This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 41
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8693.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
MVS_030488.08 1488.08 1788.08 1489.67 11672.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 6193.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 49
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 50
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 42
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8794.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 70
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8996.65 3084.53 4994.90 4094.00 54
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 59
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7494.52 2169.09 8096.70 2784.37 5194.83 4494.03 53
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 38
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 92
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6394.50 5094.07 51
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8893.95 5169.77 7496.01 4885.15 4094.66 4694.32 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8994.46 2567.93 9795.95 5284.20 5594.39 5593.23 92
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10294.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7893.36 6371.44 5696.76 2580.82 9095.33 3494.16 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5484.80 4692.85 7192.84 108
CS-MVS86.69 3586.95 3185.90 6590.76 9167.57 14292.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 9084.24 5493.46 6795.13 6
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8694.42 2967.87 9996.64 3182.70 7294.57 4993.66 70
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8676.87 6282.81 10394.25 3466.44 11296.24 4182.88 6794.28 6093.38 86
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 7081.78 481.32 11991.43 10670.34 6697.23 1384.26 5293.36 6894.37 39
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11491.89 9968.69 24085.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 103
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 40
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9691.07 11875.94 1895.19 7879.94 10094.38 5793.55 81
CS-MVS-test86.29 4286.48 3785.71 6891.02 8367.21 15492.36 2993.78 1878.97 2883.51 9391.20 11370.65 6595.15 8081.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 9289.31 13666.27 16992.32 3093.63 2179.37 2084.17 8091.88 9369.04 8495.43 6783.93 5793.77 6593.01 104
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6987.65 20267.22 15388.69 11893.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 5883.04 6592.51 7593.53 83
test_fmvsmconf_n85.92 4686.04 4785.57 7185.03 25669.51 9089.62 8590.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 55
sasdasda85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12893.82 5364.33 13296.29 3982.67 7390.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2665.00 13095.56 6082.75 6891.87 8392.50 120
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12292.42 7768.32 24784.61 6993.48 5872.32 4496.15 4579.00 10395.43 3194.28 44
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10487.28 23476.41 7485.80 4990.22 13874.15 3195.37 7481.82 7791.88 8292.65 114
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19886.47 19291.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7995.35 3
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7282.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 60
alignmvs85.48 5585.32 5985.96 6389.51 12269.47 9289.74 8092.47 7376.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
3Dnovator+77.84 485.48 5584.47 7388.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 20093.37 6260.40 19596.75 2677.20 12293.73 6695.29 5
MSLP-MVS++85.43 5785.76 5184.45 10791.93 7270.24 7690.71 5792.86 5477.46 4784.22 7892.81 7867.16 10692.94 18480.36 9594.35 5890.16 200
DELS-MVS85.41 5885.30 6085.77 6788.49 16767.93 13385.52 22293.44 2778.70 2983.63 9289.03 16874.57 2495.71 5680.26 9894.04 6393.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10594.09 4062.60 15195.54 6280.93 8892.93 7093.57 79
test_fmvsm_n_192085.29 6085.34 5785.13 8286.12 23669.93 8388.65 12090.78 13469.97 20888.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 57
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20590.33 14876.11 8382.08 10891.61 10071.36 5894.17 12281.02 8692.58 7492.08 137
