 85.59 265 | 59.66 293 | 81.47 235 | 86.02 240 | 72.85 181 | 88.05 141 | 90.65 201 | 70.73 229 | 90.91 198 | 75.15 169 | 91.79 242 | 94.87 67 |
|
| MVSFormer | | | 82.23 178 | 81.57 191 | 84.19 157 | 85.54 266 | 69.26 185 | 91.98 30 | 90.08 176 | 71.54 201 | 76.23 323 | 85.07 301 | 58.69 299 | 94.27 83 | 86.26 40 | 88.77 289 | 89.03 264 |
|
| lupinMVS | | | 76.37 263 | 74.46 275 | 82.09 208 | 85.54 266 | 69.26 185 | 76.79 300 | 80.77 296 | 50.68 374 | 76.23 323 | 82.82 327 | 58.69 299 | 88.94 249 | 69.85 226 | 88.77 289 | 88.07 274 |
|
| mamv4 | | | 81.86 191 | 81.52 193 | 82.87 195 | 85.42 268 | 62.26 261 | 82.66 208 | 92.62 97 | 65.43 264 | 79.34 299 | 90.22 212 | 69.65 232 | 94.15 94 | 74.14 179 | 94.16 191 | 92.21 185 |
|
| TinyColmap | | | 81.25 199 | 82.34 178 | 77.99 275 | 85.33 269 | 60.68 283 | 82.32 221 | 88.33 204 | 71.26 205 | 86.97 161 | 92.22 151 | 77.10 158 | 86.98 275 | 62.37 291 | 95.17 153 | 86.31 298 |
|
| test_fmvsmconf0.1_n | | | 86.18 102 | 85.88 112 | 87.08 93 | 85.26 270 | 78.25 86 | 85.82 135 | 91.82 123 | 65.33 270 | 88.55 126 | 92.35 146 | 82.62 93 | 89.80 233 | 86.87 32 | 94.32 186 | 93.18 141 |
|
| MVSMamba_pp | | | 81.67 193 | 81.33 197 | 82.70 199 | 85.24 271 | 62.25 263 | 82.88 203 | 92.53 99 | 62.64 284 | 79.42 295 | 90.65 201 | 69.37 235 | 93.26 130 | 74.78 173 | 94.44 182 | 92.58 164 |
|
| test_fmvsm_n_1920 | | | 83.60 156 | 82.89 167 | 85.74 122 | 85.22 272 | 77.74 95 | 84.12 165 | 90.48 159 | 59.87 320 | 86.45 178 | 91.12 180 | 75.65 173 | 85.89 298 | 82.28 86 | 90.87 262 | 93.58 126 |
|
| PAPR | | | 78.84 233 | 78.10 243 | 81.07 227 | 85.17 273 | 60.22 286 | 82.21 226 | 90.57 158 | 62.51 286 | 75.32 336 | 84.61 306 | 74.99 180 | 92.30 159 | 59.48 312 | 88.04 301 | 90.68 229 |
|
| pmmvs4 | | | 74.92 277 | 72.98 290 | 80.73 233 | 84.95 274 | 71.71 163 | 76.23 311 | 77.59 311 | 52.83 357 | 77.73 315 | 86.38 276 | 56.35 315 | 84.97 307 | 57.72 322 | 87.05 313 | 85.51 307 |
|
| baseline1 | | | 73.26 291 | 73.54 283 | 72.43 327 | 84.92 275 | 47.79 374 | 79.89 254 | 74.00 337 | 65.93 256 | 78.81 304 | 86.28 281 | 56.36 314 | 81.63 331 | 56.63 325 | 79.04 379 | 87.87 282 |
|
| Patchmatch-RL test | | | 74.48 282 | 73.68 281 | 76.89 291 | 84.83 276 | 66.54 211 | 72.29 346 | 69.16 371 | 57.70 332 | 86.76 164 | 86.33 278 | 45.79 361 | 82.59 325 | 69.63 228 | 90.65 270 | 81.54 359 |
|
| patch_mono-2 | | | 78.89 231 | 79.39 227 | 77.41 284 | 84.78 277 | 68.11 196 | 75.60 318 | 83.11 276 | 60.96 309 | 79.36 297 | 89.89 221 | 75.18 178 | 72.97 362 | 73.32 195 | 92.30 229 | 91.15 215 |
|
| test_fmvsmconf_n | | | 85.88 107 | 85.51 121 | 86.99 95 | 84.77 278 | 78.21 87 | 85.40 143 | 91.39 135 | 65.32 271 | 87.72 146 | 91.81 161 | 82.33 98 | 89.78 234 | 86.68 34 | 94.20 189 | 92.99 149 |
|
| KD-MVS_self_test | | | 81.93 188 | 83.14 162 | 78.30 268 | 84.75 279 | 52.75 347 | 80.37 248 | 89.42 191 | 70.24 217 | 90.26 92 | 93.39 112 | 74.55 189 | 86.77 280 | 68.61 243 | 96.64 91 | 95.38 51 |
|
| XXY-MVS | | | 74.44 284 | 76.19 259 | 69.21 345 | 84.61 280 | 52.43 351 | 71.70 350 | 77.18 316 | 60.73 312 | 80.60 280 | 90.96 187 | 75.44 174 | 69.35 373 | 56.13 329 | 88.33 295 | 85.86 303 |
|
| cascas | | | 76.29 264 | 74.81 271 | 80.72 234 | 84.47 281 | 62.94 246 | 73.89 336 | 87.34 215 | 55.94 342 | 75.16 338 | 76.53 382 | 63.97 266 | 91.16 188 | 65.00 272 | 90.97 259 | 88.06 276 |
|
| PVSNet_BlendedMVS | | | 78.80 234 | 77.84 244 | 81.65 218 | 84.43 282 | 63.41 240 | 79.49 261 | 90.44 161 | 61.70 298 | 75.43 333 | 87.07 270 | 69.11 239 | 91.44 180 | 60.68 306 | 92.24 233 | 90.11 244 |
|
| PVSNet_Blended | | | 76.49 261 | 75.40 266 | 79.76 246 | 84.43 282 | 63.41 240 | 75.14 324 | 90.44 161 | 57.36 336 | 75.43 333 | 78.30 367 | 69.11 239 | 91.44 180 | 60.68 306 | 87.70 306 | 84.42 320 |
|
| OpenMVS |  | 76.72 13 | 81.98 187 | 82.00 181 | 81.93 210 | 84.42 284 | 68.22 194 | 88.50 94 | 89.48 189 | 66.92 250 | 81.80 264 | 91.86 156 | 72.59 214 | 90.16 220 | 71.19 213 | 91.25 253 | 87.40 287 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 246 | 77.46 246 | 78.71 260 | 84.39 285 | 61.15 274 | 81.18 240 | 82.52 281 | 62.45 289 | 83.34 238 | 87.37 262 | 66.20 254 | 88.66 256 | 64.69 276 | 85.02 339 | 86.32 297 |
|
| test_yl | | | 78.71 236 | 78.51 238 | 79.32 253 | 84.32 286 | 58.84 304 | 78.38 277 | 85.33 249 | 75.99 134 | 82.49 249 | 86.57 274 | 58.01 302 | 90.02 229 | 62.74 289 | 92.73 224 | 89.10 261 |
