| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 57 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 63 | 93.57 7 | 94.06 10 | 77.24 50 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 6 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 57 | 93.49 9 | 92.73 60 | 77.33 48 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 8 | 89.08 12 | 96.41 12 | 93.33 89 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 37 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 62 | 94.67 25 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 87 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 10 | 87.44 33 | 96.34 15 | 93.95 56 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 90 | 73.65 10 | 92.66 23 | 91.17 123 | 86.57 1 | 87.39 37 | 94.97 16 | 71.70 52 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 91 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 34 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 109 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 12 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 55 | 80.26 11 | 87.78 30 | 94.27 32 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 101 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 60 | 93.00 43 | 80.90 7 | 88.06 26 | 94.06 42 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 41 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 69 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 25 | 94.80 17 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 61 | 71.95 50 | 92.40 24 | 94.74 2 | 75.71 89 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 43 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 50 | 92.24 68 | 69.03 100 | 89.57 86 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 39 | 78.98 12 | 96.58 35 | 85.66 37 | 95.72 24 | 94.58 29 |
|
| MVS_0304 | | | 88.08 14 | 88.08 17 | 88.08 14 | 89.67 116 | 72.04 48 | 92.26 33 | 89.26 180 | 84.19 2 | 85.01 57 | 95.18 13 | 69.93 71 | 97.20 14 | 91.63 2 | 95.60 29 | 94.99 9 |
|
| SD-MVS | | | 88.06 15 | 88.50 14 | 86.71 51 | 92.60 66 | 72.71 29 | 91.81 42 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 46 | 74.83 23 | 93.78 139 | 87.63 30 | 94.27 61 | 93.65 74 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NCCC | | | 88.06 15 | 88.01 19 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 52 | 92.83 56 | 81.50 5 | 85.79 50 | 93.47 60 | 73.02 40 | 97.00 18 | 84.90 42 | 94.94 39 | 94.10 49 |
|
| ACMMP_NAP | | | 88.05 17 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 55 | 93.59 23 | 76.27 81 | 88.14 24 | 95.09 15 | 71.06 59 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 50 |
|
| TSAR-MVS + MP. | | | 88.02 18 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 47 | 92.35 79 | 74.62 113 | 88.90 20 | 93.85 52 | 75.75 20 | 96.00 49 | 87.80 28 | 94.63 47 | 95.04 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ZNCC-MVS | | | 87.94 19 | 87.85 20 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 63 | 85.24 55 | 94.32 31 | 71.76 50 | 96.93 19 | 85.53 39 | 95.79 22 | 94.32 42 |
|
| MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 65 | 77.57 41 | 83.84 87 | 94.40 30 | 72.24 45 | 96.28 40 | 85.65 38 | 95.30 35 | 93.62 77 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 78 | 93.50 25 | 75.17 102 | 86.34 46 | 95.29 12 | 70.86 61 | 96.00 49 | 88.78 19 | 96.04 16 | 94.58 29 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 65 | 84.91 61 | 94.44 28 | 70.78 62 | 96.61 32 | 84.53 49 | 94.89 41 | 93.66 70 |
|
| ACMMPR | | | 87.44 23 | 87.23 27 | 88.08 14 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 65 | 84.66 68 | 94.52 21 | 68.81 89 | 96.65 30 | 84.53 49 | 94.90 40 | 94.00 54 |
|
| APD-MVS |  | | 87.44 23 | 87.52 23 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 41 | 92.83 56 | 73.01 151 | 88.58 21 | 94.52 21 | 73.36 34 | 96.49 36 | 84.26 52 | 95.01 37 | 92.70 110 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| GST-MVS | | | 87.42 25 | 87.26 25 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 61 | 84.68 65 | 93.99 48 | 70.67 64 | 96.82 22 | 84.18 56 | 95.01 37 | 93.90 59 |
|
| region2R | | | 87.42 25 | 87.20 28 | 88.09 13 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 37 | 76.73 68 | 84.45 74 | 94.52 21 | 69.09 80 | 96.70 27 | 84.37 51 | 94.83 44 | 94.03 53 |
|
| MCST-MVS | | | 87.37 27 | 87.25 26 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 76 | 93.82 16 | 73.07 149 | 84.86 64 | 92.89 74 | 76.22 17 | 96.33 38 | 84.89 44 | 95.13 36 | 94.40 38 |
|
| MTAPA | | | 87.23 28 | 87.00 29 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 189 | 92.02 91 | 79.45 19 | 85.88 48 | 94.80 17 | 68.07 96 | 96.21 42 | 86.69 36 | 95.34 33 | 93.23 92 |
|
| XVS | | | 87.18 29 | 86.91 33 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 90 | 94.17 36 | 67.45 102 | 96.60 33 | 83.06 63 | 94.50 50 | 94.07 51 |
|
| HPM-MVS |  | | 87.11 30 | 86.98 30 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 34 | 93.33 31 | 76.07 84 | 83.81 88 | 93.95 51 | 69.77 74 | 96.01 48 | 85.15 40 | 94.66 46 | 94.32 42 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 87.11 30 | 86.92 32 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 59 | 76.62 71 | 83.68 89 | 94.46 25 | 67.93 97 | 95.95 52 | 84.20 55 | 94.39 55 | 93.23 92 |
|
| DeepC-MVS | | 79.81 2 | 87.08 32 | 86.88 34 | 87.69 33 | 91.16 80 | 72.32 43 | 90.31 68 | 93.94 14 | 77.12 55 | 82.82 102 | 94.23 35 | 72.13 47 | 97.09 16 | 84.83 45 | 95.37 32 | 93.65 74 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 33 | 86.62 36 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 48 | 93.04 38 | 76.62 71 | 84.22 78 | 93.36 63 | 71.44 56 | 96.76 25 | 80.82 90 | 95.33 34 | 94.16 47 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS | | | 86.73 34 | 86.67 35 | 86.91 46 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 71 | 74.50 114 | 86.84 44 | 94.65 20 | 67.31 104 | 95.77 54 | 84.80 46 | 92.85 71 | 92.84 108 |
|
| CS-MVS | | | 86.69 35 | 86.95 31 | 85.90 65 | 90.76 91 | 67.57 142 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 71 | 92.27 86 | 71.47 55 | 95.02 90 | 84.24 54 | 93.46 67 | 95.13 6 |