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21865.77 18187.75 15492.83 5677.84 3784.36 7792.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 6384.96 6485.45 7392.07 7068.07 13089.78 7990.86 13382.48 384.60 7093.20 6669.35 7795.22 7771.39 17790.88 9693.07 100
MGCFI-Net85.06 6485.51 5483.70 14489.42 12763.01 24089.43 8992.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
mamv485.00 6584.68 6885.93 6489.51 12267.64 13988.38 13192.65 6572.35 15984.47 7390.26 13568.98 8795.69 5781.09 8594.45 5394.47 34
MVSMamba_pp84.98 6684.70 6785.80 6689.43 12667.63 14088.44 12592.64 6772.17 16284.54 7290.39 13368.88 8895.28 7581.45 8194.39 5594.49 33
DPM-MVS84.93 6784.29 7586.84 4790.20 10073.04 2387.12 17093.04 3869.80 21282.85 10091.22 11273.06 3996.02 4776.72 12994.63 4791.46 156
baseline84.93 6784.98 6384.80 9687.30 21665.39 18887.30 16692.88 5377.62 3984.04 8492.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
ETV-MVS84.90 6984.67 6985.59 7089.39 13068.66 11788.74 11692.64 6779.97 1584.10 8285.71 25769.32 7895.38 7180.82 9091.37 9092.72 109
test_fmvsmconf0.01_n84.73 7084.52 7285.34 7580.25 34169.03 10089.47 8789.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 67
fmvsm_l_conf0.5_n84.47 7184.54 7084.27 11785.42 24668.81 10688.49 12487.26 23568.08 24988.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 131
bld_raw_dy_0_6484.37 7284.35 7484.46 10689.86 11264.47 20886.68 18692.49 7272.08 16584.16 8189.77 14668.76 9195.08 8880.97 8794.34 5993.82 64
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7688.18 17867.85 13487.66 15689.73 16680.05 1482.95 9789.59 15370.74 6394.82 10080.66 9484.72 17793.28 91
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13386.85 24367.48 25687.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 135
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14287.96 21870.01 20683.95 8593.23 6568.80 9091.51 23588.61 2089.96 11092.57 116
iter_conf05_1183.91 7683.56 8084.97 8789.34 13266.68 16286.01 20492.25 8470.16 20482.83 10188.56 18169.00 8695.60 5979.43 10294.43 5492.63 115
nrg03083.88 7783.53 8184.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9791.33 10972.70 4393.09 17880.79 9279.28 25592.50 120
EI-MVSNet-UG-set83.81 7883.38 8485.09 8387.87 19167.53 14387.44 16289.66 16779.74 1682.23 10789.41 16270.24 6894.74 10379.95 9983.92 19092.99 105
fmvsm_s_conf0.5_n83.80 7983.71 7984.07 12786.69 22867.31 14989.46 8883.07 29671.09 18286.96 4393.70 5569.02 8591.47 23788.79 1884.62 17993.44 85
CPTT-MVS83.73 8083.33 8684.92 9193.28 4970.86 6992.09 3790.38 14468.75 23979.57 13992.83 7660.60 19193.04 18280.92 8991.56 8890.86 173
EPNet83.72 8182.92 9386.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19591.65 9766.09 11795.56 6076.00 13593.85 6493.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 8284.54 7080.99 22390.06 10765.83 17884.21 25088.74 20471.60 17285.01 5792.44 8474.51 2583.50 33682.15 7592.15 7993.64 76
HQP_MVS83.64 8383.14 8785.14 8090.08 10368.71 11391.25 5092.44 7479.12 2378.92 14891.00 12260.42 19395.38 7178.71 10786.32 15791.33 157
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11586.14 23568.12 12889.43 8982.87 30170.27 20187.27 3993.80 5469.09 8091.58 22888.21 2683.65 19893.14 98
Effi-MVS+83.62 8583.08 8885.24 7888.38 17367.45 14488.89 10989.15 18675.50 9482.27 10688.28 18969.61 7594.45 11277.81 11687.84 13693.84 63
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 25867.28 15089.40 9383.01 29770.67 19087.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 80
OPM-MVS83.50 8782.95 9285.14 8088.79 15770.95 6689.13 10391.52 11277.55 4480.96 12691.75 9560.71 18694.50 11079.67 10186.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8882.80 9685.43 7490.25 9968.74 11190.30 6990.13 15576.33 8080.87 12792.89 7461.00 18394.20 12072.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 8983.45 8283.28 15692.74 6262.28 25188.17 14089.50 17175.22 9881.49 11792.74 8266.75 10795.11 8372.85 16591.58 8792.45 123
EPP-MVSNet83.40 9083.02 9084.57 10090.13 10164.47 20892.32 3090.73 13574.45 11779.35 14291.10 11669.05 8395.12 8172.78 16687.22 14494.13 48
3Dnovator76.31 583.38 9182.31 10286.59 5287.94 18972.94 2890.64 5892.14 9077.21 5275.47 22592.83 7658.56 20294.72 10473.24 16292.71 7392.13 136
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11583.79 27968.07 13089.34 9582.85 30269.80 21287.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 95
EIA-MVS83.31 9382.80 9684.82 9489.59 11865.59 18388.21 13892.68 6174.66 11178.96 14686.42 24469.06 8295.26 7675.54 14190.09 10793.62 77