|
| DCV-MVSNet | | | 78.71 236 | 78.51 238 | 79.32 253 | 84.32 286 | 58.84 304 | 78.38 277 | 85.33 249 | 75.99 134 | 82.49 249 | 86.57 274 | 58.01 302 | 90.02 229 | 62.74 289 | 92.73 224 | 89.10 261 |
|
| DELS-MVS | | | 81.44 197 | 81.25 199 | 82.03 209 | 84.27 288 | 62.87 248 | 76.47 308 | 92.49 101 | 70.97 208 | 81.64 267 | 83.83 314 | 75.03 179 | 92.70 147 | 74.29 175 | 92.22 235 | 90.51 235 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Gipuma |  | | 84.44 133 | 86.33 101 | 78.78 258 | 84.20 289 | 73.57 131 | 89.55 72 | 90.44 161 | 84.24 43 | 84.38 214 | 94.89 47 | 76.35 172 | 80.40 339 | 76.14 158 | 96.80 88 | 82.36 351 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| UWE-MVS | | | 66.43 345 | 65.56 350 | 69.05 346 | 84.15 290 | 40.98 397 | 73.06 344 | 64.71 385 | 54.84 348 | 76.18 325 | 79.62 358 | 29.21 403 | 80.50 338 | 38.54 398 | 89.75 278 | 85.66 305 |
|
| EI-MVSNet-Vis-set | | | 85.12 120 | 84.53 139 | 86.88 97 | 84.01 291 | 72.76 140 | 83.91 172 | 85.18 252 | 80.44 82 | 88.75 123 | 85.49 290 | 80.08 130 | 91.92 168 | 82.02 89 | 90.85 264 | 95.97 38 |
|
| fmvsm_l_conf0.5_n | | | 82.06 184 | 81.54 192 | 83.60 172 | 83.94 292 | 73.90 129 | 83.35 187 | 86.10 237 | 58.97 322 | 83.80 229 | 90.36 207 | 74.23 190 | 86.94 276 | 82.90 76 | 90.22 273 | 89.94 247 |
|
| IterMVS-SCA-FT | | | 80.64 208 | 79.41 226 | 84.34 151 | 83.93 293 | 69.66 180 | 76.28 310 | 81.09 293 | 72.43 188 | 86.47 176 | 90.19 214 | 60.46 284 | 93.15 134 | 77.45 142 | 86.39 323 | 90.22 240 |
|
| MSDG | | | 80.06 224 | 79.99 224 | 80.25 240 | 83.91 294 | 68.04 198 | 77.51 292 | 89.19 192 | 77.65 119 | 81.94 258 | 83.45 319 | 76.37 171 | 86.31 287 | 63.31 287 | 86.59 320 | 86.41 296 |
|
| EI-MVSNet-UG-set | | | 85.04 121 | 84.44 141 | 86.85 98 | 83.87 295 | 72.52 149 | 83.82 174 | 85.15 253 | 80.27 86 | 88.75 123 | 85.45 292 | 79.95 132 | 91.90 169 | 81.92 92 | 90.80 265 | 96.13 33 |
|
| testing91 | | | 69.94 323 | 68.99 328 | 72.80 321 | 83.81 296 | 45.89 382 | 71.57 352 | 73.64 344 | 68.24 236 | 70.77 363 | 77.82 369 | 34.37 395 | 84.44 312 | 53.64 346 | 87.00 316 | 88.07 274 |
|
| fmvsm_l_conf0.5_n_a | | | 81.46 196 | 80.87 206 | 83.25 182 | 83.73 297 | 73.21 137 | 83.00 198 | 85.59 246 | 58.22 328 | 82.96 244 | 90.09 218 | 72.30 217 | 86.65 282 | 81.97 91 | 89.95 277 | 89.88 248 |
|
| thres200 | | | 72.34 300 | 71.55 306 | 74.70 310 | 83.48 298 | 51.60 357 | 75.02 325 | 73.71 342 | 70.14 218 | 78.56 306 | 80.57 348 | 46.20 354 | 88.20 261 | 46.99 379 | 89.29 282 | 84.32 321 |
|
| USDC | | | 76.63 258 | 76.73 255 | 76.34 297 | 83.46 299 | 57.20 319 | 80.02 252 | 88.04 210 | 52.14 363 | 83.65 231 | 91.25 175 | 63.24 271 | 86.65 282 | 54.66 341 | 94.11 192 | 85.17 310 |
|
| ETVMVS | | | 64.67 353 | 63.34 358 | 68.64 350 | 83.44 300 | 41.89 395 | 69.56 366 | 61.70 394 | 61.33 304 | 68.74 371 | 75.76 385 | 28.76 404 | 79.35 342 | 34.65 402 | 86.16 327 | 84.67 316 |
|
| testing222 | | | 66.93 339 | 65.30 351 | 71.81 330 | 83.38 301 | 45.83 383 | 72.06 348 | 67.50 374 | 64.12 277 | 69.68 368 | 76.37 383 | 27.34 408 | 83.00 323 | 38.88 395 | 88.38 294 | 86.62 295 |
|
| testing11 | | | 67.38 337 | 65.93 345 | 71.73 331 | 83.37 302 | 46.60 379 | 70.95 357 | 69.40 369 | 62.47 288 | 66.14 380 | 76.66 380 | 31.22 399 | 84.10 316 | 49.10 370 | 84.10 351 | 84.49 317 |
|
| HY-MVS | | 64.64 18 | 73.03 294 | 72.47 298 | 74.71 309 | 83.36 303 | 54.19 337 | 82.14 229 | 81.96 286 | 56.76 341 | 69.57 369 | 86.21 282 | 60.03 288 | 84.83 309 | 49.58 368 | 82.65 361 | 85.11 311 |
|
| testing99 | | | 69.27 329 | 68.15 335 | 72.63 323 | 83.29 304 | 45.45 384 | 71.15 354 | 71.08 361 | 67.34 247 | 70.43 364 | 77.77 371 | 32.24 398 | 84.35 314 | 53.72 345 | 86.33 324 | 88.10 273 |
|
| EI-MVSNet | | | 82.61 171 | 82.42 177 | 83.20 184 | 83.25 305 | 63.66 237 | 83.50 183 | 85.07 254 | 76.06 131 | 86.55 170 | 85.10 298 | 73.41 202 | 90.25 215 | 78.15 133 | 90.67 268 | 95.68 44 |
|
| CVMVSNet | | | 72.62 297 | 71.41 307 | 76.28 298 | 83.25 305 | 60.34 285 | 83.50 183 | 79.02 305 | 37.77 405 | 76.33 321 | 85.10 298 | 49.60 344 | 87.41 268 | 70.54 221 | 77.54 385 | 81.08 366 |
|
| WB-MVSnew | | | 68.72 333 | 69.01 327 | 67.85 354 | 83.22 307 | 43.98 390 | 74.93 326 | 65.98 382 | 55.09 345 | 73.83 345 | 79.11 360 | 65.63 259 | 71.89 366 | 38.21 399 | 85.04 338 | 87.69 284 |
|