|
| PGM-MVS | | | 86.68 36 | 86.27 40 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 70 | 93.04 38 | 75.53 93 | 83.86 86 | 94.42 29 | 67.87 99 | 96.64 31 | 82.70 72 | 94.57 49 | 93.66 70 |
|
| mPP-MVS | | | 86.67 37 | 86.32 39 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 86 | 76.87 62 | 82.81 103 | 94.25 34 | 66.44 112 | 96.24 41 | 82.88 67 | 94.28 60 | 93.38 86 |
|
| CANet | | | 86.45 38 | 86.10 45 | 87.51 37 | 90.09 102 | 70.94 67 | 89.70 82 | 92.59 70 | 81.78 4 | 81.32 119 | 91.43 106 | 70.34 66 | 97.23 13 | 84.26 52 | 93.36 68 | 94.37 39 |
|
| train_agg | | | 86.43 39 | 86.20 41 | 87.13 44 | 93.26 50 | 72.96 25 | 88.75 114 | 91.89 99 | 68.69 240 | 85.00 59 | 93.10 67 | 74.43 26 | 95.41 69 | 84.97 41 | 95.71 25 | 93.02 103 |
|
| PHI-MVS | | | 86.43 39 | 86.17 43 | 87.24 41 | 90.88 87 | 70.96 65 | 92.27 32 | 94.07 9 | 72.45 154 | 85.22 56 | 91.90 92 | 69.47 76 | 96.42 37 | 83.28 62 | 95.94 19 | 94.35 40 |
|
| CSCG | | | 86.41 41 | 86.19 42 | 87.07 45 | 92.91 58 | 72.48 37 | 90.81 56 | 93.56 24 | 73.95 125 | 83.16 96 | 91.07 118 | 75.94 18 | 95.19 78 | 79.94 100 | 94.38 57 | 93.55 81 |
|
| CS-MVS-test | | | 86.29 42 | 86.48 37 | 85.71 68 | 91.02 83 | 67.21 154 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 93 | 91.20 113 | 70.65 65 | 95.15 80 | 81.96 76 | 94.89 41 | 94.77 22 |
|
| EC-MVSNet | | | 86.01 43 | 86.38 38 | 84.91 92 | 89.31 136 | 66.27 169 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 80 | 91.88 93 | 69.04 84 | 95.43 67 | 83.93 57 | 93.77 65 | 93.01 104 |
|
| casdiffmvs_mvg |  | | 85.99 44 | 86.09 46 | 85.70 69 | 87.65 202 | 67.22 153 | 88.69 118 | 93.04 38 | 79.64 18 | 85.33 54 | 92.54 83 | 73.30 35 | 94.50 110 | 83.49 59 | 91.14 93 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS_3200maxsize | | | 85.97 45 | 85.88 48 | 86.22 57 | 92.69 63 | 69.53 89 | 91.93 38 | 92.99 46 | 73.54 137 | 85.94 47 | 94.51 24 | 65.80 122 | 95.61 58 | 83.04 65 | 92.51 75 | 93.53 83 |
|
| test_fmvsmconf_n | | | 85.92 46 | 86.04 47 | 85.57 71 | 85.03 256 | 69.51 90 | 89.62 85 | 90.58 138 | 73.42 140 | 87.75 32 | 94.02 44 | 72.85 41 | 93.24 164 | 90.37 3 | 90.75 97 | 93.96 55 |
|
| sasdasda | | | 85.91 47 | 85.87 49 | 86.04 60 | 89.84 113 | 69.44 95 | 90.45 65 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 110 | 73.28 36 | 93.91 133 | 81.50 79 | 88.80 124 | 94.77 22 |
|
| canonicalmvs | | | 85.91 47 | 85.87 49 | 86.04 60 | 89.84 113 | 69.44 95 | 90.45 65 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 110 | 73.28 36 | 93.91 133 | 81.50 79 | 88.80 124 | 94.77 22 |
|
| ACMMP |  | | 85.89 49 | 85.39 56 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 36 | 76.78 65 | 80.73 128 | 93.82 53 | 64.33 132 | 96.29 39 | 82.67 73 | 90.69 98 | 93.23 92 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS-dyc-post | | | 85.77 50 | 85.61 53 | 86.23 56 | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 81 | 73.53 138 | 85.69 51 | 94.45 26 | 65.00 130 | 95.56 60 | 82.75 68 | 91.87 83 | 92.50 120 |
|
| CDPH-MVS | | | 85.76 51 | 85.29 61 | 87.17 43 | 93.49 47 | 71.08 61 | 88.58 122 | 92.42 77 | 68.32 247 | 84.61 69 | 93.48 58 | 72.32 44 | 96.15 45 | 79.00 103 | 95.43 31 | 94.28 44 |
|
| TSAR-MVS + GP. | | | 85.71 52 | 85.33 58 | 86.84 47 | 91.34 78 | 72.50 36 | 89.07 104 | 87.28 234 | 76.41 74 | 85.80 49 | 90.22 138 | 74.15 31 | 95.37 74 | 81.82 77 | 91.88 82 | 92.65 114 |
|
| dcpmvs_2 | | | 85.63 53 | 86.15 44 | 84.06 129 | 91.71 75 | 64.94 198 | 86.47 192 | 91.87 101 | 73.63 133 | 86.60 45 | 93.02 72 | 76.57 15 | 91.87 220 | 83.36 60 | 92.15 79 | 95.35 3 |
|
| test_fmvsmconf0.1_n | | | 85.61 54 | 85.65 52 | 85.50 72 | 82.99 301 | 69.39 97 | 89.65 83 | 90.29 151 | 73.31 143 | 87.77 31 | 94.15 38 | 71.72 51 | 93.23 165 | 90.31 4 | 90.67 99 | 93.89 60 |
|
| alignmvs | | | 85.48 55 | 85.32 59 | 85.96 63 | 89.51 122 | 69.47 92 | 89.74 80 | 92.47 73 | 76.17 82 | 87.73 34 | 91.46 105 | 70.32 67 | 93.78 139 | 81.51 78 | 88.95 121 | 94.63 28 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 55 | 84.47 73 | 88.51 7 | 91.08 81 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 200 | 93.37 62 | 60.40 195 | 96.75 26 | 77.20 122 | 93.73 66 | 95.29 5 |
|
| MSLP-MVS++ | | | 85.43 57 | 85.76 51 | 84.45 107 | 91.93 72 | 70.24 76 | 90.71 57 | 92.86 54 | 77.46 47 | 84.22 78 | 92.81 78 | 67.16 106 | 92.94 184 | 80.36 95 | 94.35 58 | 90.16 200 |
|
| DELS-MVS | | | 85.41 58 | 85.30 60 | 85.77 67 | 88.49 167 | 67.93 133 | 85.52 222 | 93.44 27 | 78.70 29 | 83.63 92 | 89.03 168 | 74.57 24 | 95.71 56 | 80.26 98 | 94.04 63 | 93.66 70 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS_fast | | | 85.35 59 | 84.95 65 | 86.57 53 | 93.69 42 | 70.58 75 | 92.15 36 | 91.62 109 | 73.89 128 | 82.67 105 | 94.09 40 | 62.60 151 | 95.54 62 | 80.93 88 | 92.93 70 | 93.57 79 |
|
| test_fmvsm_n_1920 | | | 85.29 60 | 85.34 57 | 85.13 82 | 86.12 236 | 69.93 83 | 88.65 120 | 90.78 134 | 69.97 208 | 88.27 23 | 93.98 49 | 71.39 57 | 91.54 232 | 88.49 23 | 90.45 101 | 93.91 57 |
|
| MVS_111021_HR | | | 85.14 61 | 84.75 66 | 86.32 55 | 91.65 76 | 72.70 30 | 85.98 205 | 90.33 148 | 76.11 83 | 82.08 108 | 91.61 100 | 71.36 58 | 94.17 122 | 81.02 86 | 92.58 74 | 92.08 137 |
|
| casdiffmvs |  | | 85.11 62 | 85.14 62 | 85.01 85 | 87.20 218 | 65.77 181 | 87.75 154 | 92.83 56 | 77.84 37 | 84.36 77 | 92.38 85 | 72.15 46 | 93.93 132 | 81.27 84 | 90.48 100 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UA-Net | | | 85.08 63 | 84.96 64 | 85.45 73 | 92.07 70 | 68.07 130 | 89.78 79 | 90.86 133 | 82.48 3 | 84.60 70 | 93.20 66 | 69.35 77 | 95.22 77 | 71.39 177 | 90.88 96 | 93.07 100 |
|
| MGCFI-Net | | | 85.06 64 | 85.51 54 | 83.70 144 | 89.42 127 | 63.01 240 | 89.43 89 | 92.62 69 | 76.43 73 | 87.53 35 | 91.34 108 | 72.82 42 | 93.42 159 | 81.28 83 | 88.74 127 | 94.66 27 |
|
| mamv4 | | | 85.00 65 | 84.68 68 | 85.93 64 | 89.51 122 | 67.64 139 | 88.38 131 | 92.65 65 | 72.35 159 | 84.47 73 | 90.26 135 | 68.98 87 | 95.69 57 | 81.09 85 | 94.45 53 | 94.47 34 |
|
| MVSMamba_pp | | | 84.98 66 | 84.70 67 | 85.80 66 | 89.43 126 | 67.63 140 | 88.44 125 | 92.64 67 | 72.17 162 | 84.54 72 | 90.39 133 | 68.88 88 | 95.28 75 | 81.45 81 | 94.39 55 | 94.49 33 |