iter_conf0583.17 9482.90 9483.97 13887.59 20765.09 19588.29 13691.52 11272.35 15981.39 11890.13 14068.76 9194.84 9980.30 9785.75 16991.98 141
h-mvs3383.15 9582.19 10386.02 6290.56 9370.85 7088.15 14289.16 18576.02 8584.67 6691.39 10761.54 16995.50 6382.71 7075.48 30191.72 146
MVS_Test83.15 9583.06 8983.41 15386.86 22263.21 23686.11 20292.00 9374.31 11882.87 9989.44 16170.03 6993.21 16777.39 12188.50 13293.81 65
IS-MVSNet83.15 9582.81 9584.18 12089.94 11063.30 23491.59 4388.46 21079.04 2579.49 14092.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
DP-MVS Recon83.11 9882.09 10586.15 5894.44 1970.92 6888.79 11292.20 8770.53 19579.17 14491.03 12164.12 13496.03 4668.39 20990.14 10691.50 152
PAPM_NR83.02 9982.41 9984.82 9492.47 6766.37 16787.93 14991.80 10473.82 12977.32 18490.66 12767.90 9894.90 9570.37 18689.48 11693.19 96
VDD-MVS83.01 10082.36 10184.96 8891.02 8366.40 16688.91 10888.11 21377.57 4184.39 7693.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
MVSFormer82.85 10182.05 10685.24 7887.35 21070.21 7790.50 6190.38 14468.55 24281.32 11989.47 15661.68 16693.46 15678.98 10490.26 10492.05 138
OMC-MVS82.69 10281.97 10984.85 9388.75 15967.42 14587.98 14590.87 13274.92 10579.72 13791.65 9762.19 16193.96 12675.26 14386.42 15693.16 97
PVSNet_Blended_VisFu82.62 10381.83 11184.96 8890.80 8969.76 8788.74 11691.70 10869.39 22078.96 14688.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
MVS_111021_LR82.61 10482.11 10484.11 12188.82 15471.58 5385.15 22586.16 25374.69 11080.47 13091.04 11962.29 15890.55 26080.33 9690.08 10890.20 199
HQP-MVS82.61 10482.02 10784.37 10989.33 13366.98 15789.17 9892.19 8876.41 7477.23 18790.23 13760.17 19695.11 8377.47 11985.99 16591.03 167
CLD-MVS82.31 10681.65 11284.29 11488.47 16867.73 13785.81 21392.35 7975.78 8878.33 16286.58 23964.01 13594.35 11376.05 13487.48 14190.79 174
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 10782.41 9981.62 20490.82 8860.93 26584.47 24189.78 16376.36 7984.07 8391.88 9364.71 13190.26 26270.68 18388.89 12293.66 70
diffmvspermissive82.10 10881.88 11082.76 18683.00 29963.78 22283.68 25789.76 16472.94 15282.02 10989.85 14465.96 12190.79 25682.38 7487.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 10981.27 11584.50 10389.23 14068.76 10990.22 7091.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
FIs82.07 11082.42 9881.04 22288.80 15658.34 29188.26 13793.49 2676.93 6078.47 15991.04 11969.92 7292.34 20369.87 19384.97 17492.44 124
PS-MVSNAJss82.07 11081.31 11484.34 11286.51 23167.27 15189.27 9691.51 11471.75 16779.37 14190.22 13863.15 14594.27 11677.69 11782.36 21891.49 153
API-MVS81.99 11281.23 11684.26 11890.94 8570.18 8291.10 5389.32 17671.51 17478.66 15388.28 18965.26 12595.10 8664.74 23991.23 9287.51 281
UniMVSNet_NR-MVSNet81.88 11381.54 11382.92 17588.46 16963.46 23087.13 16992.37 7880.19 1278.38 16089.14 16471.66 5493.05 18070.05 18976.46 28492.25 129
MAR-MVS81.84 11480.70 12585.27 7791.32 7971.53 5489.82 7690.92 12969.77 21478.50 15786.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 11581.23 11683.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9493.10 6752.26 25393.43 15871.98 17289.95 11193.85 61
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20987.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 165
GeoE81.71 11781.01 12183.80 14389.51 12264.45 21088.97 10688.73 20571.27 17878.63 15489.76 14766.32 11493.20 17069.89 19286.02 16493.74 68
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14368.03 13284.46 24390.02 15770.67 19081.30 12286.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12268.21 12784.28 24990.09 15670.79 18781.26 12385.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16191.26 4885.89 25774.66 11178.23 16490.56 12954.33 23494.91 9280.73 9383.54 20292.04 140
PAPR81.66 12180.89 12383.99 13790.27 9864.00 21786.76 18491.77 10768.84 23877.13 19389.50 15467.63 10094.88 9767.55 21488.52 13193.09 99
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15793.02 4278.42 3278.56 15688.16 19369.78 7393.26 16369.58 19676.49 28391.60 147
FC-MVSNet-test81.52 12382.02 10780.03 24388.42 17255.97 32987.95 14793.42 2977.10 5677.38 18290.98 12469.96 7091.79 22168.46 20884.50 18092.33 125
VDDNet81.52 12380.67 12684.05 13290.44 9664.13 21689.73 8185.91 25671.11 18183.18 9593.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
ACMP74.13 681.51 12580.57 12784.36 11089.42 12768.69 11689.97 7491.50 11774.46 11675.04 24690.41 13253.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20686.77 24463.24 30381.07 12589.47 15661.08 18292.15 20978.33 11290.07 10992.05 138
jason: jason.
