This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 20288.84 1394.29 1897.57 390.48 1391.26 18572.57 20597.65 5997.34 14
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 18888.51 1790.11 9395.12 4390.98 688.92 25077.55 14097.07 8083.13 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 2991.81 12584.07 4492.00 6394.40 7086.63 5195.28 5488.59 598.31 2392.30 179
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30388.95 8493.19 7391.62 496.01 696.16 2087.02 4795.60 3578.69 12398.72 898.97 3
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30689.04 8392.74 9491.40 596.12 496.06 2287.23 4595.57 3779.42 11898.74 599.00 2
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31388.93 8592.84 9191.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30988.66 9292.06 11290.78 695.67 795.17 4181.80 11295.54 4079.00 12198.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 12396.32 962.39 25789.54 7493.31 6790.21 1095.57 995.66 2881.42 11695.90 1580.94 9998.80 298.84 5
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2693.03 8482.59 6188.52 12894.37 7286.74 5095.41 4986.32 3998.21 2893.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9883.09 5691.54 6994.25 7787.67 4195.51 4387.21 2898.11 3493.12 144
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1775.79 13992.94 4394.96 4588.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4696.29 1688.16 3394.17 9186.07 4598.48 1797.22 18
ACMMP_NAP90.65 2891.07 3589.42 5895.93 1579.54 7689.95 6193.68 5577.65 11991.97 6494.89 4788.38 2795.45 4789.27 397.87 4993.27 136
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2385.21 3592.51 5495.13 4290.65 995.34 5188.06 898.15 3395.95 40
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4578.43 11189.16 11792.25 14972.03 22296.36 388.21 790.93 26092.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6881.91 6790.88 8594.21 7887.75 3995.87 1887.60 1897.71 5793.83 111
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 7181.99 6591.40 7194.17 8287.51 4295.87 1887.74 1397.76 5493.99 102
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2794.22 2580.14 8891.29 7593.97 9187.93 3895.87 1888.65 497.96 4494.12 98
TSAR-MVS + MP.88.14 7187.82 7789.09 6495.72 2176.74 10892.49 2491.19 14267.85 24386.63 16994.84 4979.58 13495.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4580.32 8591.74 6894.41 6988.17 3295.98 1186.37 3897.99 3993.96 105
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9794.03 8886.57 5295.80 2487.35 2497.62 6194.20 91
X-MVStestdata85.04 12182.70 17092.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9716.05 40986.57 5295.80 2487.35 2497.62 6194.20 91
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6793.94 9790.55 1295.73 3088.50 698.23 2795.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2982.52 6292.39 5794.14 8389.15 2395.62 3487.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3493.74 5180.98 7991.38 7293.80 10187.20 4695.80 2487.10 3197.69 5893.93 106
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6981.99 6591.47 7093.96 9488.35 2995.56 3887.74 1397.74 5692.85 153
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7275.37 14692.84 4795.28 3785.58 6496.09 787.92 1097.76 5493.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6283.16 5591.06 7994.00 9088.26 3095.71 3187.28 2798.39 2092.55 166
VDDNet84.35 13585.39 12381.25 22295.13 3159.32 29685.42 14281.11 29286.41 2787.41 15196.21 1973.61 19790.61 21066.33 25896.85 8493.81 115
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2892.30 10679.74 9187.50 15092.38 14281.42 11693.28 12883.07 7397.24 7691.67 204
ACMM79.39 990.65 2890.99 3789.63 5495.03 3383.53 4789.62 7193.35 6379.20 10093.83 2793.60 10990.81 792.96 13985.02 5698.45 1892.41 173
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9288.22 1888.53 12797.64 283.45 8394.55 7886.02 4898.60 1296.67 26
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13978.20 11386.69 16892.28 14880.36 12895.06 6186.17 4496.49 9990.22 240
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 4079.68 9292.09 6193.89 9983.80 7893.10 13682.67 8198.04 3593.64 123
EGC-MVSNET74.79 28069.99 32089.19 6294.89 3787.00 1191.89 3386.28 2341.09 4102.23 41295.98 2381.87 11189.48 23879.76 11295.96 12391.10 216
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4888.20 1993.24 3894.02 8990.15 1695.67 3386.82 3397.34 7392.19 187
OPM-MVS89.80 4789.97 4889.27 6094.76 3979.86 7286.76 12192.78 9378.78 10692.51 5493.64 10888.13 3493.84 10484.83 5897.55 6694.10 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2082.35 6393.67 3394.82 5091.18 495.52 4185.36 5298.73 695.23 58
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2082.35 6393.67 3394.82 5091.18 495.52 4185.36 5298.73 695.23 58
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4480.07 8986.75 16593.26 11393.64 290.93 19684.60 6090.75 26693.97 104
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3879.03 10392.87 4593.74 10590.60 1195.21 5782.87 7798.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5880.16 8789.13 11993.44 11183.82 7790.98 19483.86 6795.30 15093.60 125
test_0728_SECOND86.79 9994.25 4572.45 15190.54 4894.10 3695.88 1686.42 3697.97 4292.02 193
SED-MVS90.46 3391.64 1786.93 9694.18 4672.65 14190.47 5193.69 5383.77 4794.11 2294.27 7390.28 1495.84 2286.03 4697.92 4592.29 180
IU-MVS94.18 4672.64 14390.82 15156.98 33989.67 10685.78 5097.92 4593.28 135
test_241102_ONE94.18 4672.65 14193.69 5383.62 4994.11 2293.78 10390.28 1495.50 45
DVP-MVScopyleft90.06 3991.32 2886.29 10894.16 4972.56 14790.54 4891.01 14683.61 5093.75 3094.65 5589.76 1895.78 2786.42 3697.97 4290.55 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14790.63 4593.90 4583.61 5093.75 3094.49 6389.76 18
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6688.83 2495.51 4387.16 2997.60 6392.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6690.64 1087.16 2997.60 6392.73 156
MIMVSNet183.63 15584.59 13780.74 23294.06 5362.77 25082.72 20684.53 26577.57 12190.34 9095.92 2476.88 16785.83 30061.88 29797.42 7193.62 124
TranMVSNet+NR-MVSNet87.86 7888.76 6985.18 13294.02 5464.13 23384.38 16191.29 13884.88 3992.06 6293.84 10086.45 5593.73 10673.22 19698.66 1097.69 9
新几何182.95 19093.96 5578.56 8480.24 29855.45 34483.93 22891.08 18271.19 22788.33 25965.84 26493.07 21681.95 355
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3693.48 6082.82 6092.60 5393.97 9188.19 3196.29 587.61 1798.20 3094.39 87
Skip Steuart: Steuart Systems R&D Blog.
test_part293.86 5777.77 9492.84 47
test_one_060193.85 5873.27 13594.11 3586.57 2593.47 3794.64 5888.42 26
save fliter93.75 5977.44 9986.31 12889.72 18270.80 209
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6993.16 13391.10 197.53 6996.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1290.28 992.11 6095.03 4489.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6089.08 6289.37 5993.64 6279.07 7988.54 9394.20 2673.53 16589.71 10494.82 5085.09 6595.77 2984.17 6498.03 3793.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvs_tets89.78 4889.27 5991.30 2593.51 6384.79 4089.89 6390.63 15670.00 21994.55 1596.67 1187.94 3793.59 11584.27 6395.97 12295.52 48
HQP_MVS87.75 8187.43 8388.70 7293.45 6476.42 11389.45 7793.61 5679.44 9686.55 17092.95 12574.84 18295.22 5580.78 10295.83 13194.46 80
plane_prior793.45 6477.31 102
WR-MVS83.56 15784.40 14381.06 22893.43 6654.88 33578.67 27585.02 25781.24 7590.74 8791.56 16872.85 21091.08 19168.00 24898.04 3597.23 17
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6778.65 8389.15 8294.05 3884.68 4093.90 2494.11 8688.13 3496.30 484.51 6197.81 5191.70 203