|
| DPM-MVS | | | 84.93 67 | 84.29 75 | 86.84 47 | 90.20 100 | 73.04 23 | 87.12 170 | 93.04 38 | 69.80 212 | 82.85 100 | 91.22 112 | 73.06 39 | 96.02 47 | 76.72 129 | 94.63 47 | 91.46 156 |
|
| baseline | | | 84.93 67 | 84.98 63 | 84.80 96 | 87.30 216 | 65.39 188 | 87.30 166 | 92.88 53 | 77.62 39 | 84.04 84 | 92.26 87 | 71.81 49 | 93.96 126 | 81.31 82 | 90.30 103 | 95.03 8 |
|
| ETV-MVS | | | 84.90 69 | 84.67 69 | 85.59 70 | 89.39 130 | 68.66 117 | 88.74 116 | 92.64 67 | 79.97 15 | 84.10 82 | 85.71 257 | 69.32 78 | 95.38 71 | 80.82 90 | 91.37 90 | 92.72 109 |
|
| test_fmvsmconf0.01_n | | | 84.73 70 | 84.52 72 | 85.34 75 | 80.25 341 | 69.03 100 | 89.47 87 | 89.65 168 | 73.24 147 | 86.98 42 | 94.27 32 | 66.62 108 | 93.23 165 | 90.26 5 | 89.95 111 | 93.78 67 |
|
| fmvsm_l_conf0.5_n | | | 84.47 71 | 84.54 70 | 84.27 117 | 85.42 246 | 68.81 106 | 88.49 124 | 87.26 235 | 68.08 249 | 88.03 27 | 93.49 57 | 72.04 48 | 91.77 222 | 88.90 17 | 89.14 120 | 92.24 131 |
|
| bld_raw_dy_0_64 | | | 84.37 72 | 84.35 74 | 84.46 106 | 89.86 112 | 64.47 208 | 86.68 186 | 92.49 72 | 72.08 165 | 84.16 81 | 89.77 146 | 68.76 91 | 95.08 88 | 80.97 87 | 94.34 59 | 93.82 64 |
|
| EI-MVSNet-Vis-set | | | 84.19 73 | 83.81 78 | 85.31 76 | 88.18 178 | 67.85 134 | 87.66 156 | 89.73 166 | 80.05 14 | 82.95 97 | 89.59 153 | 70.74 63 | 94.82 100 | 80.66 94 | 84.72 177 | 93.28 91 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 74 | 84.16 76 | 84.06 129 | 85.38 247 | 68.40 121 | 88.34 133 | 86.85 243 | 67.48 256 | 87.48 36 | 93.40 61 | 70.89 60 | 91.61 226 | 88.38 25 | 89.22 119 | 92.16 135 |
|
| test_fmvsmvis_n_1920 | | | 84.02 75 | 83.87 77 | 84.49 105 | 84.12 272 | 69.37 98 | 88.15 142 | 87.96 218 | 70.01 206 | 83.95 85 | 93.23 65 | 68.80 90 | 91.51 235 | 88.61 20 | 89.96 110 | 92.57 116 |
|
| iter_conf05_11 | | | 83.91 76 | 83.56 80 | 84.97 87 | 89.34 132 | 66.68 162 | 86.01 204 | 92.25 84 | 70.16 204 | 82.83 101 | 88.56 181 | 69.00 86 | 95.60 59 | 79.43 102 | 94.43 54 | 92.63 115 |
|
| nrg030 | | | 83.88 77 | 83.53 81 | 84.96 88 | 86.77 226 | 69.28 99 | 90.46 64 | 92.67 62 | 74.79 108 | 82.95 97 | 91.33 109 | 72.70 43 | 93.09 178 | 80.79 92 | 79.28 255 | 92.50 120 |
|
| EI-MVSNet-UG-set | | | 83.81 78 | 83.38 84 | 85.09 83 | 87.87 191 | 67.53 143 | 87.44 162 | 89.66 167 | 79.74 16 | 82.23 107 | 89.41 162 | 70.24 68 | 94.74 103 | 79.95 99 | 83.92 190 | 92.99 105 |
|
| fmvsm_s_conf0.5_n | | | 83.80 79 | 83.71 79 | 84.07 127 | 86.69 228 | 67.31 149 | 89.46 88 | 83.07 296 | 71.09 182 | 86.96 43 | 93.70 55 | 69.02 85 | 91.47 237 | 88.79 18 | 84.62 179 | 93.44 85 |
|
| CPTT-MVS | | | 83.73 80 | 83.33 86 | 84.92 91 | 93.28 49 | 70.86 69 | 92.09 37 | 90.38 144 | 68.75 239 | 79.57 139 | 92.83 76 | 60.60 191 | 93.04 182 | 80.92 89 | 91.56 88 | 90.86 173 |
|
| EPNet | | | 83.72 81 | 82.92 93 | 86.14 59 | 84.22 270 | 69.48 91 | 91.05 54 | 85.27 263 | 81.30 6 | 76.83 195 | 91.65 97 | 66.09 117 | 95.56 60 | 76.00 135 | 93.85 64 | 93.38 86 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| patch_mono-2 | | | 83.65 82 | 84.54 70 | 80.99 223 | 90.06 107 | 65.83 178 | 84.21 250 | 88.74 204 | 71.60 172 | 85.01 57 | 92.44 84 | 74.51 25 | 83.50 336 | 82.15 75 | 92.15 79 | 93.64 76 |
|
| HQP_MVS | | | 83.64 83 | 83.14 87 | 85.14 80 | 90.08 103 | 68.71 113 | 91.25 50 | 92.44 74 | 79.12 23 | 78.92 148 | 91.00 122 | 60.42 193 | 95.38 71 | 78.71 107 | 86.32 157 | 91.33 157 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 84 | 83.41 83 | 84.28 115 | 86.14 235 | 68.12 128 | 89.43 89 | 82.87 301 | 70.27 201 | 87.27 39 | 93.80 54 | 69.09 80 | 91.58 228 | 88.21 26 | 83.65 198 | 93.14 98 |
|
| Effi-MVS+ | | | 83.62 85 | 83.08 88 | 85.24 78 | 88.38 173 | 67.45 144 | 88.89 109 | 89.15 186 | 75.50 94 | 82.27 106 | 88.28 189 | 69.61 75 | 94.45 112 | 77.81 116 | 87.84 136 | 93.84 63 |
|
| fmvsm_s_conf0.1_n | | | 83.56 86 | 83.38 84 | 84.10 122 | 84.86 258 | 67.28 150 | 89.40 93 | 83.01 297 | 70.67 190 | 87.08 40 | 93.96 50 | 68.38 94 | 91.45 238 | 88.56 22 | 84.50 180 | 93.56 80 |
|
| OPM-MVS | | | 83.50 87 | 82.95 92 | 85.14 80 | 88.79 157 | 70.95 66 | 89.13 103 | 91.52 112 | 77.55 44 | 80.96 126 | 91.75 95 | 60.71 186 | 94.50 110 | 79.67 101 | 86.51 155 | 89.97 216 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 83.46 88 | 82.80 96 | 85.43 74 | 90.25 99 | 68.74 111 | 90.30 69 | 90.13 155 | 76.33 80 | 80.87 127 | 92.89 74 | 61.00 183 | 94.20 120 | 72.45 171 | 90.97 94 | 93.35 88 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MG-MVS | | | 83.41 89 | 83.45 82 | 83.28 156 | 92.74 62 | 62.28 251 | 88.17 140 | 89.50 171 | 75.22 98 | 81.49 117 | 92.74 82 | 66.75 107 | 95.11 83 | 72.85 165 | 91.58 87 | 92.45 123 |
|
| EPP-MVSNet | | | 83.40 90 | 83.02 90 | 84.57 100 | 90.13 101 | 64.47 208 | 92.32 30 | 90.73 135 | 74.45 117 | 79.35 142 | 91.10 116 | 69.05 83 | 95.12 81 | 72.78 166 | 87.22 144 | 94.13 48 |
|
| 3Dnovator | | 76.31 5 | 83.38 91 | 82.31 102 | 86.59 52 | 87.94 189 | 72.94 28 | 90.64 58 | 92.14 90 | 77.21 52 | 75.47 225 | 92.83 76 | 58.56 202 | 94.72 104 | 73.24 162 | 92.71 73 | 92.13 136 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 92 | 82.99 91 | 84.28 115 | 83.79 279 | 68.07 130 | 89.34 95 | 82.85 302 | 69.80 212 | 87.36 38 | 94.06 42 | 68.34 95 | 91.56 230 | 87.95 27 | 83.46 204 | 93.21 95 |
|
| EIA-MVS | | | 83.31 93 | 82.80 96 | 84.82 94 | 89.59 118 | 65.59 183 | 88.21 138 | 92.68 61 | 74.66 111 | 78.96 146 | 86.42 244 | 69.06 82 | 95.26 76 | 75.54 141 | 90.09 107 | 93.62 77 |
|
| iter_conf05 | | | 83.17 94 | 82.90 94 | 83.97 138 | 87.59 207 | 65.09 195 | 88.29 136 | 91.52 112 | 72.35 159 | 81.39 118 | 90.13 140 | 68.76 91 | 94.84 99 | 80.30 97 | 85.75 169 | 91.98 141 |
|
| h-mvs33 | | | 83.15 95 | 82.19 103 | 86.02 62 | 90.56 93 | 70.85 70 | 88.15 142 | 89.16 185 | 76.02 85 | 84.67 66 | 91.39 107 | 61.54 169 | 95.50 63 | 82.71 70 | 75.48 301 | 91.72 146 |
|
| MVS_Test | | | 83.15 95 | 83.06 89 | 83.41 153 | 86.86 222 | 63.21 236 | 86.11 202 | 92.00 93 | 74.31 118 | 82.87 99 | 89.44 161 | 70.03 69 | 93.21 167 | 77.39 121 | 88.50 132 | 93.81 65 |
|