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21886.41 24862.85 31081.32 11988.61 17861.68 16692.24 20778.41 11190.26 10491.83 143
test_yl81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17391.87 10179.01 2678.38 16089.07 16665.02 12893.05 18070.05 18976.46 28492.20 132
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15165.40 18684.43 24592.00 9367.62 25378.11 16885.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19684.55 24090.01 15873.25 14679.61 13887.57 20658.35 20494.72 10471.29 17886.25 15992.56 117
QAPM80.88 13379.50 14985.03 8488.01 18868.97 10491.59 4392.00 9366.63 26775.15 24292.16 8857.70 20995.45 6563.52 24588.76 12690.66 180
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15591.33 11980.55 977.99 17289.86 14365.23 12692.62 19067.05 22175.24 31192.30 127
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9188.16 21276.95 5976.22 21189.46 15849.30 29393.94 12968.48 20790.31 10291.60 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15164.51 20585.53 22089.39 17470.79 18778.49 15885.06 27567.54 10193.58 14767.03 22286.58 15392.32 126
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26390.50 14170.66 19376.71 19991.66 9660.69 18791.26 24376.94 12581.58 22691.83 143
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
ACMM73.20 880.78 14179.84 14283.58 14789.31 13668.37 12289.99 7391.60 11070.28 20077.25 18589.66 14953.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12658.10 20595.04 8969.70 19489.42 11790.30 196
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16388.65 20676.37 7875.88 21888.44 18553.51 24393.07 17973.30 16089.74 11492.25 129
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17891.58 11175.67 9280.24 13289.45 16063.34 13990.25 26370.51 18579.22 25691.23 160
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15165.40 18686.16 20192.00 9369.34 22278.11 16886.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9488.97 19569.27 22375.70 22189.69 14857.20 21695.77 5463.06 25088.41 13387.50 282
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19388.95 19674.18 12278.69 15187.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27490.39 14371.09 18277.63 17891.49 10454.62 23391.35 24175.71 13783.47 20391.54 150
SDMVSNet80.38 14980.18 13680.99 22389.03 14964.94 19880.45 30689.40 17375.19 10076.61 20389.98 14160.61 19087.69 30476.83 12783.55 20090.33 194
PCF-MVS73.52 780.38 14978.84 16485.01 8587.71 19968.99 10383.65 25891.46 11863.00 30777.77 17690.28 13466.10 11695.09 8761.40 26988.22 13590.94 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40667.45 10296.60 3383.06 6394.50 5094.07 51
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 18990.50 6190.38 14468.55 24276.19 21288.70 17456.44 22093.46 15678.98 10480.14 24590.97 170
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17289.97 15973.61 13478.18 16787.22 21761.10 18193.82 13776.11 13276.78 28191.18 161
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19691.09 12779.01 2672.17 27989.07 16667.20 10592.81 18966.08 22875.65 29792.20 132
Anonymous2024052980.19 15578.89 16384.10 12290.60 9264.75 20288.95 10790.90 13065.97 27580.59 12991.17 11549.97 28393.73 14569.16 20082.70 21593.81 65
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18189.34 17574.19 12175.45 22886.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 15778.57 16884.42 10885.13 25468.74 11188.77 11388.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 161
v114480.03 15779.03 16083.01 17183.78 28064.51 20587.11 17190.57 14071.96 16678.08 17086.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
v879.97 15979.02 16182.80 18184.09 27364.50 20787.96 14690.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26172.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
v1079.74 16178.67 16582.97 17484.06 27464.95 19787.88 15290.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10354.69 34387.89 15177.44 35174.88 10680.27 13192.79 7948.96 29992.45 19668.55 20692.50 7694.86 17
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13165.93 17584.95 23087.15 23873.56 13678.19 16689.79 14556.67 21993.36 16059.53 28386.74 15190.13 202
v119279.59 16478.43 17283.07 16883.55 28464.52 20486.93 17690.58 13870.83 18677.78 17585.90 25359.15 19993.94 12973.96 15377.19 27490.76 176
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25589.24 18270.36 19779.03 14588.87 17163.23 14390.21 26465.12 23582.57 21692.28 128
WR-MVS79.49 16679.22 15780.27 23988.79 15758.35 29085.06 22788.61 20878.56 3077.65 17788.34 18763.81 13890.66 25964.98 23777.22 27391.80 145
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17490.36 14769.99 20777.50 17985.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
BH-untuned79.47 16778.60 16782.05 19689.19 14265.91 17686.07 20388.52 20972.18 16175.42 22987.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
test111179.43 16979.18 15880.15 24189.99 10853.31 35687.33 16577.05 35475.04 10380.23 13392.77 8148.97 29892.33 20468.87 20392.40 7894.81 20
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27687.62 22767.40 25776.17 21588.56 18168.47 9389.59 27570.65 18486.05 16393.47 84
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19487.36 16384.26 27770.04 20577.42 18188.26 19149.94 28494.79 10270.20 18784.70 17893.03 102
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13284.05 27971.45 17576.78 19789.12 16549.93 28694.89 9670.18 18883.18 20892.96 106