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax89.41 5388.81 6891.19 2893.38 6784.72 4189.70 6690.29 17069.27 22394.39 1696.38 1586.02 6293.52 11983.96 6595.92 12795.34 52
PS-MVSNAJss88.31 6987.90 7689.56 5693.31 6977.96 9287.94 10191.97 11570.73 21094.19 2196.67 1176.94 16194.57 7683.07 7396.28 10796.15 32
test22293.31 6976.54 10979.38 26277.79 30952.59 35882.36 25290.84 19366.83 25291.69 24481.25 363
tt080588.09 7389.79 5182.98 18893.26 7163.94 23691.10 4189.64 18585.07 3690.91 8391.09 18189.16 2291.87 17182.03 8895.87 12993.13 142
DU-MVS86.80 9086.99 9186.21 11293.24 7267.02 20683.16 19492.21 10781.73 6990.92 8191.97 15477.20 15593.99 9774.16 17798.35 2197.61 10
NR-MVSNet86.00 10486.22 10385.34 13093.24 7264.56 22982.21 22690.46 16080.99 7888.42 13191.97 15477.56 15093.85 10272.46 20698.65 1197.61 10
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7480.37 6891.91 3293.11 7781.10 7795.32 1097.24 572.94 20994.85 6785.07 5497.78 5297.26 15
UniMVSNet (Re)86.87 8786.98 9286.55 10393.11 7568.48 19283.80 17692.87 8980.37 8389.61 11091.81 16177.72 14894.18 8975.00 17198.53 1596.99 23
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7685.17 3592.47 2595.05 1387.65 2293.21 3994.39 7190.09 1795.08 6086.67 3597.60 6394.18 94
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7776.26 11689.65 7095.55 787.72 2193.89 2694.94 4691.62 393.44 12378.35 12698.76 395.61 47
APDe-MVScopyleft91.22 2191.92 1189.14 6392.97 7878.04 8992.84 1594.14 3383.33 5393.90 2495.73 2688.77 2596.41 287.60 1897.98 4192.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
114514_t83.10 16882.54 17584.77 13992.90 7969.10 19086.65 12390.62 15754.66 34981.46 26990.81 19476.98 16094.38 8272.62 20496.18 11290.82 223
testdata79.54 25192.87 8072.34 15280.14 29959.91 31985.47 19491.75 16467.96 24785.24 30468.57 24592.18 23681.06 368
CNVR-MVS87.81 8087.68 7888.21 8092.87 8077.30 10385.25 14491.23 14077.31 12387.07 15991.47 17082.94 8894.71 7084.67 5996.27 10992.62 163
SF-MVS90.27 3590.80 4288.68 7392.86 8277.09 10491.19 4095.74 581.38 7392.28 5893.80 10186.89 4994.64 7385.52 5197.51 7094.30 90
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11492.86 8267.02 20682.55 21391.56 12883.08 5790.92 8191.82 16078.25 14393.99 9774.16 17798.35 2197.49 13
plane_prior192.83 84
原ACMM184.60 14392.81 8574.01 12891.50 13062.59 28582.73 24890.67 20076.53 16894.25 8569.24 23195.69 13885.55 306
plane_prior692.61 8676.54 10974.84 182
APD-MVScopyleft89.54 5289.63 5489.26 6192.57 8781.34 6490.19 5693.08 8080.87 8191.13 7793.19 11486.22 5995.97 1282.23 8797.18 7890.45 236
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_040288.65 6589.58 5685.88 11992.55 8872.22 15584.01 16789.44 19088.63 1694.38 1795.77 2586.38 5893.59 11579.84 11195.21 15191.82 199
SixPastTwentyTwo87.20 8587.45 8286.45 10592.52 8969.19 18887.84 10388.05 20981.66 7094.64 1496.53 1465.94 25794.75 6983.02 7596.83 8695.41 50
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9070.36 17589.55 7293.84 4981.89 6894.70 1395.44 3390.69 888.31 26083.33 6998.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet80.25 21881.68 18575.94 30192.46 9147.98 37376.70 30281.67 28973.45 16784.87 20592.82 12974.66 18786.51 28461.66 30096.85 8493.33 133
F-COLMAP84.97 12583.42 15589.63 5492.39 9283.40 4888.83 8791.92 11773.19 17780.18 29089.15 23377.04 15993.28 12865.82 26592.28 23292.21 185
test_djsdf89.62 5089.01 6391.45 2292.36 9382.98 5391.98 3090.08 17671.54 20194.28 2096.54 1381.57 11494.27 8386.26 4096.49 9997.09 20
TEST992.34 9479.70 7483.94 16990.32 16565.41 26984.49 21190.97 18582.03 10693.63 110
train_agg85.98 10585.28 12588.07 8292.34 9479.70 7483.94 16990.32 16565.79 25884.49 21190.97 18581.93 10893.63 11081.21 9596.54 9690.88 221
NCCC87.36 8386.87 9488.83 6792.32 9678.84 8286.58 12591.09 14478.77 10784.85 20690.89 18980.85 12295.29 5281.14 9795.32 14792.34 177
mvsmamba87.87 7787.23 8589.78 5192.31 9776.51 11291.09 4291.87 11972.61 18792.16 5995.23 4066.01 25695.59 3686.02 4897.78 5297.24 16
FC-MVSNet-test85.93 10687.05 9082.58 20192.25 9856.44 32485.75 13693.09 7977.33 12291.94 6594.65 5574.78 18493.41 12575.11 17098.58 1397.88 7
CDPH-MVS86.17 10385.54 12088.05 8392.25 9875.45 12183.85 17392.01 11365.91 25786.19 17991.75 16483.77 7994.98 6477.43 14396.71 9093.73 118
test111178.53 23878.85 23277.56 28192.22 10047.49 37582.61 20969.24 37072.43 18885.28 19594.20 7951.91 33390.07 22765.36 26996.45 10295.11 62
ZD-MVS92.22 10080.48 6791.85 12171.22 20690.38 8992.98 12286.06 6196.11 681.99 9096.75 89
pmmvs686.52 9588.06 7481.90 21192.22 10062.28 26084.66 15489.15 19383.54 5289.85 10197.32 488.08 3686.80 27970.43 22297.30 7596.62 27
EG-PatchMatch MVS84.08 14584.11 14783.98 15992.22 10072.61 14682.20 22887.02 22672.63 18688.86 12091.02 18378.52 13991.11 19073.41 19391.09 25488.21 272
test_892.09 10478.87 8183.82 17490.31 16765.79 25884.36 21590.96 18781.93 10893.44 123
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10477.43 10087.35 10992.09 11178.87 10584.27 22294.05 8778.35 14293.65 10880.54 10691.58 24892.08 191
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet86.66 9386.82 9686.17 11492.05 10666.87 20991.21 3988.64 19986.30 2889.60 11192.59 13669.22 23894.91 6673.89 18497.89 4896.72 25
旧先验191.97 10771.77 15981.78 28891.84 15873.92 19493.65 20483.61 332
v7n90.13 3690.96 3887.65 8891.95 10871.06 16989.99 5993.05 8186.53 2694.29 1896.27 1782.69 9094.08 9586.25 4297.63 6097.82 8
NP-MVS91.95 10874.55 12590.17 216
OMC-MVS88.19 7087.52 8090.19 4491.94 11081.68 6187.49 10893.17 7476.02 13388.64 12591.22 17684.24 7593.37 12677.97 13697.03 8195.52 48
OPU-MVS88.27 7991.89 11177.83 9390.47 5191.22 17681.12 11994.68 7174.48 17495.35 14492.29 180
FIs85.35 11586.27 10282.60 20091.86 11257.31 31785.10 14893.05 8175.83 13891.02 8093.97 9173.57 19892.91 14373.97 18398.02 3897.58 12
test250674.12 28573.39 28576.28 29891.85 11344.20 38984.06 16648.20 40872.30 19481.90 25994.20 7927.22 40989.77 23564.81 27496.02 12094.87 67
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11348.95 36983.68 17969.91 36772.30 19484.26 22394.20 7951.89 33489.82 23263.58 28396.02 12094.87 67
9.1489.29 5891.84 11588.80 8895.32 1175.14 14891.07 7892.89 12787.27 4493.78 10583.69 6897.55 66
MSLP-MVS++85.00 12486.03 10781.90 21191.84 11571.56 16686.75 12293.02 8575.95 13687.12 15489.39 22777.98 14489.40 24577.46 14194.78 17184.75 315
h-mvs3384.25 13982.76 16988.72 7091.82 11782.60 5684.00 16884.98 25971.27 20386.70 16690.55 20463.04 27493.92 10078.26 12994.20 18989.63 250
DP-MVS Recon84.05 14683.22 15886.52 10491.73 11875.27 12283.23 19292.40 10272.04 19782.04 25788.33 24377.91 14693.95 9966.17 25995.12 15690.34 239
SD-MVS88.96 6389.88 4986.22 11191.63 11977.07 10589.82 6493.77 5078.90 10492.88 4492.29 14786.11 6090.22 21886.24 4397.24 7691.36 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
AllTest87.97 7687.40 8489.68 5291.59 12083.40 4889.50 7595.44 979.47 9488.00 14293.03 12082.66 9191.47 17870.81 21496.14 11494.16 95
TestCases89.68 5291.59 12083.40 4895.44 979.47 9488.00 14293.03 12082.66 9191.47 17870.81 21496.14 11494.16 95
MCST-MVS84.36 13483.93 15185.63 12491.59 12071.58 16483.52 18292.13 11061.82 29483.96 22789.75 22479.93 13393.46 12278.33 12794.34 18591.87 198
agg_prior91.58 12377.69 9690.30 16884.32 21793.18 132
PVSNet_Blended_VisFu81.55 19580.49 21084.70 14291.58 12373.24 13684.21 16291.67 12762.86 28380.94 27587.16 26767.27 24992.87 14569.82 22788.94 28887.99 278