| V42 | | | 83.47 160 | 83.37 157 | 83.75 167 | 83.16 308 | 63.33 242 | 81.31 236 | 90.23 172 | 69.51 222 | 90.91 83 | 90.81 194 | 74.16 191 | 92.29 160 | 80.06 108 | 90.22 273 | 95.62 46 |
|
| Anonymous20240521 | | | 80.18 221 | 81.25 199 | 76.95 288 | 83.15 309 | 60.84 281 | 82.46 216 | 85.99 241 | 68.76 230 | 86.78 163 | 93.73 106 | 59.13 296 | 77.44 351 | 73.71 188 | 97.55 66 | 92.56 165 |
|
| EU-MVSNet | | | 75.12 274 | 74.43 276 | 77.18 286 | 83.11 310 | 59.48 295 | 85.71 138 | 82.43 283 | 39.76 401 | 85.64 190 | 88.76 237 | 44.71 373 | 87.88 263 | 73.86 185 | 85.88 329 | 84.16 325 |
|
| ET-MVSNet_ETH3D | | | 75.28 271 | 72.77 292 | 82.81 196 | 83.03 311 | 68.11 196 | 77.09 296 | 76.51 322 | 60.67 313 | 77.60 316 | 80.52 349 | 38.04 389 | 91.15 189 | 70.78 216 | 90.68 267 | 89.17 259 |
|
| FMVSNet3 | | | 78.80 234 | 78.55 237 | 79.57 250 | 82.89 312 | 56.89 322 | 81.76 230 | 85.77 243 | 69.04 227 | 86.00 183 | 90.44 206 | 51.75 335 | 90.09 226 | 65.95 261 | 93.34 208 | 91.72 201 |
|
| MVS_Test | | | 82.47 175 | 83.22 158 | 80.22 241 | 82.62 313 | 57.75 315 | 82.54 214 | 91.96 116 | 71.16 207 | 82.89 245 | 92.52 140 | 77.41 152 | 90.50 212 | 80.04 109 | 87.84 304 | 92.40 174 |
|
| LF4IMVS | | | 82.75 170 | 81.93 182 | 85.19 131 | 82.08 314 | 80.15 70 | 85.53 139 | 88.76 197 | 68.01 238 | 85.58 191 | 87.75 254 | 71.80 223 | 86.85 278 | 74.02 182 | 93.87 198 | 88.58 269 |
|
| PVSNet | | 58.17 21 | 66.41 346 | 65.63 349 | 68.75 349 | 81.96 315 | 49.88 368 | 62.19 387 | 72.51 351 | 51.03 370 | 68.04 375 | 75.34 387 | 50.84 338 | 74.77 359 | 45.82 384 | 82.96 356 | 81.60 358 |
|
| GA-MVS | | | 75.83 267 | 74.61 272 | 79.48 252 | 81.87 316 | 59.25 297 | 73.42 340 | 82.88 278 | 68.68 231 | 79.75 291 | 81.80 338 | 50.62 339 | 89.46 240 | 66.85 253 | 85.64 330 | 89.72 249 |
|
| MS-PatchMatch | | | 70.93 313 | 70.22 316 | 73.06 319 | 81.85 317 | 62.50 255 | 73.82 337 | 77.90 308 | 52.44 360 | 75.92 328 | 81.27 342 | 55.67 319 | 81.75 329 | 55.37 335 | 77.70 383 | 74.94 384 |
|
| Syy-MVS | | | 69.40 328 | 70.03 319 | 67.49 357 | 81.72 318 | 38.94 399 | 71.00 355 | 61.99 389 | 61.38 302 | 70.81 361 | 72.36 392 | 61.37 280 | 79.30 343 | 64.50 280 | 85.18 335 | 84.22 322 |
|
| myMVS_eth3d | | | 64.66 354 | 63.89 355 | 66.97 359 | 81.72 318 | 37.39 402 | 71.00 355 | 61.99 389 | 61.38 302 | 70.81 361 | 72.36 392 | 20.96 413 | 79.30 343 | 49.59 367 | 85.18 335 | 84.22 322 |
|
| SCA | | | 73.32 290 | 72.57 296 | 75.58 305 | 81.62 320 | 55.86 327 | 78.89 271 | 71.37 360 | 61.73 296 | 74.93 339 | 83.42 320 | 60.46 284 | 87.01 272 | 58.11 320 | 82.63 363 | 83.88 326 |
|
| FMVSNet5 | | | 72.10 302 | 71.69 302 | 73.32 316 | 81.57 321 | 53.02 346 | 76.77 301 | 78.37 307 | 63.31 280 | 76.37 320 | 91.85 157 | 36.68 392 | 78.98 345 | 47.87 376 | 92.45 227 | 87.95 279 |
|
| thisisatest0515 | | | 73.00 295 | 70.52 312 | 80.46 237 | 81.45 322 | 59.90 290 | 73.16 343 | 74.31 336 | 57.86 331 | 76.08 327 | 77.78 370 | 37.60 391 | 92.12 164 | 65.00 272 | 91.45 250 | 89.35 255 |
|
| eth_miper_zixun_eth | | | 80.84 204 | 80.22 216 | 82.71 197 | 81.41 323 | 60.98 279 | 77.81 286 | 90.14 175 | 67.31 248 | 86.95 162 | 87.24 266 | 64.26 264 | 92.31 158 | 75.23 168 | 91.61 246 | 94.85 71 |
|
| CANet_DTU | | | 77.81 245 | 77.05 250 | 80.09 243 | 81.37 324 | 59.90 290 | 83.26 189 | 88.29 205 | 69.16 225 | 67.83 377 | 83.72 315 | 60.93 281 | 89.47 239 | 69.22 233 | 89.70 279 | 90.88 221 |
|
| ANet_high | | | 83.17 166 | 85.68 118 | 75.65 303 | 81.24 325 | 45.26 386 | 79.94 253 | 92.91 88 | 83.83 46 | 91.33 73 | 96.88 10 | 80.25 129 | 85.92 295 | 68.89 238 | 95.89 128 | 95.76 42 |
|
| new-patchmatchnet | | | 70.10 319 | 73.37 286 | 60.29 380 | 81.23 326 | 16.95 415 | 59.54 391 | 74.62 332 | 62.93 282 | 80.97 273 | 87.93 250 | 62.83 276 | 71.90 365 | 55.24 337 | 95.01 162 | 92.00 194 |
|
| test20.03 | | | 73.75 288 | 74.59 274 | 71.22 333 | 81.11 327 | 51.12 362 | 70.15 363 | 72.10 354 | 70.42 212 | 80.28 288 | 91.50 169 | 64.21 265 | 74.72 361 | 46.96 380 | 94.58 178 | 87.82 283 |
|
| MVS | | | 73.21 293 | 72.59 295 | 75.06 308 | 80.97 328 | 60.81 282 | 81.64 233 | 85.92 242 | 46.03 385 | 71.68 356 | 77.54 372 | 68.47 243 | 89.77 235 | 55.70 332 | 85.39 331 | 74.60 385 |
|
| N_pmnet | | | 70.20 317 | 68.80 331 | 74.38 311 | 80.91 329 | 84.81 39 | 59.12 393 | 76.45 323 | 55.06 346 | 75.31 337 | 82.36 332 | 55.74 318 | 54.82 403 | 47.02 378 | 87.24 309 | 83.52 333 |