| IS-MVSNet | | | 83.15 95 | 82.81 95 | 84.18 120 | 89.94 110 | 63.30 234 | 91.59 43 | 88.46 210 | 79.04 25 | 79.49 140 | 92.16 88 | 65.10 127 | 94.28 115 | 67.71 212 | 91.86 85 | 94.95 10 |
|
| DP-MVS Recon | | | 83.11 98 | 82.09 105 | 86.15 58 | 94.44 19 | 70.92 68 | 88.79 112 | 92.20 87 | 70.53 195 | 79.17 144 | 91.03 121 | 64.12 134 | 96.03 46 | 68.39 209 | 90.14 106 | 91.50 152 |
|
| PAPM_NR | | | 83.02 99 | 82.41 99 | 84.82 94 | 92.47 67 | 66.37 167 | 87.93 149 | 91.80 104 | 73.82 129 | 77.32 184 | 90.66 127 | 67.90 98 | 94.90 95 | 70.37 186 | 89.48 116 | 93.19 96 |
|
| VDD-MVS | | | 83.01 100 | 82.36 101 | 84.96 88 | 91.02 83 | 66.40 166 | 88.91 108 | 88.11 213 | 77.57 41 | 84.39 76 | 93.29 64 | 52.19 254 | 93.91 133 | 77.05 124 | 88.70 128 | 94.57 31 |
|
| MVSFormer | | | 82.85 101 | 82.05 106 | 85.24 78 | 87.35 210 | 70.21 77 | 90.50 61 | 90.38 144 | 68.55 242 | 81.32 119 | 89.47 156 | 61.68 166 | 93.46 156 | 78.98 104 | 90.26 104 | 92.05 138 |
|
| OMC-MVS | | | 82.69 102 | 81.97 109 | 84.85 93 | 88.75 159 | 67.42 145 | 87.98 145 | 90.87 132 | 74.92 105 | 79.72 137 | 91.65 97 | 62.19 161 | 93.96 126 | 75.26 143 | 86.42 156 | 93.16 97 |
|
| PVSNet_Blended_VisFu | | | 82.62 103 | 81.83 111 | 84.96 88 | 90.80 89 | 69.76 87 | 88.74 116 | 91.70 108 | 69.39 220 | 78.96 146 | 88.46 184 | 65.47 124 | 94.87 98 | 74.42 148 | 88.57 129 | 90.24 198 |
|
| MVS_111021_LR | | | 82.61 104 | 82.11 104 | 84.11 121 | 88.82 154 | 71.58 53 | 85.15 225 | 86.16 253 | 74.69 110 | 80.47 130 | 91.04 119 | 62.29 158 | 90.55 260 | 80.33 96 | 90.08 108 | 90.20 199 |
|
| HQP-MVS | | | 82.61 104 | 82.02 107 | 84.37 109 | 89.33 133 | 66.98 157 | 89.17 98 | 92.19 88 | 76.41 74 | 77.23 187 | 90.23 137 | 60.17 196 | 95.11 83 | 77.47 119 | 85.99 165 | 91.03 167 |
|
| CLD-MVS | | | 82.31 106 | 81.65 112 | 84.29 114 | 88.47 168 | 67.73 137 | 85.81 213 | 92.35 79 | 75.78 88 | 78.33 162 | 86.58 239 | 64.01 135 | 94.35 113 | 76.05 134 | 87.48 141 | 90.79 174 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VNet | | | 82.21 107 | 82.41 99 | 81.62 204 | 90.82 88 | 60.93 265 | 84.47 241 | 89.78 163 | 76.36 79 | 84.07 83 | 91.88 93 | 64.71 131 | 90.26 262 | 70.68 183 | 88.89 122 | 93.66 70 |
|
| diffmvs |  | | 82.10 108 | 81.88 110 | 82.76 186 | 83.00 299 | 63.78 222 | 83.68 257 | 89.76 164 | 72.94 152 | 82.02 109 | 89.85 144 | 65.96 121 | 90.79 256 | 82.38 74 | 87.30 143 | 93.71 69 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 82.08 109 | 81.27 115 | 84.50 103 | 89.23 140 | 68.76 109 | 90.22 70 | 91.94 97 | 75.37 96 | 76.64 201 | 91.51 102 | 54.29 235 | 94.91 92 | 78.44 109 | 83.78 191 | 89.83 221 |
|
| FIs | | | 82.07 110 | 82.42 98 | 81.04 222 | 88.80 156 | 58.34 291 | 88.26 137 | 93.49 26 | 76.93 60 | 78.47 159 | 91.04 119 | 69.92 72 | 92.34 203 | 69.87 193 | 84.97 174 | 92.44 124 |
|
| PS-MVSNAJss | | | 82.07 110 | 81.31 114 | 84.34 112 | 86.51 231 | 67.27 151 | 89.27 96 | 91.51 114 | 71.75 167 | 79.37 141 | 90.22 138 | 63.15 145 | 94.27 116 | 77.69 117 | 82.36 218 | 91.49 153 |
|
| API-MVS | | | 81.99 112 | 81.23 116 | 84.26 118 | 90.94 85 | 70.18 82 | 91.10 53 | 89.32 176 | 71.51 174 | 78.66 153 | 88.28 189 | 65.26 125 | 95.10 86 | 64.74 239 | 91.23 92 | 87.51 281 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 113 | 81.54 113 | 82.92 175 | 88.46 169 | 63.46 230 | 87.13 169 | 92.37 78 | 80.19 12 | 78.38 160 | 89.14 164 | 71.66 54 | 93.05 180 | 70.05 189 | 76.46 284 | 92.25 129 |
|
| MAR-MVS | | | 81.84 114 | 80.70 125 | 85.27 77 | 91.32 79 | 71.53 54 | 89.82 76 | 90.92 129 | 69.77 214 | 78.50 157 | 86.21 248 | 62.36 157 | 94.52 109 | 65.36 233 | 92.05 81 | 89.77 224 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LFMVS | | | 81.82 115 | 81.23 116 | 83.57 148 | 91.89 73 | 63.43 232 | 89.84 75 | 81.85 312 | 77.04 58 | 83.21 94 | 93.10 67 | 52.26 253 | 93.43 158 | 71.98 172 | 89.95 111 | 93.85 61 |
|
| hse-mvs2 | | | 81.72 116 | 80.94 122 | 84.07 127 | 88.72 160 | 67.68 138 | 85.87 209 | 87.26 235 | 76.02 85 | 84.67 66 | 88.22 192 | 61.54 169 | 93.48 154 | 82.71 70 | 73.44 329 | 91.06 165 |
|
| GeoE | | | 81.71 117 | 81.01 121 | 83.80 143 | 89.51 122 | 64.45 210 | 88.97 106 | 88.73 205 | 71.27 178 | 78.63 154 | 89.76 147 | 66.32 114 | 93.20 170 | 69.89 192 | 86.02 164 | 93.74 68 |
|
| xiu_mvs_v2_base | | | 81.69 118 | 81.05 119 | 83.60 146 | 89.15 143 | 68.03 132 | 84.46 243 | 90.02 157 | 70.67 190 | 81.30 122 | 86.53 242 | 63.17 144 | 94.19 121 | 75.60 140 | 88.54 130 | 88.57 263 |
|
| PS-MVSNAJ | | | 81.69 118 | 81.02 120 | 83.70 144 | 89.51 122 | 68.21 127 | 84.28 249 | 90.09 156 | 70.79 187 | 81.26 123 | 85.62 262 | 63.15 145 | 94.29 114 | 75.62 139 | 88.87 123 | 88.59 262 |
|
| mvsmamba | | | 81.69 118 | 80.74 124 | 84.56 101 | 87.45 209 | 66.72 161 | 91.26 48 | 85.89 257 | 74.66 111 | 78.23 164 | 90.56 129 | 54.33 234 | 94.91 92 | 80.73 93 | 83.54 202 | 92.04 140 |
|
| PAPR | | | 81.66 121 | 80.89 123 | 83.99 137 | 90.27 98 | 64.00 217 | 86.76 184 | 91.77 107 | 68.84 238 | 77.13 193 | 89.50 154 | 67.63 100 | 94.88 97 | 67.55 214 | 88.52 131 | 93.09 99 |
|
| UniMVSNet (Re) | | | 81.60 122 | 81.11 118 | 83.09 166 | 88.38 173 | 64.41 211 | 87.60 157 | 93.02 42 | 78.42 32 | 78.56 156 | 88.16 193 | 69.78 73 | 93.26 163 | 69.58 196 | 76.49 283 | 91.60 147 |
|
| FC-MVSNet-test | | | 81.52 123 | 82.02 107 | 80.03 243 | 88.42 172 | 55.97 329 | 87.95 147 | 93.42 29 | 77.10 56 | 77.38 182 | 90.98 124 | 69.96 70 | 91.79 221 | 68.46 208 | 84.50 180 | 92.33 125 |
|
| VDDNet | | | 81.52 123 | 80.67 126 | 84.05 132 | 90.44 96 | 64.13 216 | 89.73 81 | 85.91 256 | 71.11 181 | 83.18 95 | 93.48 58 | 50.54 278 | 93.49 153 | 73.40 159 | 88.25 134 | 94.54 32 |
|
| ACMP | | 74.13 6 | 81.51 125 | 80.57 127 | 84.36 110 | 89.42 127 | 68.69 116 | 89.97 74 | 91.50 117 | 74.46 116 | 75.04 246 | 90.41 132 | 53.82 240 | 94.54 107 | 77.56 118 | 82.91 210 | 89.86 220 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| jason | | | 81.39 126 | 80.29 134 | 84.70 98 | 86.63 230 | 69.90 85 | 85.95 206 | 86.77 244 | 63.24 303 | 81.07 125 | 89.47 156 | 61.08 182 | 92.15 209 | 78.33 112 | 90.07 109 | 92.05 138 |
| jason: jason. |