DVP-MVS++90.07 3891.09 3287.00 9491.55 12572.64 14396.19 294.10 3685.33 3393.49 3594.64 5881.12 11995.88 1687.41 2295.94 12592.48 169
MSC_two_6792asdad88.81 6891.55 12577.99 9091.01 14696.05 887.45 2098.17 3192.40 174
No_MVS88.81 6891.55 12577.99 9091.01 14696.05 887.45 2098.17 3192.40 174
EPP-MVSNet85.47 11385.04 12886.77 10091.52 12869.37 18391.63 3587.98 21181.51 7287.05 16091.83 15966.18 25595.29 5270.75 21796.89 8395.64 45
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 12984.90 3883.41 18592.38 10470.25 21689.35 11690.68 19882.85 8994.57 7679.55 11595.95 12492.00 194
Baseline_NR-MVSNet84.00 14885.90 11178.29 26991.47 13053.44 34382.29 22287.00 22979.06 10289.55 11295.72 2777.20 15586.14 29372.30 20798.51 1695.28 55
HyFIR lowres test75.12 27472.66 29482.50 20491.44 13165.19 22472.47 34587.31 21646.79 38080.29 28684.30 30952.70 33092.10 16551.88 36186.73 31890.22 240
DP-MVS88.60 6689.01 6387.36 9091.30 13277.50 9787.55 10592.97 8787.95 2089.62 10892.87 12884.56 7093.89 10177.65 13896.62 9390.70 227
DeepC-MVS_fast80.27 886.23 9985.65 11987.96 8491.30 13276.92 10687.19 11091.99 11470.56 21184.96 20290.69 19780.01 13195.14 5878.37 12595.78 13591.82 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13481.66 6291.25 3894.13 3488.89 1188.83 12294.26 7677.55 15195.86 2184.88 5795.87 12995.24 57
HQP-NCC91.19 13584.77 14973.30 17380.55 282
ACMP_Plane91.19 13584.77 14973.30 17380.55 282
HQP-MVS84.61 12984.06 14886.27 10991.19 13570.66 17184.77 14992.68 9573.30 17380.55 28290.17 21672.10 21894.61 7477.30 14594.47 18093.56 128
VDD-MVS84.23 14184.58 13883.20 18491.17 13865.16 22583.25 19084.97 26079.79 9087.18 15394.27 7374.77 18590.89 19969.24 23196.54 9693.55 130
K. test v385.14 11984.73 13286.37 10691.13 13969.63 18185.45 14176.68 32184.06 4592.44 5696.99 862.03 27794.65 7280.58 10593.24 21294.83 72
lessismore_v085.95 11691.10 14070.99 17070.91 36391.79 6694.42 6861.76 27892.93 14179.52 11793.03 21793.93 106
hse-mvs283.47 16081.81 18488.47 7491.03 14182.27 5782.61 20983.69 27071.27 20386.70 16686.05 28463.04 27492.41 15478.26 12993.62 20690.71 226
TransMVSNet (Re)84.02 14785.74 11778.85 25791.00 14255.20 33482.29 22287.26 21779.65 9388.38 13395.52 3283.00 8786.88 27767.97 24996.60 9494.45 82
AUN-MVS81.18 20078.78 23388.39 7690.93 14382.14 5882.51 21583.67 27164.69 27580.29 28685.91 28751.07 33792.38 15576.29 15693.63 20590.65 231
PAPM_NR83.23 16383.19 16083.33 18090.90 14465.98 21788.19 9790.78 15278.13 11580.87 27787.92 25173.49 20192.42 15370.07 22488.40 29391.60 206
CSCG86.26 9886.47 9985.60 12590.87 14574.26 12787.98 10091.85 12180.35 8489.54 11488.01 24779.09 13692.13 16275.51 16495.06 15890.41 237
PLCcopyleft73.85 1682.09 18380.31 21287.45 8990.86 14680.29 6985.88 13390.65 15568.17 23776.32 32286.33 27873.12 20892.61 15061.40 30290.02 27689.44 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test1286.57 10290.74 14772.63 14590.69 15482.76 24779.20 13594.80 6895.32 14792.27 182
ITE_SJBPF90.11 4590.72 14884.97 3790.30 16881.56 7190.02 9691.20 17882.40 9690.81 20373.58 19194.66 17594.56 76
DPM-MVS80.10 22379.18 22982.88 19490.71 14969.74 17878.87 27290.84 15060.29 31675.64 33285.92 28667.28 24893.11 13571.24 21291.79 24285.77 304
TAMVS78.08 24276.36 25783.23 18390.62 15072.87 13979.08 26880.01 30061.72 29781.35 27186.92 27263.96 26788.78 25450.61 36293.01 21888.04 277
test_prior86.32 10790.59 15171.99 15892.85 9094.17 9192.80 154
ambc82.98 18890.55 15264.86 22688.20 9689.15 19389.40 11593.96 9471.67 22591.38 18478.83 12296.55 9592.71 159
SSC-MVS77.55 24781.64 18665.29 36790.46 15320.33 41373.56 33868.28 37285.44 3288.18 13894.64 5870.93 22881.33 33271.25 21192.03 23794.20 91
Anonymous2023121188.40 6789.62 5584.73 14090.46 15365.27 22288.86 8693.02 8587.15 2393.05 4297.10 682.28 10292.02 16676.70 15097.99 3996.88 24
Test_1112_low_res73.90 28773.08 28876.35 29690.35 15555.95 32573.40 34186.17 23650.70 37373.14 34885.94 28558.31 30185.90 29756.51 32683.22 35587.20 289
VPA-MVSNet83.47 16084.73 13279.69 24890.29 15657.52 31681.30 23888.69 19876.29 12987.58 14994.44 6580.60 12687.20 27166.60 25796.82 8794.34 88
FMVSNet184.55 13185.45 12281.85 21390.27 15761.05 27686.83 11888.27 20678.57 11089.66 10795.64 2975.43 17590.68 20769.09 23595.33 14593.82 112
Anonymous2024052986.20 10187.13 8783.42 17890.19 15864.55 23084.55 15690.71 15385.85 3189.94 10095.24 3982.13 10490.40 21469.19 23496.40 10495.31 54
MVS_111021_HR84.63 12884.34 14585.49 12990.18 15975.86 12079.23 26787.13 22173.35 17085.56 19289.34 22883.60 8290.50 21276.64 15294.05 19490.09 245
GeoE85.45 11485.81 11484.37 14790.08 16067.07 20585.86 13491.39 13572.33 19387.59 14890.25 21184.85 6892.37 15678.00 13491.94 24193.66 120
RPSCF88.00 7586.93 9391.22 2790.08 16089.30 489.68 6891.11 14379.26 9989.68 10594.81 5382.44 9487.74 26476.54 15388.74 29196.61 28
nrg03087.85 7988.49 7085.91 11790.07 16269.73 17987.86 10294.20 2674.04 15792.70 5294.66 5485.88 6391.50 17779.72 11397.32 7496.50 30
AdaColmapbinary83.66 15483.69 15483.57 17590.05 16372.26 15486.29 12990.00 17878.19 11481.65 26687.16 26783.40 8494.24 8661.69 29994.76 17484.21 324
pm-mvs183.69 15384.95 13079.91 24490.04 16459.66 29382.43 21787.44 21475.52 14387.85 14495.26 3881.25 11885.65 30268.74 24196.04 11994.42 85
CHOSEN 1792x268872.45 29870.56 31178.13 27190.02 16563.08 24568.72 36883.16 27542.99 39575.92 32885.46 29157.22 31085.18 30649.87 36681.67 36586.14 299
WB-MVS76.06 26580.01 22364.19 37089.96 16620.58 41272.18 34768.19 37383.21 5486.46 17793.49 11070.19 23178.97 34665.96 26090.46 27293.02 147
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 17369.87 22095.06 1196.14 2184.28 7493.07 13787.68 1596.34 10597.09 20
1112_ss74.82 27973.74 28078.04 27489.57 16860.04 28776.49 30787.09 22554.31 35073.66 34779.80 35560.25 28786.76 28158.37 31684.15 35087.32 288
CS-MVS88.14 7187.67 7989.54 5789.56 16979.18 7890.47 5194.77 1579.37 9884.32 21789.33 22983.87 7694.53 7982.45 8394.89 16694.90 65
MM87.64 8287.15 8689.09 6489.51 17076.39 11588.68 9186.76 23084.54 4183.58 23393.78 10373.36 20596.48 187.98 996.21 11194.41 86
APD_test188.40 6787.91 7589.88 4789.50 17186.65 1689.98 6091.91 11884.26 4290.87 8693.92 9882.18 10389.29 24673.75 18794.81 17093.70 119
CS-MVS-test87.00 8686.43 10088.71 7189.46 17277.46 9889.42 7995.73 677.87 11781.64 26787.25 26582.43 9594.53 7977.65 13896.46 10194.14 97
PCF-MVS74.62 1582.15 18280.92 20585.84 12089.43 17372.30 15380.53 24691.82 12357.36 33687.81 14589.92 22077.67 14993.63 11058.69 31495.08 15791.58 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo75.81 26873.51 28482.71 19789.35 17473.62 13080.06 25085.20 25160.30 31573.96 34487.94 24957.89 30689.45 24152.02 35674.87 39085.06 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA83.55 15883.10 16384.90 13589.34 17583.87 4684.54 15888.77 19679.09 10183.54 23588.66 24074.87 18181.73 33066.84 25492.29 23189.11 260
EC-MVSNet88.01 7488.32 7287.09 9289.28 17672.03 15790.31 5496.31 380.88 8085.12 19789.67 22584.47 7295.46 4682.56 8296.26 11093.77 117
TSAR-MVS + GP.83.95 14982.69 17187.72 8589.27 17781.45 6383.72 17881.58 29174.73 15185.66 18986.06 28372.56 21592.69 14875.44 16695.21 15189.01 266
MVS_111021_LR84.28 13883.76 15385.83 12189.23 17883.07 5180.99 24283.56 27372.71 18586.07 18289.07 23481.75 11386.19 29177.11 14793.36 20788.24 271
MVS_030486.35 9785.92 11087.66 8789.21 17973.16 13888.40 9583.63 27281.27 7480.87 27794.12 8571.49 22695.71 3187.79 1296.50 9894.11 99
LFMVS80.15 22280.56 20878.89 25689.19 18055.93 32685.22 14573.78 34182.96 5884.28 22192.72 13457.38 30890.07 22763.80 28295.75 13690.68 229