V4279.38 17378.24 17782.83 17881.10 33365.50 18585.55 21889.82 16271.57 17378.21 16586.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9790.16 15469.20 22875.46 22789.49 15545.75 32393.13 17676.84 12680.80 23590.11 204
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18090.33 14869.91 21077.48 18085.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21187.26 23569.08 23177.23 18788.14 19753.20 24793.47 15575.50 14273.45 32891.06 165
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11862.99 24488.16 14191.51 11465.77 27677.14 19291.09 11760.91 18493.21 16750.26 34487.05 14692.17 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16789.17 9890.19 15369.38 22175.40 23089.46 15844.17 33293.15 17476.78 12880.70 23790.14 201
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16788.79 19974.25 12076.84 19490.53 13149.48 28991.56 23067.98 21082.15 21993.29 90
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24786.20 25267.49 25576.36 20886.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20184.08 25488.95 19669.01 23578.69 15187.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18890.30 15069.74 21777.33 18385.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
Anonymous2023121178.97 18377.69 19482.81 18090.54 9464.29 21390.11 7291.51 11465.01 28576.16 21688.13 19850.56 27793.03 18369.68 19577.56 27191.11 163
v7n78.97 18377.58 19783.14 16483.45 28665.51 18488.32 13491.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23485.05 26667.63 25276.75 19887.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25389.13 18869.97 20875.56 22384.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9290.90 13071.21 17977.17 19188.73 17346.38 31293.21 16772.57 16978.96 25790.79 174
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19788.08 21573.26 14576.18 21385.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24486.63 24676.79 6478.26 16390.55 13059.30 19889.70 27466.63 22377.05 27590.88 172
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22884.61 27069.54 21866.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 112
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15587.24 16889.53 17065.66 27875.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25889.15 18668.87 23775.55 22483.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12692.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18579.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 112
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23383.90 28170.65 19480.00 13591.20 11341.08 35091.43 23965.21 23485.26 17293.85 61
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14891.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
BH-w/o78.21 19977.33 20280.84 22788.81 15565.13 19384.87 23187.85 22369.75 21574.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16189.02 19171.63 16975.29 23887.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
MVS78.19 20176.99 20881.78 20185.66 24166.99 15684.66 23590.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18285.76 25973.60 13577.93 17387.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
CNLPA78.08 20376.79 21381.97 19990.40 9771.07 6287.59 15884.55 27166.03 27472.38 27789.64 15057.56 21186.04 31559.61 28283.35 20588.79 256
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26287.98 21768.96 23675.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 13989.46 17264.33 29369.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 15986.94 17587.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14491.22 12077.50 4673.26 26588.64 17760.73 18588.41 29661.88 26473.88 32490.53 186
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26587.78 22566.11 27175.37 23187.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26889.20 18469.52 21974.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19188.77 20071.13 18075.34 23286.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27588.98 19365.52 28075.47 22582.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17383.13 26987.79 22468.42 24678.01 17185.23 27045.50 32595.12 8159.11 28785.83 16891.11 163
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15091.18 12277.56 4373.14 26788.82 17261.23 17889.17 28259.95 27972.37 33590.43 190
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 27087.87 22169.22 22674.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 27087.86 22269.22 22674.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
sd_testset77.70 21677.40 19978.60 26989.03 14960.02 27979.00 32485.83 25875.19 10076.61 20389.98 14154.81 22685.46 32262.63 25683.55 20090.33 194
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25689.59 16964.74 28771.23 28788.70 17462.59 15293.66 14652.66 32987.03 14789.01 245
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 10968.58 11978.70 32887.50 23056.38 36275.80 22086.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11866.62 16380.36 30788.64 20756.29 36376.45 20585.17 27257.64 21093.28 16261.34 27183.10 20991.91 142
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12889.28 17770.49 19674.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23886.40 24967.55 25477.81 17486.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
1112_ss77.40 22276.43 22280.32 23889.11 14860.41 27583.65 25887.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28183.27 29165.06 28375.91 21783.84 29649.54 28894.27 11667.24 21886.19 16091.48 154