| lupinMVS | | | 81.39 126 | 80.27 135 | 84.76 97 | 87.35 210 | 70.21 77 | 85.55 218 | 86.41 248 | 62.85 310 | 81.32 119 | 88.61 178 | 61.68 166 | 92.24 207 | 78.41 111 | 90.26 104 | 91.83 143 |
|
| test_yl | | | 81.17 128 | 80.47 130 | 83.24 159 | 89.13 144 | 63.62 223 | 86.21 199 | 89.95 160 | 72.43 157 | 81.78 114 | 89.61 151 | 57.50 212 | 93.58 147 | 70.75 181 | 86.90 148 | 92.52 118 |
|
| DCV-MVSNet | | | 81.17 128 | 80.47 130 | 83.24 159 | 89.13 144 | 63.62 223 | 86.21 199 | 89.95 160 | 72.43 157 | 81.78 114 | 89.61 151 | 57.50 212 | 93.58 147 | 70.75 181 | 86.90 148 | 92.52 118 |
|
| DU-MVS | | | 81.12 130 | 80.52 129 | 82.90 176 | 87.80 194 | 63.46 230 | 87.02 173 | 91.87 101 | 79.01 26 | 78.38 160 | 89.07 166 | 65.02 128 | 93.05 180 | 70.05 189 | 76.46 284 | 92.20 132 |
|
| PVSNet_Blended | | | 80.98 131 | 80.34 132 | 82.90 176 | 88.85 151 | 65.40 186 | 84.43 245 | 92.00 93 | 67.62 253 | 78.11 168 | 85.05 276 | 66.02 119 | 94.27 116 | 71.52 174 | 89.50 115 | 89.01 245 |
|
| FA-MVS(test-final) | | | 80.96 132 | 79.91 140 | 84.10 122 | 88.30 176 | 65.01 196 | 84.55 240 | 90.01 158 | 73.25 146 | 79.61 138 | 87.57 206 | 58.35 204 | 94.72 104 | 71.29 178 | 86.25 159 | 92.56 117 |
|
| QAPM | | | 80.88 133 | 79.50 149 | 85.03 84 | 88.01 188 | 68.97 104 | 91.59 43 | 92.00 93 | 66.63 267 | 75.15 242 | 92.16 88 | 57.70 209 | 95.45 65 | 63.52 245 | 88.76 126 | 90.66 180 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 134 | 80.31 133 | 82.42 191 | 87.85 192 | 62.33 249 | 87.74 155 | 91.33 119 | 80.55 9 | 77.99 172 | 89.86 143 | 65.23 126 | 92.62 190 | 67.05 221 | 75.24 311 | 92.30 127 |
|
| UGNet | | | 80.83 135 | 79.59 147 | 84.54 102 | 88.04 186 | 68.09 129 | 89.42 91 | 88.16 212 | 76.95 59 | 76.22 211 | 89.46 158 | 49.30 293 | 93.94 129 | 68.48 207 | 90.31 102 | 91.60 147 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Fast-Effi-MVS+ | | | 80.81 136 | 79.92 139 | 83.47 149 | 88.85 151 | 64.51 205 | 85.53 220 | 89.39 174 | 70.79 187 | 78.49 158 | 85.06 275 | 67.54 101 | 93.58 147 | 67.03 222 | 86.58 153 | 92.32 126 |
|
| XVG-OURS-SEG-HR | | | 80.81 136 | 79.76 143 | 83.96 140 | 85.60 243 | 68.78 108 | 83.54 263 | 90.50 141 | 70.66 193 | 76.71 199 | 91.66 96 | 60.69 187 | 91.26 243 | 76.94 125 | 81.58 226 | 91.83 143 |
|
| xiu_mvs_v1_base_debu | | | 80.80 138 | 79.72 144 | 84.03 134 | 87.35 210 | 70.19 79 | 85.56 215 | 88.77 200 | 69.06 232 | 81.83 110 | 88.16 193 | 50.91 272 | 92.85 186 | 78.29 113 | 87.56 138 | 89.06 240 |
|
| xiu_mvs_v1_base | | | 80.80 138 | 79.72 144 | 84.03 134 | 87.35 210 | 70.19 79 | 85.56 215 | 88.77 200 | 69.06 232 | 81.83 110 | 88.16 193 | 50.91 272 | 92.85 186 | 78.29 113 | 87.56 138 | 89.06 240 |
|
| xiu_mvs_v1_base_debi | | | 80.80 138 | 79.72 144 | 84.03 134 | 87.35 210 | 70.19 79 | 85.56 215 | 88.77 200 | 69.06 232 | 81.83 110 | 88.16 193 | 50.91 272 | 92.85 186 | 78.29 113 | 87.56 138 | 89.06 240 |
|
| ACMM | | 73.20 8 | 80.78 141 | 79.84 142 | 83.58 147 | 89.31 136 | 68.37 122 | 89.99 73 | 91.60 110 | 70.28 200 | 77.25 185 | 89.66 149 | 53.37 245 | 93.53 152 | 74.24 151 | 82.85 211 | 88.85 253 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| 114514_t | | | 80.68 142 | 79.51 148 | 84.20 119 | 94.09 38 | 67.27 151 | 89.64 84 | 91.11 126 | 58.75 347 | 74.08 258 | 90.72 126 | 58.10 205 | 95.04 89 | 69.70 194 | 89.42 117 | 90.30 196 |
|
| CANet_DTU | | | 80.61 143 | 79.87 141 | 82.83 178 | 85.60 243 | 63.17 239 | 87.36 163 | 88.65 206 | 76.37 78 | 75.88 218 | 88.44 185 | 53.51 243 | 93.07 179 | 73.30 160 | 89.74 114 | 92.25 129 |
|
| VPA-MVSNet | | | 80.60 144 | 80.55 128 | 80.76 229 | 88.07 185 | 60.80 268 | 86.86 178 | 91.58 111 | 75.67 92 | 80.24 132 | 89.45 160 | 63.34 139 | 90.25 263 | 70.51 185 | 79.22 256 | 91.23 160 |
|
| PVSNet_BlendedMVS | | | 80.60 144 | 80.02 137 | 82.36 193 | 88.85 151 | 65.40 186 | 86.16 201 | 92.00 93 | 69.34 222 | 78.11 168 | 86.09 252 | 66.02 119 | 94.27 116 | 71.52 174 | 82.06 221 | 87.39 283 |
|
| AdaColmap |  | | 80.58 146 | 79.42 150 | 84.06 129 | 93.09 54 | 68.91 105 | 89.36 94 | 88.97 195 | 69.27 223 | 75.70 221 | 89.69 148 | 57.20 216 | 95.77 54 | 63.06 250 | 88.41 133 | 87.50 282 |
|
| EI-MVSNet | | | 80.52 147 | 79.98 138 | 82.12 194 | 84.28 268 | 63.19 238 | 86.41 193 | 88.95 196 | 74.18 122 | 78.69 151 | 87.54 209 | 66.62 108 | 92.43 197 | 72.57 169 | 80.57 239 | 90.74 178 |
|
| XVG-OURS | | | 80.41 148 | 79.23 156 | 83.97 138 | 85.64 242 | 69.02 102 | 83.03 274 | 90.39 143 | 71.09 182 | 77.63 178 | 91.49 104 | 54.62 233 | 91.35 241 | 75.71 137 | 83.47 203 | 91.54 150 |
|
| SDMVSNet | | | 80.38 149 | 80.18 136 | 80.99 223 | 89.03 149 | 64.94 198 | 80.45 306 | 89.40 173 | 75.19 100 | 76.61 203 | 89.98 141 | 60.61 190 | 87.69 304 | 76.83 127 | 83.55 200 | 90.33 194 |
|
| PCF-MVS | | 73.52 7 | 80.38 149 | 78.84 164 | 85.01 85 | 87.71 199 | 68.99 103 | 83.65 258 | 91.46 118 | 63.00 307 | 77.77 176 | 90.28 134 | 66.10 116 | 95.09 87 | 61.40 269 | 88.22 135 | 90.94 171 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| X-MVStestdata | | | 80.37 151 | 77.83 186 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 90 | 12.47 406 | 67.45 102 | 96.60 33 | 83.06 63 | 94.50 50 | 94.07 51 |
|
| test_djsdf | | | 80.30 152 | 79.32 153 | 83.27 157 | 83.98 276 | 65.37 189 | 90.50 61 | 90.38 144 | 68.55 242 | 76.19 212 | 88.70 174 | 56.44 220 | 93.46 156 | 78.98 104 | 80.14 245 | 90.97 170 |
|
| v2v482 | | | 80.23 153 | 79.29 154 | 83.05 169 | 83.62 282 | 64.14 215 | 87.04 172 | 89.97 159 | 73.61 134 | 78.18 167 | 87.22 217 | 61.10 181 | 93.82 137 | 76.11 132 | 76.78 281 | 91.18 161 |
|
| NR-MVSNet | | | 80.23 153 | 79.38 151 | 82.78 184 | 87.80 194 | 63.34 233 | 86.31 196 | 91.09 127 | 79.01 26 | 72.17 279 | 89.07 166 | 67.20 105 | 92.81 189 | 66.08 228 | 75.65 297 | 92.20 132 |
|
| Anonymous20240529 | | | 80.19 155 | 78.89 163 | 84.10 122 | 90.60 92 | 64.75 202 | 88.95 107 | 90.90 130 | 65.97 275 | 80.59 129 | 91.17 115 | 49.97 283 | 93.73 145 | 69.16 200 | 82.70 215 | 93.81 65 |
|