iter_conf0583.19 16482.97 16583.85 16389.06 18161.92 26782.41 21893.28 7065.43 26484.98 20189.78 22268.44 24494.48 8176.66 15196.64 9195.15 61
CLD-MVS83.18 16582.64 17284.79 13889.05 18267.82 20077.93 28492.52 10068.33 23485.07 19881.54 34182.06 10592.96 13969.35 23097.91 4793.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9193.95 9684.50 7195.37 5080.87 10095.50 14194.53 79
CDS-MVSNet77.32 25075.40 26683.06 18689.00 18472.48 15077.90 28582.17 28560.81 31078.94 30383.49 31859.30 29488.76 25554.64 34292.37 22887.93 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051781.07 20179.58 22585.52 12788.99 18566.45 21387.03 11475.51 32973.76 16188.32 13590.20 21337.96 39094.16 9379.36 11995.13 15495.93 41
tfpnnormal81.79 19282.95 16678.31 26788.93 18655.40 33080.83 24582.85 27976.81 12685.90 18794.14 8374.58 18886.51 28466.82 25595.68 13993.01 148
testing371.53 30770.79 30973.77 31488.89 18741.86 39676.60 30659.12 39872.83 18280.97 27382.08 33519.80 41487.33 27065.12 27191.68 24592.13 190
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 18851.29 36083.28 18871.97 35574.04 15782.23 25489.78 22257.38 30889.41 24457.22 32395.41 14293.05 146
SDMVSNet81.90 19083.17 16178.10 27288.81 18962.45 25676.08 31486.05 23973.67 16283.41 23693.04 11882.35 9780.65 33770.06 22595.03 15991.21 213
sd_testset79.95 22681.39 19675.64 30488.81 18958.07 31176.16 31382.81 28073.67 16283.41 23693.04 11880.96 12177.65 35058.62 31595.03 15991.21 213
TAPA-MVS77.73 1285.71 11084.83 13188.37 7788.78 19179.72 7387.15 11293.50 5969.17 22485.80 18889.56 22680.76 12392.13 16273.21 20195.51 14093.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf05_1185.73 10985.77 11685.60 12588.77 19267.74 20191.49 3694.17 2871.86 20088.07 13992.18 15268.84 24295.06 6181.20 9695.33 14593.99 102
testf189.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7486.02 2993.12 4095.30 3584.94 6689.44 24274.12 18096.10 11794.45 82
APD_test289.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7486.02 2993.12 4095.30 3584.94 6689.44 24274.12 18096.10 11794.45 82
FPMVS72.29 30172.00 30073.14 31888.63 19585.00 3674.65 32967.39 37571.94 19977.80 31387.66 25650.48 34075.83 35749.95 36479.51 37358.58 402
dcpmvs_284.23 14185.14 12681.50 21988.61 19661.98 26682.90 20293.11 7768.66 23292.77 5092.39 14178.50 14087.63 26676.99 14992.30 22994.90 65
ETV-MVS84.31 13683.91 15285.52 12788.58 19770.40 17484.50 16093.37 6178.76 10884.07 22578.72 36580.39 12795.13 5973.82 18692.98 21991.04 217
BH-untuned80.96 20380.99 20380.84 23188.55 19868.23 19380.33 24988.46 20072.79 18486.55 17086.76 27374.72 18691.77 17461.79 29888.99 28682.52 349
Anonymous20240521180.51 21081.19 20278.49 26488.48 19957.26 31876.63 30482.49 28281.21 7684.30 22092.24 15067.99 24686.24 28862.22 29295.13 15491.98 196
ab-mvs79.67 22780.56 20876.99 28788.48 19956.93 32084.70 15386.06 23868.95 22880.78 27993.08 11775.30 17784.62 31056.78 32490.90 26189.43 254
PHI-MVS86.38 9685.81 11488.08 8188.44 20177.34 10189.35 8093.05 8173.15 17884.76 20787.70 25578.87 13894.18 8980.67 10496.29 10692.73 156
xiu_mvs_v1_base_debu80.84 20480.14 21882.93 19188.31 20271.73 16079.53 25887.17 21865.43 26479.59 29282.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base80.84 20480.14 21882.93 19188.31 20271.73 16079.53 25887.17 21865.43 26479.59 29282.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base_debi80.84 20480.14 21882.93 19188.31 20271.73 16079.53 25887.17 21865.43 26479.59 29282.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
MG-MVS80.32 21680.94 20478.47 26588.18 20552.62 35082.29 22285.01 25872.01 19879.24 30192.54 13969.36 23693.36 12770.65 21989.19 28589.45 252
PM-MVS80.20 22079.00 23083.78 16688.17 20686.66 1581.31 23666.81 38169.64 22188.33 13490.19 21464.58 26283.63 32171.99 20990.03 27581.06 368
v1086.54 9487.10 8884.84 13688.16 20763.28 24386.64 12492.20 10875.42 14592.81 4994.50 6274.05 19394.06 9683.88 6696.28 10797.17 19
sasdasda85.50 11186.14 10583.58 17387.97 20867.13 20387.55 10594.32 1873.44 16888.47 12987.54 25886.45 5591.06 19275.76 16293.76 19992.54 167
canonicalmvs85.50 11186.14 10583.58 17387.97 20867.13 20387.55 10594.32 1873.44 16888.47 12987.54 25886.45 5591.06 19275.76 16293.76 19992.54 167
EIA-MVS82.19 18081.23 20185.10 13387.95 21069.17 18983.22 19393.33 6470.42 21278.58 30579.77 35777.29 15494.20 8871.51 21088.96 28791.93 197
VNet79.31 22880.27 21376.44 29587.92 21153.95 33975.58 32084.35 26674.39 15582.23 25490.72 19672.84 21184.39 31360.38 30893.98 19590.97 218
v886.22 10086.83 9584.36 14987.82 21262.35 25986.42 12791.33 13776.78 12792.73 5194.48 6473.41 20293.72 10783.10 7295.41 14297.01 22
alignmvs83.94 15083.98 15083.80 16487.80 21367.88 19984.54 15891.42 13473.27 17688.41 13287.96 24872.33 21690.83 20276.02 16094.11 19292.69 160
v119284.57 13084.69 13684.21 15587.75 21462.88 24783.02 19791.43 13269.08 22689.98 9990.89 18972.70 21393.62 11382.41 8494.97 16396.13 33
PatchMatch-RL74.48 28273.22 28778.27 27087.70 21585.26 3475.92 31670.09 36564.34 27676.09 32681.25 34365.87 25878.07 34953.86 34483.82 35271.48 388
fmvsm_s_conf0.1_n_a82.58 17381.93 18284.50 14487.68 21673.35 13286.14 13177.70 31061.64 29985.02 19991.62 16677.75 14786.24 28882.79 7987.07 31293.91 108
v114484.54 13284.72 13484.00 15887.67 21762.55 25482.97 19990.93 14970.32 21589.80 10290.99 18473.50 19993.48 12181.69 9494.65 17695.97 38
v124084.30 13784.51 14083.65 17087.65 21861.26 27382.85 20491.54 12967.94 24190.68 8890.65 20171.71 22493.64 10982.84 7894.78 17196.07 35
v192192084.23 14184.37 14483.79 16587.64 21961.71 26882.91 20191.20 14167.94 24190.06 9490.34 20872.04 22193.59 11582.32 8594.91 16496.07 35
v14419284.24 14084.41 14283.71 16987.59 22061.57 26982.95 20091.03 14567.82 24489.80 10290.49 20573.28 20693.51 12081.88 9394.89 16696.04 37
MGCFI-Net85.04 12185.95 10882.31 20787.52 22163.59 23986.23 13093.96 4173.46 16688.07 13987.83 25386.46 5490.87 20176.17 15793.89 19792.47 171
Fast-Effi-MVS+81.04 20280.57 20782.46 20587.50 22263.22 24478.37 27989.63 18668.01 23881.87 26082.08 33582.31 9992.65 14967.10 25188.30 29991.51 209
pmmvs-eth3d78.42 24077.04 25182.57 20387.44 22374.41 12680.86 24479.67 30155.68 34384.69 20890.31 21060.91 28285.42 30362.20 29391.59 24787.88 281
IterMVS-LS84.73 12784.98 12983.96 16087.35 22463.66 23783.25 19089.88 18076.06 13189.62 10892.37 14573.40 20492.52 15178.16 13194.77 17395.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90075.45 27075.05 27076.66 29487.27 22551.88 35581.07 24173.26 34675.68 14083.25 23986.37 27745.54 36288.80 25151.98 35790.99 25689.31 256
MIMVSNet71.09 31171.59 30369.57 34387.23 22650.07 36778.91 27071.83 35660.20 31871.26 35791.76 16355.08 32476.09 35541.06 39287.02 31582.54 348
Effi-MVS+83.90 15184.01 14983.57 17587.22 22765.61 22186.55 12692.40 10278.64 10981.34 27284.18 31183.65 8192.93 14174.22 17687.87 30392.17 188
BH-RMVSNet80.53 20980.22 21681.49 22087.19 22866.21 21577.79 28786.23 23574.21 15683.69 23088.50 24173.25 20790.75 20463.18 28887.90 30287.52 285
thisisatest053079.07 22977.33 24984.26 15487.13 22964.58 22883.66 18075.95 32468.86 22985.22 19687.36 26338.10 38893.57 11875.47 16594.28 18794.62 74
Effi-MVS+-dtu85.82 10883.38 15693.14 387.13 22991.15 287.70 10488.42 20174.57 15383.56 23485.65 28878.49 14194.21 8772.04 20892.88 22194.05 101
v2v48284.09 14484.24 14683.62 17187.13 22961.40 27082.71 20789.71 18372.19 19689.55 11291.41 17170.70 23093.20 13181.02 9893.76 19996.25 31
jason77.42 24975.75 26382.43 20687.10 23269.27 18477.99 28381.94 28751.47 36777.84 31185.07 30160.32 28689.00 24870.74 21889.27 28489.03 264
jason: jason.