test250677.30 22476.49 22079.74 24990.08 10352.02 35987.86 15363.10 39474.88 10680.16 13492.79 7938.29 36392.35 20268.74 20592.50 7694.86 17
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19388.36 21171.37 17673.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 151
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 15990.66 13677.08 5772.50 27488.67 17660.48 19289.52 27657.33 30570.74 34690.05 211
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22681.89 31073.04 15076.79 19688.90 16962.43 15687.78 30363.30 24971.18 34489.55 230
LS3D76.95 22974.82 24483.37 15490.45 9567.36 14889.15 10286.94 24161.87 32269.52 30790.61 12851.71 26694.53 10846.38 36586.71 15288.21 268
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 159
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12383.70 28363.98 29970.20 29588.89 17054.01 23994.80 10146.66 36281.88 22486.01 314
cascas76.72 23274.64 24582.99 17285.78 24065.88 17782.33 27889.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23284.29 28746.20 31790.07 26664.33 24184.50 18091.58 149
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23588.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
thres100view90076.50 23575.55 23379.33 25789.52 12156.99 31285.83 21283.23 29273.94 12676.32 20987.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
thres600view776.50 23575.44 23479.68 25189.40 12957.16 30985.53 22083.23 29273.79 13076.26 21087.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
thres40076.50 23575.37 23879.86 24689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
tfpn200view976.42 23875.37 23879.55 25689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13858.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
F-COLMAP76.38 24074.33 25182.50 19089.28 13866.95 16088.41 12789.03 19064.05 29766.83 33288.61 17846.78 31092.89 18557.48 30278.55 25987.67 276
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 18969.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24687.95 21965.03 28467.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20383.60 26189.75 16569.75 21571.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 154
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19088.86 11087.55 22870.25 20267.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12189.01 19269.81 21166.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17183.38 26485.06 26570.21 20369.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27780.65 32266.81 25866.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28276.18 21387.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27283.51 28772.44 15675.84 21984.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26685.52 26162.83 31179.34 14386.17 25045.10 32779.71 35578.75 10681.21 23087.10 295
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17783.09 29571.64 16866.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20081.57 28783.47 28869.16 22970.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26874.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18286.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23683.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19072.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29268.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18787.95 21964.99 28670.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23787.53 22970.32 19971.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 25069.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20886.64 24566.39 26966.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 27072.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 26070.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17774.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 21088.08 21566.04 27364.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17281.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11685.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19175.92 34792.27 8157.60 35572.73 27176.45 36852.30 25295.43 6748.14 35777.71 26887.11 293
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21483.56 28671.03 18465.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19175.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
MSDG73.36 27470.99 28680.49 23484.51 26665.80 17980.71 30186.13 25465.70 27765.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 28082.84 30358.96 34471.15 28989.41 16245.48 32684.77 32858.82 29171.83 34091.02 169
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29471.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18288.30 13584.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19383.45 28944.56 38473.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26269.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
test_040272.79 28170.44 29279.84 24788.13 18165.99 17485.93 20784.29 27565.57 27967.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 23070.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28972.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22473.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22284.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27977.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24876.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24269.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29767.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23979.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37878.58 15584.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38855.28 33881.27 29279.71 33551.49 37778.73 15084.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28867.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37368.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22882.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17081.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38457.55 30579.47 31783.92 28048.02 38156.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