| IterMVS-LS | | | 80.06 156 | 79.38 151 | 82.11 195 | 85.89 238 | 63.20 237 | 86.79 181 | 89.34 175 | 74.19 121 | 75.45 228 | 86.72 229 | 66.62 108 | 92.39 199 | 72.58 168 | 76.86 278 | 90.75 177 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+-dtu | | | 80.03 157 | 78.57 168 | 84.42 108 | 85.13 254 | 68.74 111 | 88.77 113 | 88.10 214 | 74.99 104 | 74.97 247 | 83.49 304 | 57.27 215 | 93.36 160 | 73.53 156 | 80.88 233 | 91.18 161 |
|
| v1144 | | | 80.03 157 | 79.03 160 | 83.01 171 | 83.78 280 | 64.51 205 | 87.11 171 | 90.57 140 | 71.96 166 | 78.08 170 | 86.20 249 | 61.41 173 | 93.94 129 | 74.93 144 | 77.23 272 | 90.60 183 |
|
| v8 | | | 79.97 159 | 79.02 161 | 82.80 181 | 84.09 273 | 64.50 207 | 87.96 146 | 90.29 151 | 74.13 124 | 75.24 239 | 86.81 226 | 62.88 150 | 93.89 136 | 74.39 149 | 75.40 306 | 90.00 212 |
|
| OpenMVS |  | 72.83 10 | 79.77 160 | 78.33 175 | 84.09 125 | 85.17 250 | 69.91 84 | 90.57 59 | 90.97 128 | 66.70 261 | 72.17 279 | 91.91 91 | 54.70 231 | 93.96 126 | 61.81 266 | 90.95 95 | 88.41 266 |
|
| v10 | | | 79.74 161 | 78.67 165 | 82.97 174 | 84.06 274 | 64.95 197 | 87.88 152 | 90.62 137 | 73.11 148 | 75.11 243 | 86.56 240 | 61.46 172 | 94.05 125 | 73.68 154 | 75.55 299 | 89.90 218 |
|
| ECVR-MVS |  | | 79.61 162 | 79.26 155 | 80.67 231 | 90.08 103 | 54.69 343 | 87.89 151 | 77.44 351 | 74.88 106 | 80.27 131 | 92.79 79 | 48.96 299 | 92.45 196 | 68.55 206 | 92.50 76 | 94.86 17 |
|
| BH-RMVSNet | | | 79.61 162 | 78.44 171 | 83.14 164 | 89.38 131 | 65.93 175 | 84.95 230 | 87.15 238 | 73.56 136 | 78.19 166 | 89.79 145 | 56.67 219 | 93.36 160 | 59.53 283 | 86.74 151 | 90.13 202 |
|
| v1192 | | | 79.59 164 | 78.43 172 | 83.07 168 | 83.55 284 | 64.52 204 | 86.93 176 | 90.58 138 | 70.83 186 | 77.78 175 | 85.90 253 | 59.15 199 | 93.94 129 | 73.96 153 | 77.19 274 | 90.76 176 |
|
| ab-mvs | | | 79.51 165 | 78.97 162 | 81.14 219 | 88.46 169 | 60.91 266 | 83.84 255 | 89.24 182 | 70.36 197 | 79.03 145 | 88.87 171 | 63.23 143 | 90.21 264 | 65.12 235 | 82.57 216 | 92.28 128 |
|
| WR-MVS | | | 79.49 166 | 79.22 157 | 80.27 239 | 88.79 157 | 58.35 290 | 85.06 227 | 88.61 208 | 78.56 30 | 77.65 177 | 88.34 187 | 63.81 138 | 90.66 259 | 64.98 237 | 77.22 273 | 91.80 145 |
|
| v144192 | | | 79.47 167 | 78.37 173 | 82.78 184 | 83.35 287 | 63.96 218 | 86.96 174 | 90.36 147 | 69.99 207 | 77.50 179 | 85.67 260 | 60.66 188 | 93.77 141 | 74.27 150 | 76.58 282 | 90.62 181 |
|
| BH-untuned | | | 79.47 167 | 78.60 167 | 82.05 196 | 89.19 142 | 65.91 176 | 86.07 203 | 88.52 209 | 72.18 161 | 75.42 229 | 87.69 203 | 61.15 180 | 93.54 151 | 60.38 276 | 86.83 150 | 86.70 302 |
|
| test1111 | | | 79.43 169 | 79.18 158 | 80.15 241 | 89.99 108 | 53.31 356 | 87.33 165 | 77.05 354 | 75.04 103 | 80.23 133 | 92.77 81 | 48.97 298 | 92.33 204 | 68.87 203 | 92.40 78 | 94.81 20 |
|
| mvs_anonymous | | | 79.42 170 | 79.11 159 | 80.34 237 | 84.45 267 | 57.97 297 | 82.59 276 | 87.62 227 | 67.40 257 | 76.17 215 | 88.56 181 | 68.47 93 | 89.59 275 | 70.65 184 | 86.05 163 | 93.47 84 |
|
| thisisatest0530 | | | 79.40 171 | 77.76 191 | 84.31 113 | 87.69 201 | 65.10 194 | 87.36 163 | 84.26 277 | 70.04 205 | 77.42 181 | 88.26 191 | 49.94 284 | 94.79 102 | 70.20 187 | 84.70 178 | 93.03 102 |
|
| tttt0517 | | | 79.40 171 | 77.91 183 | 83.90 142 | 88.10 183 | 63.84 220 | 88.37 132 | 84.05 279 | 71.45 175 | 76.78 197 | 89.12 165 | 49.93 286 | 94.89 96 | 70.18 188 | 83.18 208 | 92.96 106 |
|
| V42 | | | 79.38 173 | 78.24 177 | 82.83 178 | 81.10 333 | 65.50 185 | 85.55 218 | 89.82 162 | 71.57 173 | 78.21 165 | 86.12 251 | 60.66 188 | 93.18 173 | 75.64 138 | 75.46 303 | 89.81 223 |
|
| jajsoiax | | | 79.29 174 | 77.96 181 | 83.27 157 | 84.68 261 | 66.57 165 | 89.25 97 | 90.16 154 | 69.20 228 | 75.46 227 | 89.49 155 | 45.75 323 | 93.13 176 | 76.84 126 | 80.80 235 | 90.11 204 |
|
| v1921920 | | | 79.22 175 | 78.03 180 | 82.80 181 | 83.30 289 | 63.94 219 | 86.80 180 | 90.33 148 | 69.91 210 | 77.48 180 | 85.53 263 | 58.44 203 | 93.75 143 | 73.60 155 | 76.85 279 | 90.71 179 |
|
| AUN-MVS | | | 79.21 176 | 77.60 196 | 84.05 132 | 88.71 161 | 67.61 141 | 85.84 211 | 87.26 235 | 69.08 231 | 77.23 187 | 88.14 197 | 53.20 247 | 93.47 155 | 75.50 142 | 73.45 328 | 91.06 165 |
|
| TAPA-MVS | | 73.13 9 | 79.15 177 | 77.94 182 | 82.79 183 | 89.59 118 | 62.99 244 | 88.16 141 | 91.51 114 | 65.77 276 | 77.14 192 | 91.09 117 | 60.91 184 | 93.21 167 | 50.26 344 | 87.05 146 | 92.17 134 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| mvs_tets | | | 79.13 178 | 77.77 190 | 83.22 161 | 84.70 260 | 66.37 167 | 89.17 98 | 90.19 153 | 69.38 221 | 75.40 230 | 89.46 158 | 44.17 332 | 93.15 174 | 76.78 128 | 80.70 237 | 90.14 201 |
|
| UniMVSNet_ETH3D | | | 79.10 179 | 78.24 177 | 81.70 203 | 86.85 223 | 60.24 277 | 87.28 167 | 88.79 199 | 74.25 120 | 76.84 194 | 90.53 131 | 49.48 289 | 91.56 230 | 67.98 210 | 82.15 219 | 93.29 90 |
|
| CDS-MVSNet | | | 79.07 180 | 77.70 193 | 83.17 163 | 87.60 203 | 68.23 126 | 84.40 247 | 86.20 252 | 67.49 255 | 76.36 208 | 86.54 241 | 61.54 169 | 90.79 256 | 61.86 265 | 87.33 142 | 90.49 188 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVSTER | | | 79.01 181 | 77.88 185 | 82.38 192 | 83.07 296 | 64.80 201 | 84.08 254 | 88.95 196 | 69.01 235 | 78.69 151 | 87.17 220 | 54.70 231 | 92.43 197 | 74.69 145 | 80.57 239 | 89.89 219 |
|
| v1240 | | | 78.99 182 | 77.78 189 | 82.64 187 | 83.21 291 | 63.54 227 | 86.62 188 | 90.30 150 | 69.74 217 | 77.33 183 | 85.68 259 | 57.04 217 | 93.76 142 | 73.13 163 | 76.92 276 | 90.62 181 |
|
| Anonymous20231211 | | | 78.97 183 | 77.69 194 | 82.81 180 | 90.54 94 | 64.29 213 | 90.11 72 | 91.51 114 | 65.01 285 | 76.16 216 | 88.13 198 | 50.56 277 | 93.03 183 | 69.68 195 | 77.56 271 | 91.11 163 |
|
| v7n | | | 78.97 183 | 77.58 197 | 83.14 164 | 83.45 286 | 65.51 184 | 88.32 134 | 91.21 121 | 73.69 132 | 72.41 276 | 86.32 247 | 57.93 206 | 93.81 138 | 69.18 199 | 75.65 297 | 90.11 204 |
|
| TAMVS | | | 78.89 185 | 77.51 198 | 83.03 170 | 87.80 194 | 67.79 136 | 84.72 234 | 85.05 266 | 67.63 252 | 76.75 198 | 87.70 202 | 62.25 159 | 90.82 255 | 58.53 294 | 87.13 145 | 90.49 188 |
|
| c3_l | | | 78.75 186 | 77.91 183 | 81.26 215 | 82.89 303 | 61.56 260 | 84.09 253 | 89.13 188 | 69.97 208 | 75.56 223 | 84.29 287 | 66.36 113 | 92.09 211 | 73.47 158 | 75.48 301 | 90.12 203 |