PS-MVSNAJ77.04 25376.53 25678.56 26287.09 23361.40 27075.26 32387.13 22161.25 30574.38 34377.22 37776.94 16190.94 19564.63 27784.83 34583.35 337
casdiffmvs_mvgpermissive86.72 9187.51 8184.36 14987.09 23365.22 22384.16 16394.23 2377.89 11691.28 7693.66 10784.35 7392.71 14680.07 10794.87 16995.16 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v2_base77.19 25176.75 25478.52 26387.01 23561.30 27275.55 32187.12 22461.24 30674.45 34178.79 36477.20 15590.93 19664.62 27884.80 34683.32 338
thres600view775.97 26675.35 26877.85 27987.01 23551.84 35680.45 24773.26 34675.20 14783.10 24286.31 28045.54 36289.05 24755.03 33992.24 23392.66 161
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 23751.34 35873.20 34280.63 29768.30 23581.80 26488.40 24266.92 25180.90 33455.35 33694.90 16593.12 144
BH-w/o76.57 25976.07 26178.10 27286.88 23865.92 21877.63 28986.33 23365.69 26280.89 27679.95 35468.97 24190.74 20553.01 35285.25 33477.62 379
fmvsm_s_conf0.1_n82.17 18181.59 18983.94 16286.87 23971.57 16585.19 14677.42 31362.27 29384.47 21391.33 17376.43 16985.91 29683.14 7087.14 31094.33 89
MAR-MVS80.24 21978.74 23584.73 14086.87 23978.18 8885.75 13687.81 21265.67 26377.84 31178.50 36673.79 19690.53 21161.59 30190.87 26285.49 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_s_conf0.5_n_a82.21 17981.51 19484.32 15286.56 24173.35 13285.46 14077.30 31461.81 29584.51 21090.88 19177.36 15386.21 29082.72 8086.97 31793.38 131
FE-MVS79.98 22578.86 23183.36 17986.47 24266.45 21389.73 6584.74 26472.80 18384.22 22491.38 17244.95 37193.60 11463.93 28191.50 24990.04 246
QAPM82.59 17282.59 17482.58 20186.44 24366.69 21089.94 6290.36 16467.97 24084.94 20492.58 13872.71 21292.18 16170.63 22087.73 30588.85 267
PAPM71.77 30470.06 31876.92 28986.39 24453.97 33876.62 30586.62 23153.44 35463.97 39384.73 30557.79 30792.34 15739.65 39481.33 36984.45 319
GBi-Net82.02 18582.07 17981.85 21386.38 24561.05 27686.83 11888.27 20672.43 18886.00 18395.64 2963.78 26890.68 20765.95 26193.34 20893.82 112
test182.02 18582.07 17981.85 21386.38 24561.05 27686.83 11888.27 20672.43 18886.00 18395.64 2963.78 26890.68 20765.95 26193.34 20893.82 112
FMVSNet281.31 19881.61 18880.41 23886.38 24558.75 30783.93 17186.58 23272.43 18887.65 14792.98 12263.78 26890.22 21866.86 25293.92 19692.27 182
3Dnovator80.37 784.80 12684.71 13585.06 13486.36 24874.71 12488.77 8990.00 17875.65 14184.96 20293.17 11574.06 19291.19 18778.28 12891.09 25489.29 258
Anonymous2023120671.38 30971.88 30169.88 34086.31 24954.37 33670.39 36174.62 33252.57 35976.73 31888.76 23759.94 28972.06 36444.35 38793.23 21383.23 340
baseline85.20 11885.93 10983.02 18786.30 25062.37 25884.55 15693.96 4174.48 15487.12 15492.03 15382.30 10091.94 16778.39 12494.21 18894.74 73
API-MVS82.28 17782.61 17381.30 22186.29 25169.79 17788.71 9087.67 21378.42 11282.15 25684.15 31277.98 14491.59 17665.39 26892.75 22382.51 350
tfpn200view974.86 27874.23 27776.74 29386.24 25252.12 35279.24 26573.87 33973.34 17181.82 26284.60 30746.02 35688.80 25151.98 35790.99 25689.31 256
thres40075.14 27274.23 27777.86 27886.24 25252.12 35279.24 26573.87 33973.34 17181.82 26284.60 30746.02 35688.80 25151.98 35790.99 25692.66 161
UGNet82.78 16981.64 18686.21 11286.20 25476.24 11786.86 11685.68 24477.07 12573.76 34692.82 12969.64 23391.82 17369.04 23793.69 20390.56 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet83.79 15282.85 16886.63 10186.17 25572.21 15683.76 17791.43 13277.24 12474.39 34287.45 26175.36 17695.42 4877.03 14892.83 22292.25 184
casdiffmvspermissive85.21 11785.85 11383.31 18186.17 25562.77 25083.03 19693.93 4374.69 15288.21 13692.68 13582.29 10191.89 17077.87 13793.75 20295.27 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FA-MVS(test-final)83.13 16783.02 16483.43 17786.16 25766.08 21688.00 9988.36 20375.55 14285.02 19992.75 13365.12 26192.50 15274.94 17291.30 25291.72 201
bld_raw_dy_0_6480.29 21780.03 22281.09 22686.14 25859.69 29278.24 28091.87 11963.91 27978.46 30784.08 31369.23 23792.89 14473.70 18994.61 17790.69 228
TR-MVS76.77 25775.79 26279.72 24786.10 25965.79 21977.14 29583.02 27765.20 27281.40 27082.10 33366.30 25390.73 20655.57 33385.27 33382.65 344
fmvsm_s_conf0.5_n81.91 18981.30 19883.75 16786.02 26071.56 16684.73 15277.11 31762.44 29084.00 22690.68 19876.42 17085.89 29883.14 7087.11 31193.81 115
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9185.94 26178.30 8586.93 11592.20 10865.94 25589.16 11793.16 11683.10 8689.89 23187.81 1194.43 18393.35 132
LCM-MVSNet-Re83.48 15985.06 12778.75 25985.94 26155.75 32980.05 25194.27 2076.47 12896.09 594.54 6183.31 8589.75 23759.95 30994.89 16690.75 224
test_fmvsmvis_n_192085.22 11685.36 12484.81 13785.80 26376.13 11985.15 14792.32 10561.40 30191.33 7390.85 19283.76 8086.16 29284.31 6293.28 21192.15 189
Fast-Effi-MVS+-dtu82.54 17481.41 19585.90 11885.60 26476.53 11183.07 19589.62 18773.02 18079.11 30283.51 31780.74 12490.24 21768.76 24089.29 28290.94 219
v14882.31 17682.48 17681.81 21685.59 26559.66 29381.47 23586.02 24072.85 18188.05 14190.65 20170.73 22990.91 19875.15 16991.79 24294.87 67
MVSFormer82.23 17881.57 19184.19 15785.54 26669.26 18591.98 3090.08 17671.54 20176.23 32385.07 30158.69 29994.27 8386.26 4088.77 28989.03 264
lupinMVS76.37 26374.46 27582.09 20885.54 26669.26 18576.79 30080.77 29650.68 37476.23 32382.82 32758.69 29988.94 24969.85 22688.77 28988.07 274
mamv481.86 19181.52 19382.87 19585.42 26862.26 26182.66 20892.62 9765.43 26479.34 29990.22 21269.65 23294.15 9474.14 17994.16 19192.21 185
TinyColmap81.25 19982.34 17877.99 27585.33 26960.68 28382.32 22188.33 20471.26 20586.97 16192.22 15177.10 15886.98 27562.37 29195.17 15386.31 298
test_fmvsmconf0.1_n86.18 10285.88 11287.08 9385.26 27078.25 8685.82 13591.82 12365.33 27088.55 12692.35 14682.62 9389.80 23386.87 3294.32 18693.18 141
MVSMamba_pp81.67 19381.33 19782.70 19985.24 27162.25 26382.88 20392.53 9962.64 28479.42 29590.65 20169.37 23593.26 13074.78 17394.44 18292.58 164
test_fmvsm_n_192083.60 15682.89 16785.74 12285.22 27277.74 9584.12 16590.48 15959.87 32086.45 17891.12 18075.65 17385.89 29882.28 8690.87 26293.58 126
PAPR78.84 23378.10 24381.07 22785.17 27360.22 28682.21 22690.57 15862.51 28675.32 33684.61 30674.99 18092.30 15959.48 31288.04 30190.68 229
pmmvs474.92 27772.98 29080.73 23384.95 27471.71 16376.23 31177.59 31152.83 35777.73 31586.38 27656.35 31584.97 30757.72 32287.05 31385.51 307
baseline173.26 29173.54 28372.43 32784.92 27547.79 37479.89 25474.00 33765.93 25678.81 30486.28 28156.36 31481.63 33156.63 32579.04 37987.87 282
Patchmatch-RL test74.48 28273.68 28176.89 29184.83 27666.54 21172.29 34669.16 37157.70 33286.76 16486.33 27845.79 36182.59 32569.63 22890.65 27081.54 359
patch_mono-278.89 23179.39 22777.41 28484.78 27768.11 19675.60 31883.11 27660.96 30979.36 29789.89 22175.18 17872.97 36273.32 19592.30 22991.15 215
test_fmvsmconf_n85.88 10785.51 12186.99 9584.77 27878.21 8785.40 14391.39 13565.32 27187.72 14691.81 16182.33 9889.78 23486.68 3494.20 18992.99 149
KD-MVS_self_test81.93 18883.14 16278.30 26884.75 27952.75 34780.37 24889.42 19170.24 21790.26 9293.39 11274.55 18986.77 28068.61 24396.64 9195.38 51
XXY-MVS74.44 28476.19 25969.21 34584.61 28052.43 35171.70 35077.18 31660.73 31280.60 28090.96 18775.44 17469.35 37356.13 32988.33 29585.86 303
cascas76.29 26474.81 27180.72 23484.47 28162.94 24673.89 33687.34 21555.94 34275.16 33876.53 38263.97 26691.16 18865.00 27290.97 25988.06 276