|
| IterMVS | | | 76.91 254 | 76.34 258 | 78.64 261 | 80.91 329 | 64.03 234 | 76.30 309 | 79.03 304 | 64.88 274 | 83.11 241 | 89.16 232 | 59.90 290 | 84.46 311 | 68.61 243 | 85.15 337 | 87.42 286 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| c3_l | | | 81.64 194 | 81.59 189 | 81.79 217 | 80.86 331 | 59.15 300 | 78.61 276 | 90.18 174 | 68.36 233 | 87.20 152 | 87.11 269 | 69.39 234 | 91.62 175 | 78.16 131 | 94.43 183 | 94.60 75 |
|
| WTY-MVS | | | 67.91 336 | 68.35 333 | 66.58 361 | 80.82 332 | 48.12 372 | 65.96 378 | 72.60 349 | 53.67 353 | 71.20 358 | 81.68 340 | 58.97 297 | 69.06 375 | 48.57 372 | 81.67 365 | 82.55 347 |
|
| IB-MVS | | 62.13 19 | 71.64 305 | 68.97 329 | 79.66 249 | 80.80 333 | 62.26 261 | 73.94 335 | 76.90 318 | 63.27 281 | 68.63 373 | 76.79 379 | 33.83 396 | 91.84 172 | 59.28 313 | 87.26 308 | 84.88 313 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| our_test_3 | | | 71.85 303 | 71.59 303 | 72.62 324 | 80.71 334 | 53.78 340 | 69.72 365 | 71.71 359 | 58.80 324 | 78.03 308 | 80.51 350 | 56.61 313 | 78.84 347 | 62.20 293 | 86.04 328 | 85.23 309 |
|
| ppachtmachnet_test | | | 74.73 281 | 74.00 279 | 76.90 290 | 80.71 334 | 56.89 322 | 71.53 353 | 78.42 306 | 58.24 327 | 79.32 300 | 82.92 326 | 57.91 305 | 84.26 315 | 65.60 267 | 91.36 251 | 89.56 251 |
|
| testgi | | | 72.36 299 | 74.61 272 | 65.59 364 | 80.56 336 | 42.82 394 | 68.29 369 | 73.35 345 | 66.87 251 | 81.84 261 | 89.93 219 | 72.08 220 | 66.92 386 | 46.05 383 | 92.54 226 | 87.01 291 |
|
| D2MVS | | | 76.84 255 | 75.67 265 | 80.34 239 | 80.48 337 | 62.16 265 | 73.50 339 | 84.80 263 | 57.61 334 | 82.24 253 | 87.54 258 | 51.31 336 | 87.65 265 | 70.40 223 | 93.19 214 | 91.23 212 |
|
| 1314 | | | 73.22 292 | 72.56 297 | 75.20 306 | 80.41 338 | 57.84 313 | 81.64 233 | 85.36 248 | 51.68 366 | 73.10 349 | 76.65 381 | 61.45 279 | 85.19 305 | 63.54 284 | 79.21 377 | 82.59 345 |
|
| cl____ | | | 80.42 212 | 80.23 214 | 81.02 229 | 79.99 339 | 59.25 297 | 77.07 297 | 87.02 226 | 67.37 246 | 86.18 181 | 89.21 231 | 63.08 273 | 90.16 220 | 76.31 155 | 95.80 133 | 93.65 122 |
|
| DIV-MVS_self_test | | | 80.43 211 | 80.23 214 | 81.02 229 | 79.99 339 | 59.25 297 | 77.07 297 | 87.02 226 | 67.38 245 | 86.19 179 | 89.22 230 | 63.09 272 | 90.16 220 | 76.32 154 | 95.80 133 | 93.66 120 |
|
| miper_ehance_all_eth | | | 80.34 215 | 80.04 221 | 81.24 224 | 79.82 341 | 58.95 302 | 77.66 288 | 89.66 184 | 65.75 261 | 85.99 186 | 85.11 297 | 68.29 245 | 91.42 182 | 76.03 159 | 92.03 237 | 93.33 133 |
|
| CR-MVSNet | | | 74.00 286 | 73.04 289 | 76.85 292 | 79.58 342 | 62.64 252 | 82.58 211 | 76.90 318 | 50.50 375 | 75.72 330 | 92.38 142 | 48.07 348 | 84.07 317 | 68.72 242 | 82.91 358 | 83.85 329 |
|
| RPMNet | | | 78.88 232 | 78.28 241 | 80.68 235 | 79.58 342 | 62.64 252 | 82.58 211 | 94.16 29 | 74.80 150 | 75.72 330 | 92.59 136 | 48.69 345 | 95.56 38 | 73.48 192 | 82.91 358 | 83.85 329 |
|
| baseline2 | | | 69.77 324 | 66.89 340 | 78.41 266 | 79.51 344 | 58.09 310 | 76.23 311 | 69.57 368 | 57.50 335 | 64.82 391 | 77.45 374 | 46.02 356 | 88.44 257 | 53.08 349 | 77.83 381 | 88.70 268 |
|
| UnsupCasMVSNet_bld | | | 69.21 330 | 69.68 322 | 67.82 355 | 79.42 345 | 51.15 361 | 67.82 373 | 75.79 325 | 54.15 351 | 77.47 317 | 85.36 296 | 59.26 295 | 70.64 369 | 48.46 373 | 79.35 375 | 81.66 357 |
|
| PatchT | | | 70.52 315 | 72.76 293 | 63.79 372 | 79.38 346 | 33.53 406 | 77.63 289 | 65.37 384 | 73.61 164 | 71.77 355 | 92.79 132 | 44.38 374 | 75.65 358 | 64.53 279 | 85.37 332 | 82.18 352 |
|
| Patchmtry | | | 76.56 260 | 77.46 246 | 73.83 313 | 79.37 347 | 46.60 379 | 82.41 218 | 76.90 318 | 73.81 160 | 85.56 192 | 92.38 142 | 48.07 348 | 83.98 318 | 63.36 286 | 95.31 149 | 90.92 220 |
|
| mvs_anonymous | | | 78.13 241 | 78.76 234 | 76.23 300 | 79.24 348 | 50.31 366 | 78.69 274 | 84.82 262 | 61.60 300 | 83.09 243 | 92.82 129 | 73.89 195 | 87.01 272 | 68.33 247 | 86.41 322 | 91.37 210 |
|
| MVS-HIRNet | | | 61.16 363 | 62.92 360 | 55.87 384 | 79.09 349 | 35.34 405 | 71.83 349 | 57.98 402 | 46.56 382 | 59.05 400 | 91.14 179 | 49.95 343 | 76.43 354 | 38.74 396 | 71.92 394 | 55.84 403 |
|
| MDA-MVSNet-bldmvs | | | 77.47 248 | 76.90 253 | 79.16 255 | 79.03 350 | 64.59 227 | 66.58 377 | 75.67 327 | 73.15 178 | 88.86 120 | 88.99 235 | 66.94 250 | 81.23 333 | 64.71 275 | 88.22 300 | 91.64 205 |