|
| tt0805 | | | 78.73 187 | 77.83 186 | 81.43 209 | 85.17 250 | 60.30 276 | 89.41 92 | 90.90 130 | 71.21 179 | 77.17 191 | 88.73 173 | 46.38 312 | 93.21 167 | 72.57 169 | 78.96 257 | 90.79 174 |
|
| v148 | | | 78.72 188 | 77.80 188 | 81.47 208 | 82.73 306 | 61.96 255 | 86.30 197 | 88.08 215 | 73.26 145 | 76.18 213 | 85.47 265 | 62.46 155 | 92.36 201 | 71.92 173 | 73.82 325 | 90.09 206 |
|
| VPNet | | | 78.69 189 | 78.66 166 | 78.76 266 | 88.31 175 | 55.72 332 | 84.45 244 | 86.63 246 | 76.79 64 | 78.26 163 | 90.55 130 | 59.30 198 | 89.70 274 | 66.63 223 | 77.05 275 | 90.88 172 |
|
| ET-MVSNet_ETH3D | | | 78.63 190 | 76.63 219 | 84.64 99 | 86.73 227 | 69.47 92 | 85.01 228 | 84.61 270 | 69.54 218 | 66.51 340 | 86.59 237 | 50.16 281 | 91.75 223 | 76.26 131 | 84.24 187 | 92.69 112 |
|
| anonymousdsp | | | 78.60 191 | 77.15 204 | 82.98 173 | 80.51 339 | 67.08 155 | 87.24 168 | 89.53 170 | 65.66 278 | 75.16 241 | 87.19 219 | 52.52 248 | 92.25 206 | 77.17 123 | 79.34 254 | 89.61 228 |
|
| miper_ehance_all_eth | | | 78.59 192 | 77.76 191 | 81.08 221 | 82.66 308 | 61.56 260 | 83.65 258 | 89.15 186 | 68.87 237 | 75.55 224 | 83.79 298 | 66.49 111 | 92.03 212 | 73.25 161 | 76.39 286 | 89.64 227 |
|
| WR-MVS_H | | | 78.51 193 | 78.49 169 | 78.56 270 | 88.02 187 | 56.38 323 | 88.43 126 | 92.67 62 | 77.14 54 | 73.89 259 | 87.55 208 | 66.25 115 | 89.24 281 | 58.92 289 | 73.55 327 | 90.06 210 |
|
| GBi-Net | | | 78.40 194 | 77.40 199 | 81.40 211 | 87.60 203 | 63.01 240 | 88.39 128 | 89.28 177 | 71.63 169 | 75.34 232 | 87.28 213 | 54.80 227 | 91.11 246 | 62.72 252 | 79.57 249 | 90.09 206 |
|
| test1 | | | 78.40 194 | 77.40 199 | 81.40 211 | 87.60 203 | 63.01 240 | 88.39 128 | 89.28 177 | 71.63 169 | 75.34 232 | 87.28 213 | 54.80 227 | 91.11 246 | 62.72 252 | 79.57 249 | 90.09 206 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 196 | 78.45 170 | 78.07 280 | 88.64 163 | 51.78 365 | 86.70 185 | 79.63 336 | 74.14 123 | 75.11 243 | 90.83 125 | 61.29 177 | 89.75 272 | 58.10 298 | 91.60 86 | 92.69 112 |
|
| Anonymous202405211 | | | 78.25 197 | 77.01 206 | 81.99 198 | 91.03 82 | 60.67 270 | 84.77 233 | 83.90 281 | 70.65 194 | 80.00 135 | 91.20 113 | 41.08 350 | 91.43 239 | 65.21 234 | 85.26 172 | 93.85 61 |
|
| CP-MVSNet | | | 78.22 198 | 78.34 174 | 77.84 282 | 87.83 193 | 54.54 345 | 87.94 148 | 91.17 123 | 77.65 38 | 73.48 263 | 88.49 183 | 62.24 160 | 88.43 295 | 62.19 260 | 74.07 320 | 90.55 185 |
|
| BH-w/o | | | 78.21 199 | 77.33 202 | 80.84 227 | 88.81 155 | 65.13 193 | 84.87 231 | 87.85 223 | 69.75 215 | 74.52 254 | 84.74 280 | 61.34 175 | 93.11 177 | 58.24 297 | 85.84 167 | 84.27 337 |
|
| FMVSNet2 | | | 78.20 200 | 77.21 203 | 81.20 217 | 87.60 203 | 62.89 245 | 87.47 161 | 89.02 191 | 71.63 169 | 75.29 238 | 87.28 213 | 54.80 227 | 91.10 249 | 62.38 257 | 79.38 253 | 89.61 228 |
|
| MVS | | | 78.19 201 | 76.99 208 | 81.78 201 | 85.66 241 | 66.99 156 | 84.66 235 | 90.47 142 | 55.08 367 | 72.02 281 | 85.27 268 | 63.83 137 | 94.11 124 | 66.10 227 | 89.80 113 | 84.24 338 |
|
| Baseline_NR-MVSNet | | | 78.15 202 | 78.33 175 | 77.61 287 | 85.79 239 | 56.21 327 | 86.78 182 | 85.76 259 | 73.60 135 | 77.93 173 | 87.57 206 | 65.02 128 | 88.99 285 | 67.14 220 | 75.33 308 | 87.63 277 |
|
| CNLPA | | | 78.08 203 | 76.79 213 | 81.97 199 | 90.40 97 | 71.07 62 | 87.59 158 | 84.55 271 | 66.03 274 | 72.38 277 | 89.64 150 | 57.56 211 | 86.04 315 | 59.61 282 | 83.35 205 | 88.79 256 |
|
| cl22 | | | 78.07 204 | 77.01 206 | 81.23 216 | 82.37 315 | 61.83 257 | 83.55 262 | 87.98 217 | 68.96 236 | 75.06 245 | 83.87 294 | 61.40 174 | 91.88 219 | 73.53 156 | 76.39 286 | 89.98 215 |
|
| PLC |  | 70.83 11 | 78.05 205 | 76.37 224 | 83.08 167 | 91.88 74 | 67.80 135 | 88.19 139 | 89.46 172 | 64.33 293 | 69.87 304 | 88.38 186 | 53.66 241 | 93.58 147 | 58.86 290 | 82.73 213 | 87.86 273 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Fast-Effi-MVS+-dtu | | | 78.02 206 | 76.49 220 | 82.62 188 | 83.16 295 | 66.96 159 | 86.94 175 | 87.45 232 | 72.45 154 | 71.49 286 | 84.17 291 | 54.79 230 | 91.58 228 | 67.61 213 | 80.31 242 | 89.30 236 |
|
| PS-CasMVS | | | 78.01 207 | 78.09 179 | 77.77 284 | 87.71 199 | 54.39 347 | 88.02 144 | 91.22 120 | 77.50 46 | 73.26 265 | 88.64 177 | 60.73 185 | 88.41 296 | 61.88 264 | 73.88 324 | 90.53 186 |
|
| HY-MVS | | 69.67 12 | 77.95 208 | 77.15 204 | 80.36 236 | 87.57 208 | 60.21 278 | 83.37 265 | 87.78 225 | 66.11 271 | 75.37 231 | 87.06 224 | 63.27 141 | 90.48 261 | 61.38 270 | 82.43 217 | 90.40 192 |
|
| eth_miper_zixun_eth | | | 77.92 209 | 76.69 217 | 81.61 206 | 83.00 299 | 61.98 254 | 83.15 268 | 89.20 184 | 69.52 219 | 74.86 249 | 84.35 286 | 61.76 165 | 92.56 193 | 71.50 176 | 72.89 333 | 90.28 197 |
|
| FMVSNet3 | | | 77.88 210 | 76.85 211 | 80.97 225 | 86.84 224 | 62.36 248 | 86.52 191 | 88.77 200 | 71.13 180 | 75.34 232 | 86.66 235 | 54.07 238 | 91.10 249 | 62.72 252 | 79.57 249 | 89.45 232 |
|
| miper_enhance_ethall | | | 77.87 211 | 76.86 210 | 80.92 226 | 81.65 322 | 61.38 262 | 82.68 275 | 88.98 193 | 65.52 280 | 75.47 225 | 82.30 321 | 65.76 123 | 92.00 214 | 72.95 164 | 76.39 286 | 89.39 233 |
|
| FE-MVS | | | 77.78 212 | 75.68 229 | 84.08 126 | 88.09 184 | 66.00 173 | 83.13 269 | 87.79 224 | 68.42 246 | 78.01 171 | 85.23 270 | 45.50 325 | 95.12 81 | 59.11 287 | 85.83 168 | 91.11 163 |
|
| PEN-MVS | | | 77.73 213 | 77.69 194 | 77.84 282 | 87.07 221 | 53.91 350 | 87.91 150 | 91.18 122 | 77.56 43 | 73.14 267 | 88.82 172 | 61.23 178 | 89.17 282 | 59.95 279 | 72.37 335 | 90.43 190 |
|
| cl____ | | | 77.72 214 | 76.76 214 | 80.58 232 | 82.49 312 | 60.48 273 | 83.09 270 | 87.87 221 | 69.22 226 | 74.38 256 | 85.22 271 | 62.10 162 | 91.53 233 | 71.09 179 | 75.41 305 | 89.73 226 |
|
| DIV-MVS_self_test | | | 77.72 214 | 76.76 214 | 80.58 232 | 82.48 313 | 60.48 273 | 83.09 270 | 87.86 222 | 69.22 226 | 74.38 256 | 85.24 269 | 62.10 162 | 91.53 233 | 71.09 179 | 75.40 306 | 89.74 225 |
|
| sd_testset | | | 77.70 216 | 77.40 199 | 78.60 269 | 89.03 149 | 60.02 279 | 79.00 324 | 85.83 258 | 75.19 100 | 76.61 203 | 89.98 141 | 54.81 226 | 85.46 322 | 62.63 256 | 83.55 200 | 90.33 194 |