PVSNet_BlendedMVS78.80 23477.84 24481.65 21884.43 28263.41 24079.49 26190.44 16161.70 29875.43 33387.07 27069.11 23991.44 18060.68 30692.24 23390.11 244
PVSNet_Blended76.49 26175.40 26679.76 24684.43 28263.41 24075.14 32490.44 16157.36 33675.43 33378.30 36769.11 23991.44 18060.68 30687.70 30684.42 320
OpenMVScopyleft76.72 1381.98 18782.00 18181.93 21084.42 28468.22 19488.50 9489.48 18966.92 25081.80 26491.86 15672.59 21490.16 22071.19 21391.25 25387.40 287
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28561.15 27481.18 24082.52 28162.45 28983.34 23887.37 26266.20 25488.66 25664.69 27685.02 33986.32 297
test_yl78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27785.33 24975.99 13482.49 24986.57 27458.01 30290.02 22962.74 28992.73 22489.10 261
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27785.33 24975.99 13482.49 24986.57 27458.01 30290.02 22962.74 28992.73 22489.10 261
DELS-MVS81.44 19781.25 19982.03 20984.27 28862.87 24876.47 30892.49 10170.97 20881.64 26783.83 31475.03 17992.70 14774.29 17592.22 23590.51 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Gipumacopyleft84.44 13386.33 10178.78 25884.20 28973.57 13189.55 7290.44 16184.24 4384.38 21494.89 4776.35 17280.40 33976.14 15896.80 8882.36 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UWE-MVS66.43 34565.56 35069.05 34684.15 29040.98 39773.06 34464.71 38554.84 34876.18 32579.62 35829.21 40380.50 33838.54 39889.75 27885.66 305
EI-MVSNet-Vis-set85.12 12084.53 13986.88 9784.01 29172.76 14083.91 17285.18 25280.44 8288.75 12385.49 29080.08 13091.92 16882.02 8990.85 26495.97 38
fmvsm_l_conf0.5_n82.06 18481.54 19283.60 17283.94 29273.90 12983.35 18786.10 23758.97 32283.80 22990.36 20774.23 19086.94 27682.90 7690.22 27389.94 247
IterMVS-SCA-FT80.64 20879.41 22684.34 15183.93 29369.66 18076.28 31081.09 29372.43 18886.47 17690.19 21460.46 28493.15 13477.45 14286.39 32390.22 240
MSDG80.06 22479.99 22480.25 24083.91 29468.04 19877.51 29289.19 19277.65 11981.94 25883.45 31976.37 17186.31 28763.31 28786.59 32086.41 296
EI-MVSNet-UG-set85.04 12184.44 14186.85 9883.87 29572.52 14983.82 17485.15 25380.27 8688.75 12385.45 29279.95 13291.90 16981.92 9290.80 26596.13 33
testing9169.94 32368.99 32872.80 32183.81 29645.89 38271.57 35273.64 34468.24 23670.77 36377.82 36934.37 39584.44 31253.64 34687.00 31688.07 274
fmvsm_l_conf0.5_n_a81.46 19680.87 20683.25 18283.73 29773.21 13783.00 19885.59 24658.22 32882.96 24490.09 21872.30 21786.65 28281.97 9189.95 27789.88 248
thres20072.34 30071.55 30674.70 31083.48 29851.60 35775.02 32573.71 34270.14 21878.56 30680.57 34846.20 35488.20 26146.99 37989.29 28284.32 321
USDC76.63 25876.73 25576.34 29783.46 29957.20 31980.02 25288.04 21052.14 36383.65 23191.25 17563.24 27186.65 28254.66 34194.11 19285.17 310
ETVMVS64.67 35363.34 35868.64 35083.44 30041.89 39569.56 36661.70 39461.33 30468.74 37175.76 38528.76 40479.35 34234.65 40286.16 32784.67 316
testing22266.93 33965.30 35171.81 33083.38 30145.83 38372.06 34867.50 37464.12 27769.68 36876.37 38327.34 40883.00 32338.88 39588.38 29486.62 295
testing1167.38 33765.93 34571.73 33183.37 30246.60 37970.95 35769.40 36962.47 28866.14 38076.66 38031.22 39984.10 31649.10 37084.10 35184.49 317
HY-MVS64.64 1873.03 29472.47 29874.71 30983.36 30354.19 33782.14 22981.96 28656.76 34169.57 36986.21 28260.03 28884.83 30949.58 36882.65 36185.11 311
testing9969.27 32968.15 33572.63 32383.29 30445.45 38471.15 35471.08 36167.34 24770.43 36477.77 37132.24 39884.35 31453.72 34586.33 32488.10 273
EI-MVSNet82.61 17182.42 17783.20 18483.25 30563.66 23783.50 18385.07 25476.06 13186.55 17085.10 29873.41 20290.25 21578.15 13390.67 26895.68 44
CVMVSNet72.62 29771.41 30776.28 29883.25 30560.34 28583.50 18379.02 30537.77 40576.33 32185.10 29849.60 34487.41 26870.54 22177.54 38581.08 366
WB-MVSnew68.72 33369.01 32767.85 35483.22 30743.98 39074.93 32665.98 38255.09 34573.83 34579.11 36065.63 25971.89 36638.21 39985.04 33887.69 284
V4283.47 16083.37 15783.75 16783.16 30863.33 24281.31 23690.23 17269.51 22290.91 8390.81 19474.16 19192.29 16080.06 10890.22 27395.62 46
Anonymous2024052180.18 22181.25 19976.95 28883.15 30960.84 28182.46 21685.99 24168.76 23086.78 16393.73 10659.13 29677.44 35173.71 18897.55 6692.56 165
EU-MVSNet75.12 27474.43 27677.18 28683.11 31059.48 29585.71 13882.43 28339.76 40185.64 19088.76 23744.71 37387.88 26373.86 18585.88 32984.16 325
ET-MVSNet_ETH3D75.28 27172.77 29282.81 19683.03 31168.11 19677.09 29676.51 32260.67 31377.60 31680.52 34938.04 38991.15 18970.78 21690.68 26789.17 259
FMVSNet378.80 23478.55 23779.57 25082.89 31256.89 32281.76 23085.77 24369.04 22786.00 18390.44 20651.75 33590.09 22665.95 26193.34 20891.72 201
MVS_Test82.47 17583.22 15880.22 24182.62 31357.75 31582.54 21491.96 11671.16 20782.89 24592.52 14077.41 15290.50 21280.04 10987.84 30492.40 174
LF4IMVS82.75 17081.93 18285.19 13182.08 31480.15 7085.53 13988.76 19768.01 23885.58 19187.75 25471.80 22386.85 27874.02 18293.87 19888.58 269
PVSNet58.17 2166.41 34665.63 34968.75 34981.96 31549.88 36862.19 38772.51 35151.03 37068.04 37575.34 38750.84 33874.77 35945.82 38482.96 35681.60 358
GA-MVS75.83 26774.61 27279.48 25281.87 31659.25 29773.42 34082.88 27868.68 23179.75 29181.80 33850.62 33989.46 24066.85 25385.64 33089.72 249
MS-PatchMatch70.93 31370.22 31673.06 31981.85 31762.50 25573.82 33777.90 30852.44 36075.92 32881.27 34255.67 31981.75 32955.37 33577.70 38374.94 384
Syy-MVS69.40 32870.03 31967.49 35781.72 31838.94 39971.00 35561.99 38961.38 30270.81 36172.36 39261.37 28079.30 34364.50 28085.18 33584.22 322
myMVS_eth3d64.66 35463.89 35566.97 35981.72 31837.39 40271.00 35561.99 38961.38 30270.81 36172.36 39220.96 41379.30 34349.59 36785.18 33584.22 322
SCA73.32 29072.57 29675.58 30581.62 32055.86 32778.89 27171.37 36061.73 29674.93 33983.42 32060.46 28487.01 27258.11 32082.63 36383.88 326
FMVSNet572.10 30271.69 30273.32 31681.57 32153.02 34676.77 30178.37 30763.31 28076.37 32091.85 15736.68 39278.98 34547.87 37692.45 22787.95 279
thisisatest051573.00 29570.52 31280.46 23781.45 32259.90 29073.16 34374.31 33657.86 33176.08 32777.78 37037.60 39192.12 16465.00 27291.45 25089.35 255
eth_miper_zixun_eth80.84 20480.22 21682.71 19781.41 32360.98 27977.81 28690.14 17567.31 24886.95 16287.24 26664.26 26492.31 15875.23 16891.61 24694.85 71
CANet_DTU77.81 24577.05 25080.09 24381.37 32459.90 29083.26 18988.29 20569.16 22567.83 37783.72 31560.93 28189.47 23969.22 23389.70 27990.88 221
ANet_high83.17 16685.68 11875.65 30381.24 32545.26 38679.94 25392.91 8883.83 4691.33 7396.88 1080.25 12985.92 29568.89 23895.89 12895.76 42
new-patchmatchnet70.10 31973.37 28660.29 38081.23 32616.95 41559.54 39174.62 33262.93 28280.97 27387.93 25062.83 27671.90 36555.24 33795.01 16292.00 194
test20.0373.75 28874.59 27471.22 33381.11 32751.12 36270.15 36372.10 35470.42 21280.28 28891.50 16964.21 26574.72 36146.96 38094.58 17887.82 283
MVS73.21 29372.59 29575.06 30880.97 32860.81 28281.64 23385.92 24246.03 38571.68 35677.54 37268.47 24389.77 23555.70 33285.39 33174.60 385
N_pmnet70.20 31768.80 33174.38 31180.91 32984.81 3959.12 39376.45 32355.06 34675.31 33782.36 33255.74 31854.82 40347.02 37887.24 30983.52 333
IterMVS76.91 25476.34 25878.64 26180.91 32964.03 23476.30 30979.03 30464.88 27483.11 24189.16 23259.90 29084.46 31168.61 24385.15 33787.42 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l81.64 19481.59 18981.79 21780.86 33159.15 30078.61 27690.18 17468.36 23387.20 15287.11 26969.39 23491.62 17578.16 13194.43 18394.60 75