test_vis1_n69.85 30969.21 30071.77 33872.66 38755.27 33981.48 28876.21 35952.03 37475.30 23783.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 37968.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26785.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29159.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27371.54 37570.36 19769.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24184.27 27642.27 38766.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
test_fmvs268.35 32167.48 32270.98 34769.50 39151.95 36180.05 31176.38 35849.33 38074.65 25284.38 28423.30 39175.40 38274.51 14775.17 31285.60 320
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26566.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26266.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23282.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26263.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28160.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38887.66 30545.52 37069.47 35079.95 371
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26566.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 29050.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27165.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39668.95 38453.57 36962.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39483.44 33766.24 22464.52 36879.71 372
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 38975.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38275.19 36253.37 37065.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39369.05 38351.98 37559.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38271.18 37653.37 37065.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
LF4IMVS64.02 34262.19 34669.50 35270.90 38953.29 35776.13 34477.18 35352.65 37258.59 37480.98 33323.55 39076.52 37153.06 32866.66 36078.68 374
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
test_fmvs363.36 34461.82 34767.98 36062.51 39846.96 38377.37 34174.03 36945.24 38367.50 32478.79 35512.16 40272.98 39072.77 16766.02 36383.99 342
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 40975.28 35265.94 38967.91 25160.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
mvsany_test162.30 34661.26 35065.41 36569.52 39054.86 34266.86 38449.78 40546.65 38268.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38624.50 41069.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
test_vis1_rt60.28 34958.42 35265.84 36467.25 39455.60 33470.44 37360.94 39744.33 38559.00 37366.64 38724.91 38768.67 39562.80 25169.48 34973.25 383
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39151.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
pmmvs357.79 35154.26 35668.37 35964.02 39756.72 31675.12 35665.17 39040.20 38952.93 38769.86 38620.36 39375.48 38045.45 37155.25 38672.90 384
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39335.61 40269.18 37753.97 40332.30 39957.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41174.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40335.07 39870.12 386
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40645.28 38766.85 38580.78 32035.96 39539.45 39662.23 3918.70 40678.06 36348.24 35651.20 39080.57 369
mvsany_test353.99 35551.45 36061.61 37055.51 40244.74 39063.52 39245.41 40943.69 38658.11 37776.45 36817.99 39563.76 40054.77 31947.59 39376.34 379
SSC-MVS53.88 35653.59 35754.75 38172.87 38519.59 41273.84 36260.53 39857.58 35649.18 39173.45 37946.34 31575.47 38116.20 40632.28 40069.20 387
FPMVS53.68 35751.64 35959.81 37265.08 39651.03 37069.48 37669.58 38141.46 38840.67 39472.32 38116.46 39870.00 39424.24 40065.42 36558.40 396
APD_test153.31 35849.93 36363.42 36865.68 39550.13 37471.59 36766.90 38734.43 39640.58 39571.56 3838.65 40776.27 37434.64 39055.36 38563.86 392
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41569.52 3753.89 41451.63 37657.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
test_f52.09 36050.82 36155.90 37753.82 40542.31 39759.42 39558.31 40136.45 39456.12 38470.96 38412.18 40157.79 40253.51 32556.57 38267.60 388
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4090.43 41075.85 37324.26 38981.54 34728.82 39462.25 37159.16 394
new_pmnet50.91 36250.29 36252.78 38268.58 39234.94 40463.71 39156.63 40239.73 39044.95 39265.47 38821.93 39258.48 40134.98 38956.62 38164.92 390
ANet_high50.57 36346.10 36763.99 36648.67 40939.13 40070.99 37080.85 31961.39 32531.18 39857.70 39617.02 39773.65 38931.22 39315.89 40679.18 373
test_vis3_rt49.26 36447.02 36656.00 37654.30 40345.27 38866.76 38648.08 40636.83 39344.38 39353.20 3987.17 40964.07 39956.77 31155.66 38358.65 395
testf145.72 36541.96 36857.00 37456.90 40045.32 38566.14 38759.26 39926.19 40030.89 39960.96 3934.14 41070.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36857.00 37456.90 40045.32 38566.14 38759.26 39926.19 40030.89 39960.96 3934.14 41070.64 39226.39 39846.73 39555.04 397