|
| diffmvs |  | | 80.40 213 | 80.48 211 | 80.17 242 | 79.02 351 | 60.04 287 | 77.54 291 | 90.28 171 | 66.65 253 | 82.40 251 | 87.33 264 | 73.50 199 | 87.35 269 | 77.98 135 | 89.62 280 | 93.13 142 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tpm2 | | | 68.45 334 | 66.83 341 | 73.30 317 | 78.93 352 | 48.50 370 | 79.76 255 | 71.76 357 | 47.50 379 | 69.92 367 | 83.60 316 | 42.07 382 | 88.40 258 | 48.44 374 | 79.51 373 | 83.01 343 |
|
| tpm | | | 67.95 335 | 68.08 336 | 67.55 356 | 78.74 353 | 43.53 392 | 75.60 318 | 67.10 380 | 54.92 347 | 72.23 353 | 88.10 246 | 42.87 381 | 75.97 356 | 52.21 355 | 80.95 372 | 83.15 341 |
|
| MDTV_nov1_ep13 | | | | 68.29 334 | | 78.03 354 | 43.87 391 | 74.12 332 | 72.22 353 | 52.17 361 | 67.02 379 | 85.54 289 | 45.36 366 | 80.85 335 | 55.73 330 | 84.42 348 | |
|
| cl22 | | | 78.97 230 | 78.21 242 | 81.24 224 | 77.74 355 | 59.01 301 | 77.46 294 | 87.13 221 | 65.79 258 | 84.32 217 | 85.10 298 | 58.96 298 | 90.88 200 | 75.36 167 | 92.03 237 | 93.84 110 |
|
| EPNet_dtu | | | 72.87 296 | 71.33 308 | 77.49 283 | 77.72 356 | 60.55 284 | 82.35 220 | 75.79 325 | 66.49 254 | 58.39 403 | 81.06 344 | 53.68 326 | 85.98 294 | 53.55 347 | 92.97 220 | 85.95 301 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PatchmatchNet |  | | 69.71 325 | 68.83 330 | 72.33 328 | 77.66 357 | 53.60 341 | 79.29 263 | 69.99 366 | 57.66 333 | 72.53 352 | 82.93 325 | 46.45 353 | 80.08 341 | 60.91 305 | 72.09 393 | 83.31 339 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_vis1_n_1920 | | | 71.30 310 | 71.58 305 | 70.47 336 | 77.58 358 | 59.99 289 | 74.25 330 | 84.22 268 | 51.06 369 | 74.85 340 | 79.10 361 | 55.10 323 | 68.83 376 | 68.86 239 | 79.20 378 | 82.58 346 |
|
| dmvs_testset | | | 60.59 367 | 62.54 362 | 54.72 386 | 77.26 359 | 27.74 409 | 74.05 333 | 61.00 396 | 60.48 314 | 65.62 385 | 67.03 399 | 55.93 317 | 68.23 381 | 32.07 406 | 69.46 400 | 68.17 393 |
|
| sss | | | 66.92 340 | 67.26 338 | 65.90 363 | 77.23 360 | 51.10 363 | 64.79 380 | 71.72 358 | 52.12 364 | 70.13 366 | 80.18 352 | 57.96 304 | 65.36 392 | 50.21 363 | 81.01 371 | 81.25 363 |
|
| CostFormer | | | 69.98 322 | 68.68 332 | 73.87 312 | 77.14 361 | 50.72 364 | 79.26 264 | 74.51 334 | 51.94 365 | 70.97 360 | 84.75 304 | 45.16 370 | 87.49 267 | 55.16 338 | 79.23 376 | 83.40 336 |
|
| tpm cat1 | | | 66.76 344 | 65.21 352 | 71.42 332 | 77.09 362 | 50.62 365 | 78.01 282 | 73.68 343 | 44.89 388 | 68.64 372 | 79.00 362 | 45.51 364 | 82.42 328 | 49.91 365 | 70.15 396 | 81.23 365 |
|
| pmmvs5 | | | 70.73 314 | 70.07 317 | 72.72 322 | 77.03 363 | 52.73 348 | 74.14 331 | 75.65 328 | 50.36 376 | 72.17 354 | 85.37 295 | 55.42 321 | 80.67 336 | 52.86 353 | 87.59 307 | 84.77 314 |
|
| dmvs_re | | | 66.81 343 | 66.98 339 | 66.28 362 | 76.87 364 | 58.68 308 | 71.66 351 | 72.24 352 | 60.29 316 | 69.52 370 | 73.53 389 | 52.38 331 | 64.40 394 | 44.90 385 | 81.44 368 | 75.76 382 |
|
| EPNet | | | 80.37 214 | 78.41 240 | 86.23 110 | 76.75 365 | 73.28 134 | 87.18 111 | 77.45 312 | 76.24 130 | 68.14 374 | 88.93 236 | 65.41 260 | 93.85 102 | 69.47 229 | 96.12 116 | 91.55 208 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| miper_lstm_enhance | | | 76.45 262 | 76.10 260 | 77.51 282 | 76.72 366 | 60.97 280 | 64.69 381 | 85.04 256 | 63.98 278 | 83.20 240 | 88.22 244 | 56.67 312 | 78.79 348 | 73.22 196 | 93.12 215 | 92.78 155 |
|
| CHOSEN 280x420 | | | 59.08 368 | 56.52 373 | 66.76 360 | 76.51 367 | 64.39 231 | 49.62 402 | 59.00 399 | 43.86 391 | 55.66 406 | 68.41 398 | 35.55 394 | 68.21 382 | 43.25 388 | 76.78 388 | 67.69 394 |
|
| UnsupCasMVSNet_eth | | | 71.63 306 | 72.30 299 | 69.62 342 | 76.47 368 | 52.70 349 | 70.03 364 | 80.97 294 | 59.18 321 | 79.36 297 | 88.21 245 | 60.50 283 | 69.12 374 | 58.33 318 | 77.62 384 | 87.04 290 |
|
| test-LLR | | | 67.21 338 | 66.74 342 | 68.63 351 | 76.45 369 | 55.21 332 | 67.89 370 | 67.14 378 | 62.43 291 | 65.08 388 | 72.39 390 | 43.41 377 | 69.37 371 | 61.00 303 | 84.89 343 | 81.31 361 |
|
| test-mter | | | 65.00 352 | 63.79 356 | 68.63 351 | 76.45 369 | 55.21 332 | 67.89 370 | 67.14 378 | 50.98 371 | 65.08 388 | 72.39 390 | 28.27 406 | 69.37 371 | 61.00 303 | 84.89 343 | 81.31 361 |
|
| miper_enhance_ethall | | | 77.83 243 | 76.93 252 | 80.51 236 | 76.15 371 | 58.01 312 | 75.47 322 | 88.82 195 | 58.05 330 | 83.59 232 | 80.69 345 | 64.41 263 | 91.20 186 | 73.16 202 | 92.03 237 | 92.33 178 |