WTY-MVS67.91 33668.35 33366.58 36180.82 33248.12 37265.96 37872.60 34953.67 35371.20 35881.68 34058.97 29769.06 37548.57 37281.67 36582.55 347
IB-MVS62.13 1971.64 30568.97 32979.66 24980.80 33362.26 26173.94 33576.90 31863.27 28168.63 37376.79 37933.83 39691.84 17259.28 31387.26 30884.88 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_371.85 30371.59 30372.62 32480.71 33453.78 34069.72 36571.71 35958.80 32478.03 30880.51 35056.61 31378.84 34762.20 29386.04 32885.23 309
ppachtmachnet_test74.73 28174.00 27976.90 29080.71 33456.89 32271.53 35378.42 30658.24 32779.32 30082.92 32657.91 30584.26 31565.60 26791.36 25189.56 251
testgi72.36 29974.61 27265.59 36480.56 33642.82 39468.29 36973.35 34566.87 25181.84 26189.93 21972.08 22066.92 38646.05 38392.54 22687.01 291
D2MVS76.84 25575.67 26580.34 23980.48 33762.16 26573.50 33984.80 26357.61 33482.24 25387.54 25851.31 33687.65 26570.40 22393.19 21491.23 212
131473.22 29272.56 29775.20 30680.41 33857.84 31381.64 23385.36 24851.68 36673.10 34976.65 38161.45 27985.19 30563.54 28479.21 37782.59 345
cl____80.42 21280.23 21481.02 22979.99 33959.25 29777.07 29787.02 22667.37 24686.18 18189.21 23163.08 27390.16 22076.31 15595.80 13393.65 122
DIV-MVS_self_test80.43 21180.23 21481.02 22979.99 33959.25 29777.07 29787.02 22667.38 24586.19 17989.22 23063.09 27290.16 22076.32 15495.80 13393.66 120
miper_ehance_all_eth80.34 21580.04 22181.24 22479.82 34158.95 30277.66 28889.66 18465.75 26185.99 18685.11 29768.29 24591.42 18276.03 15992.03 23793.33 133
CR-MVSNet74.00 28673.04 28976.85 29279.58 34262.64 25282.58 21176.90 31850.50 37575.72 33092.38 14248.07 34884.07 31768.72 24282.91 35883.85 329
RPMNet78.88 23278.28 24180.68 23579.58 34262.64 25282.58 21194.16 2974.80 15075.72 33092.59 13648.69 34595.56 3873.48 19282.91 35883.85 329
baseline269.77 32466.89 34078.41 26679.51 34458.09 31076.23 31169.57 36857.50 33564.82 39177.45 37446.02 35688.44 25753.08 34977.83 38188.70 268
UnsupCasMVSNet_bld69.21 33069.68 32267.82 35579.42 34551.15 36167.82 37375.79 32554.15 35177.47 31785.36 29659.26 29570.64 36948.46 37379.35 37581.66 357
PatchT70.52 31572.76 29363.79 37279.38 34633.53 40677.63 28965.37 38473.61 16471.77 35592.79 13244.38 37475.65 35864.53 27985.37 33282.18 352
Patchmtry76.56 26077.46 24673.83 31379.37 34746.60 37982.41 21876.90 31873.81 16085.56 19292.38 14248.07 34883.98 31863.36 28695.31 14990.92 220
mvs_anonymous78.13 24178.76 23476.23 30079.24 34850.31 36678.69 27484.82 26261.60 30083.09 24392.82 12973.89 19587.01 27268.33 24786.41 32291.37 210
MVS-HIRNet61.16 36362.92 36055.87 38479.09 34935.34 40571.83 34957.98 40246.56 38259.05 40091.14 17949.95 34376.43 35438.74 39671.92 39455.84 403
MDA-MVSNet-bldmvs77.47 24876.90 25379.16 25579.03 35064.59 22766.58 37775.67 32773.15 17888.86 12088.99 23566.94 25081.23 33364.71 27588.22 30091.64 205
diffmvspermissive80.40 21380.48 21180.17 24279.02 35160.04 28777.54 29190.28 17166.65 25382.40 25187.33 26473.50 19987.35 26977.98 13589.62 28093.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm268.45 33466.83 34173.30 31778.93 35248.50 37079.76 25571.76 35747.50 37969.92 36783.60 31642.07 38288.40 25848.44 37479.51 37383.01 343
tpm67.95 33568.08 33667.55 35678.74 35343.53 39275.60 31867.10 38054.92 34772.23 35388.10 24642.87 38175.97 35652.21 35580.95 37283.15 341
MDTV_nov1_ep1368.29 33478.03 35443.87 39174.12 33272.22 35352.17 36167.02 37985.54 28945.36 36680.85 33555.73 33084.42 348
cl2278.97 23078.21 24281.24 22477.74 35559.01 30177.46 29487.13 22165.79 25884.32 21785.10 29858.96 29890.88 20075.36 16792.03 23793.84 110
EPNet_dtu72.87 29671.33 30877.49 28377.72 35660.55 28482.35 22075.79 32566.49 25458.39 40381.06 34453.68 32685.98 29453.55 34792.97 22085.95 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive69.71 32568.83 33072.33 32877.66 35753.60 34179.29 26369.99 36657.66 33372.53 35282.93 32546.45 35380.08 34160.91 30572.09 39383.31 339
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n_192071.30 31071.58 30570.47 33677.58 35859.99 28974.25 33084.22 26851.06 36974.85 34079.10 36155.10 32368.83 37668.86 23979.20 37882.58 346
dmvs_testset60.59 36762.54 36254.72 38677.26 35927.74 40974.05 33361.00 39660.48 31465.62 38567.03 39955.93 31768.23 38132.07 40669.46 40068.17 393
sss66.92 34067.26 33865.90 36377.23 36051.10 36364.79 38071.72 35852.12 36470.13 36680.18 35257.96 30465.36 39250.21 36381.01 37181.25 363
CostFormer69.98 32268.68 33273.87 31277.14 36150.72 36479.26 26474.51 33451.94 36570.97 36084.75 30445.16 37087.49 26755.16 33879.23 37683.40 336
tpm cat166.76 34465.21 35271.42 33277.09 36250.62 36578.01 28273.68 34344.89 38868.64 37279.00 36245.51 36482.42 32849.91 36570.15 39681.23 365
pmmvs570.73 31470.07 31772.72 32277.03 36352.73 34874.14 33175.65 32850.36 37672.17 35485.37 29555.42 32180.67 33652.86 35387.59 30784.77 314
dmvs_re66.81 34366.98 33966.28 36276.87 36458.68 30871.66 35172.24 35260.29 31669.52 37073.53 38952.38 33164.40 39444.90 38581.44 36875.76 382
EPNet80.37 21478.41 24086.23 11076.75 36573.28 13487.18 11177.45 31276.24 13068.14 37488.93 23665.41 26093.85 10269.47 22996.12 11691.55 208
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance76.45 26276.10 26077.51 28276.72 36660.97 28064.69 38185.04 25663.98 27883.20 24088.22 24456.67 31278.79 34873.22 19693.12 21592.78 155
CHOSEN 280x42059.08 36856.52 37366.76 36076.51 36764.39 23149.62 40259.00 39943.86 39155.66 40668.41 39835.55 39468.21 38243.25 38876.78 38867.69 394
UnsupCasMVSNet_eth71.63 30672.30 29969.62 34276.47 36852.70 34970.03 36480.97 29459.18 32179.36 29788.21 24560.50 28369.12 37458.33 31877.62 38487.04 290
test-LLR67.21 33866.74 34268.63 35176.45 36955.21 33267.89 37067.14 37862.43 29165.08 38872.39 39043.41 37769.37 37161.00 30384.89 34381.31 361
test-mter65.00 35263.79 35668.63 35176.45 36955.21 33267.89 37067.14 37850.98 37165.08 38872.39 39028.27 40669.37 37161.00 30384.89 34381.31 361
miper_enhance_ethall77.83 24376.93 25280.51 23676.15 37158.01 31275.47 32288.82 19558.05 33083.59 23280.69 34564.41 26391.20 18673.16 20292.03 23792.33 178
gg-mvs-nofinetune68.96 33269.11 32568.52 35376.12 37245.32 38583.59 18155.88 40386.68 2464.62 39297.01 730.36 40183.97 31944.78 38682.94 35776.26 381
test_vis1_n70.29 31669.99 32071.20 33475.97 37366.50 21276.69 30380.81 29544.22 39075.43 33377.23 37650.00 34268.59 37766.71 25682.85 36078.52 378
CMPMVSbinary59.41 2075.12 27473.57 28279.77 24575.84 37467.22 20281.21 23982.18 28450.78 37276.50 31987.66 25655.20 32282.99 32462.17 29590.64 27189.09 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
wuyk23d75.13 27379.30 22862.63 37375.56 37575.18 12380.89 24373.10 34875.06 14994.76 1295.32 3487.73 4052.85 40434.16 40397.11 7959.85 400
Patchmatch-test65.91 34867.38 33761.48 37875.51 37643.21 39368.84 36763.79 38762.48 28772.80 35183.42 32044.89 37259.52 40048.27 37586.45 32181.70 356
new_pmnet55.69 37157.66 37249.76 38775.47 37730.59 40759.56 39051.45 40643.62 39362.49 39475.48 38640.96 38449.15 40737.39 40072.52 39169.55 391
gm-plane-assit75.42 37844.97 38852.17 36172.36 39287.90 26254.10 343
MVSTER77.09 25275.70 26481.25 22275.27 37961.08 27577.49 29385.07 25460.78 31186.55 17088.68 23943.14 38090.25 21573.69 19090.67 26892.42 172