Gipumacopyleft45.18 36741.86 37055.16 38077.03 36651.52 36732.50 40280.52 32432.46 39827.12 40135.02 4029.52 40575.50 37922.31 40160.21 37838.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36840.28 37155.82 37840.82 41142.54 39665.12 39063.99 39334.43 39624.48 40257.12 3973.92 41276.17 37617.10 40455.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 36938.86 37246.69 38453.84 40416.45 41348.61 39949.92 40437.49 39231.67 39760.97 3928.14 40856.42 40328.42 39530.72 40167.19 389
E-PMN31.77 37030.64 37335.15 38752.87 40727.67 40657.09 39747.86 40724.64 40216.40 40733.05 40311.23 40354.90 40414.46 40718.15 40422.87 403
test_method31.52 37129.28 37538.23 38627.03 4136.50 41620.94 40462.21 3954.05 40722.35 40552.50 39913.33 39947.58 40627.04 39734.04 39960.62 393
EMVS30.81 37229.65 37434.27 38850.96 40825.95 40856.58 39846.80 40824.01 40315.53 40830.68 40412.47 40054.43 40512.81 40817.05 40522.43 404
MVEpermissive26.22 2330.37 37325.89 37743.81 38544.55 41035.46 40328.87 40339.07 41018.20 40418.58 40640.18 4012.68 41347.37 40717.07 40523.78 40348.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 37426.61 3760.00 3940.00 4170.00 4190.00 40589.26 1800.00 4120.00 41388.61 17861.62 1680.00 4130.00 4120.00 4110.00 409
tmp_tt18.61 37521.40 37810.23 3914.82 41410.11 41434.70 40130.74 4121.48 40823.91 40426.07 40528.42 38413.41 41027.12 39615.35 4077.17 405
wuyk23d16.82 37615.94 37919.46 39058.74 39931.45 40539.22 4003.74 4156.84 4066.04 4092.70 4091.27 41424.29 40910.54 40914.40 4082.63 406
ab-mvs-re7.23 3779.64 3800.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 41386.72 2290.00 4170.00 4130.00 4120.00 4110.00 409
test1236.12 3788.11 3810.14 3920.06 4160.09 41771.05 3690.03 4170.04 4110.25 4121.30 4110.05 4150.03 4120.21 4110.01 4100.29 407
testmvs6.04 3798.02 3820.10 3930.08 4150.03 41869.74 3740.04 4160.05 4100.31 4111.68 4100.02 4160.04 4110.24 4100.02 4090.25 408
pcd_1.5k_mvsjas5.26 3807.02 3830.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 41263.15 1450.00 4130.00 4120.00 4110.00 409
test_blank0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
uanet_test0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
DCPMVS0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
sosnet-low-res0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
sosnet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
uncertanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
Regformer0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
uanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
WAC-MVS42.58 39439.46 383
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
PC_three_145268.21 24892.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 417
eth-test0.00 417
ZD-MVS94.38 2572.22 4492.67 6270.98 18587.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 120
IU-MVS95.30 271.25 5792.95 5266.81 25892.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 45
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 46
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 249
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26988.96 249
sam_mvs50.01 282
ambc75.24 31073.16 38350.51 37363.05 39487.47 23164.28 35377.81 36217.80 39689.73 27357.88 30060.64 37685.49 321
MTGPAbinary92.02 91
test_post178.90 3275.43 40848.81 30185.44 32359.25 285
test_post5.46 40750.36 28084.24 330
patchmatchnet-post74.00 37751.12 27188.60 293
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
MTMP92.18 3532.83 411
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
test9_res84.90 4295.70 2692.87 107
TEST993.26 5072.96 2588.75 11491.89 9968.44 24585.00 5993.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 11991.84 10368.69 24084.87 6393.10 6774.43 2695.16 79
agg_prior282.91 6695.45 3092.70 110
agg_prior92.85 5971.94 5191.78 10684.41 7594.93 91
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 57
旧先验286.56 19058.10 35187.04 4188.98 28674.07 152
新几何286.29 198
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11391.98 9063.28 14092.27 20564.60 24092.99 6987.27 287
旧先验191.96 7165.79 18086.37 25093.08 7169.31 7992.74 7288.74 259
无先验87.48 16088.98 19360.00 33494.12 12367.28 21788.97 248
原ACMM286.86 178
原ACMM184.35 11193.01 5768.79 10792.44 7463.96 30081.09 12491.57 10166.06 11895.45 6567.19 21994.82 4588.81 255
test22291.50 7768.26 12584.16 25183.20 29454.63 36879.74 13691.63 9958.97 20091.42 8986.77 300
testdata291.01 25362.37 258
segment_acmp73.08 38
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
testdata184.14 25275.71 89
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5396.16 4494.50 5093.54 82
plane_prior790.08 10368.51 120
plane_prior689.84 11368.70 11560.42 193
plane_prior592.44 7495.38 7178.71 10786.32 15791.33 157
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 148
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 418
nn0.00 418
door-mid69.98 379
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
LGP-MVS_train84.50 10389.23 14068.76 10991.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
test1192.23 85
door69.44 382
HQP5-MVS66.98 157
HQP-NCC89.33 13389.17 9876.41 7477.23 187
ACMP_Plane89.33 13389.17 9876.41 7477.23 187
BP-MVS77.47 119
HQP4-MVS77.24 18695.11 8391.03 167
HQP3-MVS92.19 8885.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11768.32 12390.24 136
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22567.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
DeepMVS_CXcopyleft27.40 38940.17 41226.90 40724.59 41317.44 40523.95 40348.61 4009.77 40426.48 40818.06 40224.47 40228.83 402