|
| gg-mvs-nofinetune | | | 68.96 332 | 69.11 325 | 68.52 353 | 76.12 372 | 45.32 385 | 83.59 181 | 55.88 403 | 86.68 24 | 64.62 392 | 97.01 7 | 30.36 401 | 83.97 319 | 44.78 386 | 82.94 357 | 76.26 381 |
|
| test_vis1_n | | | 70.29 316 | 69.99 320 | 71.20 334 | 75.97 373 | 66.50 212 | 76.69 303 | 80.81 295 | 44.22 390 | 75.43 333 | 77.23 376 | 50.00 342 | 68.59 377 | 66.71 256 | 82.85 360 | 78.52 378 |
|
| CMPMVS |  | 59.41 20 | 75.12 274 | 73.57 282 | 79.77 245 | 75.84 374 | 67.22 202 | 81.21 239 | 82.18 284 | 50.78 372 | 76.50 319 | 87.66 256 | 55.20 322 | 82.99 324 | 62.17 295 | 90.64 271 | 89.09 263 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| wuyk23d | | | 75.13 273 | 79.30 228 | 62.63 373 | 75.56 375 | 75.18 123 | 80.89 243 | 73.10 348 | 75.06 149 | 94.76 12 | 95.32 34 | 87.73 40 | 52.85 404 | 34.16 403 | 97.11 79 | 59.85 400 |
|
| Patchmatch-test | | | 65.91 348 | 67.38 337 | 61.48 378 | 75.51 376 | 43.21 393 | 68.84 367 | 63.79 387 | 62.48 287 | 72.80 351 | 83.42 320 | 44.89 372 | 59.52 400 | 48.27 375 | 86.45 321 | 81.70 356 |
|
| new_pmnet | | | 55.69 371 | 57.66 372 | 49.76 387 | 75.47 377 | 30.59 407 | 59.56 390 | 51.45 406 | 43.62 393 | 62.49 394 | 75.48 386 | 40.96 384 | 49.15 407 | 37.39 400 | 72.52 391 | 69.55 391 |
|
| gm-plane-assit | | | | | | 75.42 378 | 44.97 388 | | | 52.17 361 | | 72.36 392 | | 87.90 262 | 54.10 343 | | |
|
| MVSTER | | | 77.09 252 | 75.70 264 | 81.25 222 | 75.27 379 | 61.08 275 | 77.49 293 | 85.07 254 | 60.78 311 | 86.55 170 | 88.68 239 | 43.14 380 | 90.25 215 | 73.69 190 | 90.67 268 | 92.42 172 |
|
| PVSNet_0 | | 51.08 22 | 56.10 370 | 54.97 375 | 59.48 382 | 75.12 380 | 53.28 345 | 55.16 399 | 61.89 391 | 44.30 389 | 59.16 399 | 62.48 402 | 54.22 325 | 65.91 390 | 35.40 401 | 47.01 405 | 59.25 401 |
|
| test0.0.03 1 | | | 64.66 354 | 64.36 353 | 65.57 365 | 75.03 381 | 46.89 378 | 64.69 381 | 61.58 395 | 62.43 291 | 71.18 359 | 77.54 372 | 43.41 377 | 68.47 380 | 40.75 393 | 82.65 361 | 81.35 360 |
|
| test_fmvs3 | | | 75.72 269 | 75.20 269 | 77.27 285 | 75.01 382 | 69.47 182 | 78.93 269 | 84.88 261 | 46.67 381 | 87.08 158 | 87.84 252 | 50.44 341 | 71.62 367 | 77.42 144 | 88.53 292 | 90.72 225 |
|
| tpmvs | | | 70.16 318 | 69.56 323 | 71.96 329 | 74.71 383 | 48.13 371 | 79.63 256 | 75.45 330 | 65.02 273 | 70.26 365 | 81.88 337 | 45.34 367 | 85.68 301 | 58.34 317 | 75.39 389 | 82.08 354 |
|
| test_fmvs1_n | | | 70.94 312 | 70.41 315 | 72.53 326 | 73.92 384 | 66.93 208 | 75.99 315 | 84.21 269 | 43.31 394 | 79.40 296 | 79.39 359 | 43.47 376 | 68.55 378 | 69.05 236 | 84.91 342 | 82.10 353 |
|
| MDA-MVSNet_test_wron | | | 70.05 321 | 70.44 313 | 68.88 348 | 73.84 385 | 53.47 342 | 58.93 395 | 67.28 376 | 58.43 325 | 87.09 157 | 85.40 293 | 59.80 292 | 67.25 384 | 59.66 311 | 83.54 353 | 85.92 302 |
|
| YYNet1 | | | 70.06 320 | 70.44 313 | 68.90 347 | 73.76 386 | 53.42 344 | 58.99 394 | 67.20 377 | 58.42 326 | 87.10 156 | 85.39 294 | 59.82 291 | 67.32 383 | 59.79 310 | 83.50 354 | 85.96 300 |
|
| test_cas_vis1_n_1920 | | | 69.20 331 | 69.12 324 | 69.43 344 | 73.68 387 | 62.82 249 | 70.38 362 | 77.21 315 | 46.18 384 | 80.46 285 | 78.95 363 | 52.03 332 | 65.53 391 | 65.77 266 | 77.45 386 | 79.95 374 |
|
| GG-mvs-BLEND | | | | | 67.16 358 | 73.36 388 | 46.54 381 | 84.15 164 | 55.04 404 | | 58.64 402 | 61.95 403 | 29.93 402 | 83.87 320 | 38.71 397 | 76.92 387 | 71.07 389 |
|
| JIA-IIPM | | | 69.41 327 | 66.64 344 | 77.70 280 | 73.19 389 | 71.24 168 | 75.67 317 | 65.56 383 | 70.42 212 | 65.18 387 | 92.97 124 | 33.64 397 | 83.06 322 | 53.52 348 | 69.61 399 | 78.79 377 |
|
| ADS-MVSNet2 | | | 65.87 349 | 63.64 357 | 72.55 325 | 73.16 390 | 56.92 321 | 67.10 374 | 74.81 331 | 49.74 377 | 66.04 382 | 82.97 323 | 46.71 351 | 77.26 352 | 42.29 389 | 69.96 397 | 83.46 334 |
|
| ADS-MVSNet | | | 61.90 359 | 62.19 363 | 61.03 379 | 73.16 390 | 36.42 404 | 67.10 374 | 61.75 392 | 49.74 377 | 66.04 382 | 82.97 323 | 46.71 351 | 63.21 395 | 42.29 389 | 69.96 397 | 83.46 334 |
|
| DSMNet-mixed | | | 60.98 365 | 61.61 365 | 59.09 383 | 72.88 392 | 45.05 387 | 74.70 328 | 46.61 409 | 26.20 407 | 65.34 386 | 90.32 209 | 55.46 320 | 63.12 396 | 41.72 391 | 81.30 370 | 69.09 392 |
|
| tpmrst | | | 66.28 347 | 66.69 343 | 65.05 368 | 72.82 393 | 39.33 398 | 78.20 281 | 70.69 364 | 53.16 356 | 67.88 376 | 80.36 351 | 48.18 347 | 74.75 360 | 58.13 319 | 70.79 395 | 81.08 366 |