PVSNet_051.08 2256.10 37054.97 37559.48 38275.12 38053.28 34555.16 39961.89 39144.30 38959.16 39962.48 40254.22 32565.91 39035.40 40147.01 40559.25 401
test0.0.03 164.66 35464.36 35365.57 36575.03 38146.89 37864.69 38161.58 39562.43 29171.18 35977.54 37243.41 37768.47 38040.75 39382.65 36181.35 360
test_fmvs375.72 26975.20 26977.27 28575.01 38269.47 18278.93 26984.88 26146.67 38187.08 15887.84 25250.44 34171.62 36777.42 14488.53 29290.72 225
tpmvs70.16 31869.56 32371.96 32974.71 38348.13 37179.63 25675.45 33065.02 27370.26 36581.88 33745.34 36785.68 30158.34 31775.39 38982.08 354
test_fmvs1_n70.94 31270.41 31572.53 32673.92 38466.93 20875.99 31584.21 26943.31 39479.40 29679.39 35943.47 37668.55 37869.05 23684.91 34282.10 353
MDA-MVSNet_test_wron70.05 32170.44 31368.88 34873.84 38553.47 34258.93 39567.28 37658.43 32587.09 15785.40 29359.80 29267.25 38459.66 31183.54 35385.92 302
YYNet170.06 32070.44 31368.90 34773.76 38653.42 34458.99 39467.20 37758.42 32687.10 15685.39 29459.82 29167.32 38359.79 31083.50 35485.96 300
test_cas_vis1_n_192069.20 33169.12 32469.43 34473.68 38762.82 24970.38 36277.21 31546.18 38480.46 28578.95 36352.03 33265.53 39165.77 26677.45 38679.95 374
GG-mvs-BLEND67.16 35873.36 38846.54 38184.15 16455.04 40458.64 40261.95 40329.93 40283.87 32038.71 39776.92 38771.07 389
JIA-IIPM69.41 32766.64 34477.70 28073.19 38971.24 16875.67 31765.56 38370.42 21265.18 38792.97 12433.64 39783.06 32253.52 34869.61 39978.79 377
ADS-MVSNet265.87 34963.64 35772.55 32573.16 39056.92 32167.10 37474.81 33149.74 37766.04 38282.97 32346.71 35177.26 35242.29 38969.96 39783.46 334
ADS-MVSNet61.90 35962.19 36361.03 37973.16 39036.42 40467.10 37461.75 39249.74 37766.04 38282.97 32346.71 35163.21 39542.29 38969.96 39783.46 334
DSMNet-mixed60.98 36561.61 36559.09 38372.88 39245.05 38774.70 32846.61 40926.20 40765.34 38690.32 20955.46 32063.12 39641.72 39181.30 37069.09 392
tpmrst66.28 34766.69 34365.05 36872.82 39339.33 39878.20 28170.69 36453.16 35667.88 37680.36 35148.18 34774.75 36058.13 31970.79 39581.08 366
test_fmvs273.57 28972.80 29175.90 30272.74 39468.84 19177.07 29784.32 26745.14 38782.89 24584.22 31048.37 34670.36 37073.40 19487.03 31488.52 270
TESTMET0.1,161.29 36260.32 36864.19 37072.06 39551.30 35967.89 37062.09 38845.27 38660.65 39769.01 39627.93 40764.74 39356.31 32781.65 36776.53 380
dp60.70 36660.29 36961.92 37672.04 39638.67 40170.83 35864.08 38651.28 36860.75 39677.28 37536.59 39371.58 36847.41 37762.34 40375.52 383
pmmvs362.47 35760.02 37069.80 34171.58 39764.00 23570.52 36058.44 40139.77 40066.05 38175.84 38427.10 41072.28 36346.15 38284.77 34773.11 386
dongtai41.90 37442.65 37739.67 38970.86 39821.11 41161.01 38921.42 41657.36 33657.97 40450.06 40516.40 41558.73 40221.03 40927.69 40939.17 405
EPMVS62.47 35762.63 36162.01 37470.63 39938.74 40074.76 32752.86 40553.91 35267.71 37880.01 35339.40 38666.60 38755.54 33468.81 40180.68 370
mvsany_test365.48 35162.97 35973.03 32069.99 40076.17 11864.83 37943.71 41043.68 39280.25 28987.05 27152.83 32963.09 39751.92 36072.44 39279.84 375
test_vis3_rt71.42 30870.67 31073.64 31569.66 40170.46 17366.97 37689.73 18142.68 39788.20 13783.04 32243.77 37560.07 39865.35 27086.66 31990.39 238
test_fmvs169.57 32669.05 32671.14 33569.15 40265.77 22073.98 33483.32 27442.83 39677.77 31478.27 36843.39 37968.50 37968.39 24684.38 34979.15 376
KD-MVS_2432*160066.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
miper_refine_blended66.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
E-PMN61.59 36161.62 36461.49 37766.81 40555.40 33053.77 40060.34 39766.80 25258.90 40165.50 40040.48 38566.12 38955.72 33186.25 32562.95 398
test_f64.31 35665.85 34659.67 38166.54 40662.24 26457.76 39770.96 36240.13 39984.36 21582.09 33446.93 35051.67 40561.99 29681.89 36465.12 396
test_vis1_rt65.64 35064.09 35470.31 33766.09 40770.20 17661.16 38881.60 29038.65 40272.87 35069.66 39552.84 32860.04 39956.16 32877.77 38280.68 370
EMVS61.10 36460.81 36661.99 37565.96 40855.86 32753.10 40158.97 40067.06 24956.89 40563.33 40140.98 38367.03 38554.79 34086.18 32663.08 397
mvsany_test158.48 36956.47 37464.50 36965.90 40968.21 19556.95 39842.11 41138.30 40365.69 38477.19 37856.96 31159.35 40146.16 38158.96 40465.93 395
PMMVS61.65 36060.38 36765.47 36665.40 41069.26 18563.97 38361.73 39336.80 40660.11 39868.43 39759.42 29366.35 38848.97 37178.57 38060.81 399
PMMVS255.64 37259.27 37144.74 38864.30 41112.32 41640.60 40349.79 40753.19 35565.06 39084.81 30353.60 32749.76 40632.68 40589.41 28172.15 387
MVEpermissive40.22 2351.82 37350.47 37655.87 38462.66 41251.91 35431.61 40539.28 41240.65 39850.76 40774.98 38856.24 31644.67 40833.94 40464.11 40271.04 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan30.83 37532.17 37826.83 39153.36 41319.02 41457.90 39620.44 41738.29 40438.01 40837.82 40715.18 41633.45 4107.74 41120.76 41028.03 406
DeepMVS_CXcopyleft24.13 39232.95 41429.49 40821.63 41512.07 40837.95 40945.07 40630.84 40019.21 41117.94 41033.06 40823.69 407
test_method30.46 37629.60 37933.06 39017.99 4153.84 41813.62 40673.92 3382.79 40918.29 41153.41 40428.53 40543.25 40922.56 40735.27 40752.11 404
tmp_tt20.25 37824.50 3817.49 3934.47 4168.70 41734.17 40425.16 4141.00 41132.43 41018.49 40839.37 3879.21 41221.64 40843.75 4064.57 408
testmvs5.91 3827.65 3850.72 3951.20 4170.37 42059.14 3920.67 4190.49 4131.11 4132.76 4120.94 4180.24 4141.02 4131.47 4111.55 410
test1236.27 3818.08 3840.84 3941.11 4180.57 41962.90 3840.82 4180.54 4121.07 4142.75 4131.26 4170.30 4131.04 4121.26 4121.66 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k20.81 37727.75 3800.00 3960.00 4190.00 4210.00 40785.44 2470.00 4140.00 41582.82 32781.46 1150.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.41 3808.55 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41476.94 1610.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re6.65 3798.87 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41579.80 3550.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS37.39 40252.61 354
PC_three_145258.96 32390.06 9491.33 17380.66 12593.03 13875.78 16195.94 12592.48 169
test_241102_TWO93.71 5283.77 4793.49 3594.27 7389.27 2195.84 2286.03 4697.82 5092.04 192
test_0728_THIRD85.33 3393.75 3094.65 5587.44 4395.78 2787.41 2298.21 2892.98 150
GSMVS83.88 326
sam_mvs146.11 35583.88 326
sam_mvs45.92 360
MTGPAbinary91.81 125
test_post178.85 2733.13 41045.19 36980.13 34058.11 320
test_post3.10 41145.43 36577.22 353
patchmatchnet-post81.71 33945.93 35987.01 272
MTMP90.66 4433.14 413
test9_res80.83 10196.45 10290.57 232
agg_prior279.68 11496.16 11390.22 240
test_prior478.97 8084.59 155
test_prior283.37 18675.43 14484.58 20991.57 16781.92 11079.54 11696.97 82
旧先验281.73 23156.88 34086.54 17584.90 30872.81 203
新几何281.72 232
无先验82.81 20585.62 24558.09 32991.41 18367.95 25084.48 318
原ACMM282.26 225
testdata286.43 28663.52 285
segment_acmp81.94 107
testdata179.62 25773.95 159
plane_prior593.61 5695.22 5580.78 10295.83 13194.46 80
plane_prior492.95 125
plane_prior376.85 10777.79 11886.55 170
plane_prior289.45 7779.44 96
plane_prior76.42 11387.15 11275.94 13795.03 159
n20.00 420
nn0.00 420
door-mid74.45 335
test1191.46 131
door72.57 350
HQP5-MVS70.66 171
BP-MVS77.30 145
HQP4-MVS80.56 28194.61 7493.56 128
HQP3-MVS92.68 9594.47 180
HQP2-MVS72.10 218
MDTV_nov1_ep13_2view27.60 41070.76 35946.47 38361.27 39545.20 36849.18 36983.75 331
ACMMP++_ref95.74 137
ACMMP++97.35 72
Test By Simon79.09 136