|
| test_fmvs2 | | | 73.57 289 | 72.80 291 | 75.90 302 | 72.74 394 | 68.84 191 | 77.07 297 | 84.32 267 | 45.14 387 | 82.89 245 | 84.22 310 | 48.37 346 | 70.36 370 | 73.40 194 | 87.03 314 | 88.52 270 |
|
| TESTMET0.1,1 | | | 61.29 362 | 60.32 368 | 64.19 370 | 72.06 395 | 51.30 359 | 67.89 370 | 62.09 388 | 45.27 386 | 60.65 397 | 69.01 396 | 27.93 407 | 64.74 393 | 56.31 327 | 81.65 367 | 76.53 380 |
|
| dp | | | 60.70 366 | 60.29 369 | 61.92 376 | 72.04 396 | 38.67 401 | 70.83 358 | 64.08 386 | 51.28 368 | 60.75 396 | 77.28 375 | 36.59 393 | 71.58 368 | 47.41 377 | 62.34 403 | 75.52 383 |
|
| pmmvs3 | | | 62.47 357 | 60.02 370 | 69.80 341 | 71.58 397 | 64.00 235 | 70.52 360 | 58.44 401 | 39.77 400 | 66.05 381 | 75.84 384 | 27.10 410 | 72.28 363 | 46.15 382 | 84.77 347 | 73.11 386 |
|
| dongtai | | | 41.90 374 | 42.65 377 | 39.67 389 | 70.86 398 | 21.11 411 | 61.01 389 | 21.42 416 | 57.36 336 | 57.97 404 | 50.06 405 | 16.40 415 | 58.73 402 | 21.03 409 | 27.69 409 | 39.17 405 |
|
| EPMVS | | | 62.47 357 | 62.63 361 | 62.01 374 | 70.63 399 | 38.74 400 | 74.76 327 | 52.86 405 | 53.91 352 | 67.71 378 | 80.01 353 | 39.40 386 | 66.60 387 | 55.54 334 | 68.81 401 | 80.68 370 |
|
| mvsany_test3 | | | 65.48 351 | 62.97 359 | 73.03 320 | 69.99 400 | 76.17 118 | 64.83 379 | 43.71 410 | 43.68 392 | 80.25 289 | 87.05 271 | 52.83 329 | 63.09 397 | 51.92 360 | 72.44 392 | 79.84 375 |
|
| test_vis3_rt | | | 71.42 308 | 70.67 310 | 73.64 315 | 69.66 401 | 70.46 173 | 66.97 376 | 89.73 181 | 42.68 397 | 88.20 137 | 83.04 322 | 43.77 375 | 60.07 398 | 65.35 270 | 86.66 319 | 90.39 238 |
|
| test_fmvs1 | | | 69.57 326 | 69.05 326 | 71.14 335 | 69.15 402 | 65.77 220 | 73.98 334 | 83.32 274 | 42.83 396 | 77.77 314 | 78.27 368 | 43.39 379 | 68.50 379 | 68.39 246 | 84.38 349 | 79.15 376 |
|
| KD-MVS_2432*1600 | | | 66.87 341 | 65.81 347 | 70.04 338 | 67.50 403 | 47.49 375 | 62.56 385 | 79.16 302 | 61.21 307 | 77.98 309 | 80.61 346 | 25.29 411 | 82.48 326 | 53.02 350 | 84.92 340 | 80.16 372 |
|
| miper_refine_blended | | | 66.87 341 | 65.81 347 | 70.04 338 | 67.50 403 | 47.49 375 | 62.56 385 | 79.16 302 | 61.21 307 | 77.98 309 | 80.61 346 | 25.29 411 | 82.48 326 | 53.02 350 | 84.92 340 | 80.16 372 |
|
| E-PMN | | | 61.59 361 | 61.62 364 | 61.49 377 | 66.81 405 | 55.40 330 | 53.77 400 | 60.34 397 | 66.80 252 | 58.90 401 | 65.50 400 | 40.48 385 | 66.12 389 | 55.72 331 | 86.25 325 | 62.95 398 |
|
| test_f | | | 64.31 356 | 65.85 346 | 59.67 381 | 66.54 406 | 62.24 264 | 57.76 397 | 70.96 362 | 40.13 399 | 84.36 215 | 82.09 334 | 46.93 350 | 51.67 405 | 61.99 296 | 81.89 364 | 65.12 396 |
|
| test_vis1_rt | | | 65.64 350 | 64.09 354 | 70.31 337 | 66.09 407 | 70.20 176 | 61.16 388 | 81.60 290 | 38.65 402 | 72.87 350 | 69.66 395 | 52.84 328 | 60.04 399 | 56.16 328 | 77.77 382 | 80.68 370 |
|
| EMVS | | | 61.10 364 | 60.81 366 | 61.99 375 | 65.96 408 | 55.86 327 | 53.10 401 | 58.97 400 | 67.06 249 | 56.89 405 | 63.33 401 | 40.98 383 | 67.03 385 | 54.79 340 | 86.18 326 | 63.08 397 |
|
| mvsany_test1 | | | 58.48 369 | 56.47 374 | 64.50 369 | 65.90 409 | 68.21 195 | 56.95 398 | 42.11 411 | 38.30 403 | 65.69 384 | 77.19 378 | 56.96 311 | 59.35 401 | 46.16 381 | 58.96 404 | 65.93 395 |
|
| PMMVS | | | 61.65 360 | 60.38 367 | 65.47 366 | 65.40 410 | 69.26 185 | 63.97 383 | 61.73 393 | 36.80 406 | 60.11 398 | 68.43 397 | 59.42 293 | 66.35 388 | 48.97 371 | 78.57 380 | 60.81 399 |
|
| PMMVS2 | | | 55.64 372 | 59.27 371 | 44.74 388 | 64.30 411 | 12.32 416 | 40.60 403 | 49.79 407 | 53.19 355 | 65.06 390 | 84.81 303 | 53.60 327 | 49.76 406 | 32.68 405 | 89.41 281 | 72.15 387 |
|
| MVE |  | 40.22 23 | 51.82 373 | 50.47 376 | 55.87 384 | 62.66 412 | 51.91 354 | 31.61 405 | 39.28 412 | 40.65 398 | 50.76 407 | 74.98 388 | 56.24 316 | 44.67 408 | 33.94 404 | 64.11 402 | 71.04 390 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| kuosan | | | 30.83 375 | 32.17 378 | 26.83 391 | 53.36 413 | 19.02 414 | 57.90 396 | 20.44 417 | 38.29 404 | 38.01 408 | 37.82 407 | 15.18 416 | 33.45 410 | 7.74 411 | 20.76 410 | 28.03 406 |
|
| DeepMVS_CX |  | | | | 24.13 392 | 32.95 414 | 29.49 408 | | 21.63 415 | 12.07 408 | 37.95 409 | 45.07 406 | 30.84 400 | 19.21 411 | 17.94 410 | 33.06 408 | 23.69 407 |
|
| test_method | | | 30.46 376 | 29.60 379 | 33.06 390 | 17.99 415 | 3.84 418 | 13.62 406 | 73.92 338 | 2.79 409 | 18.29 411 | 53.41 404 | 28.53 405 | 43.25 409 | 22.56 407 | 35.27 407 | 52.11 404 |
|
| tmp_tt | | | 20.25 378 | 24.50 381 | 7.49 393 | 4.47 416 | 8.70 417 | 34.17 404 | 25.16 414 | 1.00 411 | 32.43 410 | 18.49 408 | 39.37 387 | 9.21 412 | 21.64 408 | 43.75 406 | 4.57 408 |
|
| testmvs | | | 5.91 382 | 7.65 385 | 0.72 395 | 1.20 417 | 0.37 420 | 59.14 392 | 0.67 419 | 0.49 413 | 1.11 413 | 2.76 412 | 0.94 418 | 0.24 414 | 1.02 413 | 1.47 411 | 1.55 410 |
|
| test123 | | | 6.27 381 | 8.08 384 | 0.84 394 | 1.11 418 | 0.57 419 | 62.90 384 | 0.82 418 | 0.54 412 | 1.07 414 | 2.75 413 | 1.26 417 | 0.30 413 | 1.04 412 | 1.26 412 | 1.66 409 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| cdsmvs_eth3d_5k | | | 20.81 377 | 27.75 380 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 85.44 247 | 0.00 414 | 0.00 415 | 82.82 327 | 81.46 115 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 6.41 380 | 8.55 383 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 76.94 161 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| ab-mvs-re | | | 6.65 379 | 8.87 382 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 79.80 355 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 37.39 402 | | | | | | | | 52.61 354 | | |
|
| PC_three_1452 | | | | | | | | | | 58.96 323 | 90.06 94 | 91.33 173 | 80.66 125 | 93.03 138 | 75.78 161 | 95.94 125 | 92.48 169 |
|
| test_241102_TWO | | | | | | | | | 93.71 52 | 83.77 47 | 93.49 35 | 94.27 73 | 89.27 21 | 95.84 22 | 86.03 46 | 97.82 50 | 92.04 192 |
|
| test_0728_THIRD | | | | | | | | | | 85.33 33 | 93.75 30 | 94.65 55 | 87.44 43 | 95.78 27 | 87.41 22 | 98.21 28 | 92.98 150 |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 326 |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 355 | | | | 83.88 326 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 360 | | | | |
|
| MTGPA |  | | | | | | | | 91.81 125 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.85 273 | | | | 3.13 410 | 45.19 369 | 80.13 340 | 58.11 320 | | |
|
| test_post | | | | | | | | | | | | 3.10 411 | 45.43 365 | 77.22 353 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 339 | 45.93 359 | 87.01 272 | | | |
|
| MTMP | | | | | | | | 90.66 44 | 33.14 413 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 80.83 101 | 96.45 102 | 90.57 232 |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 114 | 96.16 113 | 90.22 240 |
|
| test_prior4 | | | | | | | 78.97 80 | 84.59 155 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 83.37 186 | | 75.43 144 | 84.58 209 | 91.57 167 | 81.92 110 | | 79.54 116 | 96.97 82 | |
|
| 旧先验2 | | | | | | | | 81.73 231 | | 56.88 340 | 86.54 175 | | | 84.90 308 | 72.81 203 | | |
|
| 新几何2 | | | | | | | | 81.72 232 | | | | | | | | | |
|
| 无先验 | | | | | | | | 82.81 205 | 85.62 245 | 58.09 329 | | | | 91.41 183 | 67.95 250 | | 84.48 318 |
|
| 原ACMM2 | | | | | | | | 82.26 225 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 86.43 286 | 63.52 285 | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 107 | | | | |
|
| testdata1 | | | | | | | | 79.62 257 | | 73.95 159 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 93.61 56 | | | | | 95.22 55 | 80.78 102 | 95.83 131 | 94.46 80 |
|
| plane_prior4 | | | | | | | | | | | | 92.95 125 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 107 | | | 77.79 118 | 86.55 170 | | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 77 | | 79.44 96 | | | | | | | |
|
| plane_prior | | | | | | | 76.42 113 | 87.15 112 | | 75.94 137 | | | | | | 95.03 159 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 335 | | | | | | | | |
|
| test11 | | | | | | | | | 91.46 131 | | | | | | | | |
|
| door | | | | | | | | | 72.57 350 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 171 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 145 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 281 | | | 94.61 74 | | | 93.56 128 |
|
| HQP3-MVS | | | | | | | | | 92.68 95 | | | | | | | 94.47 180 | |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 218 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 410 | 70.76 359 | | 46.47 383 | 61.27 395 | | 45.20 368 | | 49.18 369 | | 83.75 331 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 137 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 72 | |
|
| Test By Simon | | | | | | | | | | | | | 79.09 136 | | | | |
|