|
| PAPM | | | 77.68 217 | 76.40 223 | 81.51 207 | 87.29 217 | 61.85 256 | 83.78 256 | 89.59 169 | 64.74 287 | 71.23 287 | 88.70 174 | 62.59 152 | 93.66 146 | 52.66 329 | 87.03 147 | 89.01 245 |
|
| CHOSEN 1792x2688 | | | 77.63 218 | 75.69 228 | 83.44 150 | 89.98 109 | 68.58 119 | 78.70 328 | 87.50 230 | 56.38 362 | 75.80 220 | 86.84 225 | 58.67 201 | 91.40 240 | 61.58 268 | 85.75 169 | 90.34 193 |
|
| HyFIR lowres test | | | 77.53 219 | 75.40 236 | 83.94 141 | 89.59 118 | 66.62 163 | 80.36 307 | 88.64 207 | 56.29 363 | 76.45 205 | 85.17 272 | 57.64 210 | 93.28 162 | 61.34 271 | 83.10 209 | 91.91 142 |
|
| FMVSNet1 | | | 77.44 220 | 76.12 226 | 81.40 211 | 86.81 225 | 63.01 240 | 88.39 128 | 89.28 177 | 70.49 196 | 74.39 255 | 87.28 213 | 49.06 297 | 91.11 246 | 60.91 273 | 78.52 260 | 90.09 206 |
|
| TR-MVS | | | 77.44 220 | 76.18 225 | 81.20 217 | 88.24 177 | 63.24 235 | 84.61 238 | 86.40 249 | 67.55 254 | 77.81 174 | 86.48 243 | 54.10 237 | 93.15 174 | 57.75 301 | 82.72 214 | 87.20 288 |
|
| 1112_ss | | | 77.40 222 | 76.43 222 | 80.32 238 | 89.11 148 | 60.41 275 | 83.65 258 | 87.72 226 | 62.13 320 | 73.05 268 | 86.72 229 | 62.58 153 | 89.97 268 | 62.11 263 | 80.80 235 | 90.59 184 |
|
| thisisatest0515 | | | 77.33 223 | 75.38 237 | 83.18 162 | 85.27 249 | 63.80 221 | 82.11 281 | 83.27 291 | 65.06 283 | 75.91 217 | 83.84 296 | 49.54 288 | 94.27 116 | 67.24 218 | 86.19 160 | 91.48 154 |
|
| test2506 | | | 77.30 224 | 76.49 220 | 79.74 249 | 90.08 103 | 52.02 359 | 87.86 153 | 63.10 394 | 74.88 106 | 80.16 134 | 92.79 79 | 38.29 363 | 92.35 202 | 68.74 205 | 92.50 76 | 94.86 17 |
|
| pm-mvs1 | | | 77.25 225 | 76.68 218 | 78.93 264 | 84.22 270 | 58.62 289 | 86.41 193 | 88.36 211 | 71.37 176 | 73.31 264 | 88.01 199 | 61.22 179 | 89.15 283 | 64.24 243 | 73.01 332 | 89.03 244 |
|
| LCM-MVSNet-Re | | | 77.05 226 | 76.94 209 | 77.36 290 | 87.20 218 | 51.60 366 | 80.06 310 | 80.46 326 | 75.20 99 | 67.69 322 | 86.72 229 | 62.48 154 | 88.98 286 | 63.44 247 | 89.25 118 | 91.51 151 |
|
| DTE-MVSNet | | | 76.99 227 | 76.80 212 | 77.54 289 | 86.24 233 | 53.06 358 | 87.52 159 | 90.66 136 | 77.08 57 | 72.50 274 | 88.67 176 | 60.48 192 | 89.52 276 | 57.33 305 | 70.74 346 | 90.05 211 |
|
| baseline1 | | | 76.98 228 | 76.75 216 | 77.66 285 | 88.13 181 | 55.66 333 | 85.12 226 | 81.89 310 | 73.04 150 | 76.79 196 | 88.90 169 | 62.43 156 | 87.78 303 | 63.30 249 | 71.18 344 | 89.55 230 |
|
| LS3D | | | 76.95 229 | 74.82 244 | 83.37 154 | 90.45 95 | 67.36 148 | 89.15 102 | 86.94 241 | 61.87 322 | 69.52 307 | 90.61 128 | 51.71 266 | 94.53 108 | 46.38 365 | 86.71 152 | 88.21 268 |
|
| GA-MVS | | | 76.87 230 | 75.17 241 | 81.97 199 | 82.75 305 | 62.58 246 | 81.44 290 | 86.35 251 | 72.16 164 | 74.74 250 | 82.89 313 | 46.20 317 | 92.02 213 | 68.85 204 | 81.09 231 | 91.30 159 |
|
| DP-MVS | | | 76.78 231 | 74.57 246 | 83.42 151 | 93.29 48 | 69.46 94 | 88.55 123 | 83.70 283 | 63.98 299 | 70.20 295 | 88.89 170 | 54.01 239 | 94.80 101 | 46.66 362 | 81.88 224 | 86.01 314 |
|
| cascas | | | 76.72 232 | 74.64 245 | 82.99 172 | 85.78 240 | 65.88 177 | 82.33 278 | 89.21 183 | 60.85 328 | 72.74 270 | 81.02 332 | 47.28 306 | 93.75 143 | 67.48 215 | 85.02 173 | 89.34 235 |
|
| testing91 | | | 76.54 233 | 75.66 231 | 79.18 261 | 88.43 171 | 55.89 330 | 81.08 293 | 83.00 298 | 73.76 131 | 75.34 232 | 84.29 287 | 46.20 317 | 90.07 266 | 64.33 241 | 84.50 180 | 91.58 149 |
|
| 1314 | | | 76.53 234 | 75.30 240 | 80.21 240 | 83.93 277 | 62.32 250 | 84.66 235 | 88.81 198 | 60.23 332 | 70.16 298 | 84.07 293 | 55.30 224 | 90.73 258 | 67.37 216 | 83.21 207 | 87.59 280 |
|
| thres100view900 | | | 76.50 235 | 75.55 233 | 79.33 257 | 89.52 121 | 56.99 312 | 85.83 212 | 83.23 292 | 73.94 126 | 76.32 209 | 87.12 221 | 51.89 263 | 91.95 215 | 48.33 353 | 83.75 194 | 89.07 238 |
|
| thres600view7 | | | 76.50 235 | 75.44 234 | 79.68 251 | 89.40 129 | 57.16 309 | 85.53 220 | 83.23 292 | 73.79 130 | 76.26 210 | 87.09 222 | 51.89 263 | 91.89 218 | 48.05 358 | 83.72 197 | 90.00 212 |
|
| thres400 | | | 76.50 235 | 75.37 238 | 79.86 246 | 89.13 144 | 57.65 303 | 85.17 223 | 83.60 284 | 73.41 141 | 76.45 205 | 86.39 245 | 52.12 255 | 91.95 215 | 48.33 353 | 83.75 194 | 90.00 212 |
|
| tfpn200view9 | | | 76.42 238 | 75.37 238 | 79.55 256 | 89.13 144 | 57.65 303 | 85.17 223 | 83.60 284 | 73.41 141 | 76.45 205 | 86.39 245 | 52.12 255 | 91.95 215 | 48.33 353 | 83.75 194 | 89.07 238 |
|
| Test_1112_low_res | | | 76.40 239 | 75.44 234 | 79.27 258 | 89.28 138 | 58.09 293 | 81.69 285 | 87.07 239 | 59.53 339 | 72.48 275 | 86.67 234 | 61.30 176 | 89.33 279 | 60.81 275 | 80.15 244 | 90.41 191 |
|
| F-COLMAP | | | 76.38 240 | 74.33 251 | 82.50 190 | 89.28 138 | 66.95 160 | 88.41 127 | 89.03 190 | 64.05 297 | 66.83 332 | 88.61 178 | 46.78 310 | 92.89 185 | 57.48 302 | 78.55 259 | 87.67 276 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 241 | 74.54 248 | 81.41 210 | 88.60 164 | 64.38 212 | 79.24 320 | 89.12 189 | 70.76 189 | 69.79 306 | 87.86 200 | 49.09 296 | 93.20 170 | 56.21 315 | 80.16 243 | 86.65 303 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MVP-Stereo | | | 76.12 242 | 74.46 250 | 81.13 220 | 85.37 248 | 69.79 86 | 84.42 246 | 87.95 219 | 65.03 284 | 67.46 325 | 85.33 267 | 53.28 246 | 91.73 225 | 58.01 299 | 83.27 206 | 81.85 362 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| XVG-ACMP-BASELINE | | | 76.11 243 | 74.27 252 | 81.62 204 | 83.20 292 | 64.67 203 | 83.60 261 | 89.75 165 | 69.75 215 | 71.85 282 | 87.09 222 | 32.78 375 | 92.11 210 | 69.99 191 | 80.43 241 | 88.09 269 |
|
| testing99 | | | 76.09 244 | 75.12 242 | 79.00 262 | 88.16 179 | 55.50 335 | 80.79 297 | 81.40 316 | 73.30 144 | 75.17 240 | 84.27 289 | 44.48 330 | 90.02 267 | 64.28 242 | 84.22 188 | 91.48 154 |
|
| ACMH+ | | 68.96 14 | 76.01 245 | 74.01 253 | 82.03 197 | 88.60 164 | 65.31 190 | 88.86 110 | 87.55 228 | 70.25 202 | 67.75 321 | 87.47 211 | 41.27 348 | 93.19 172 | 58.37 295 | 75.94 294 | 87.60 278 |
|
| ACMH | | 67.68 16 | 75.89 246 | 73.93 255 | 81.77 202 | 88.71 161 | 66.61 164 | 88.62 121 | 89.01 192 | 69.81 211 | 66.78 333 | 86.70 233 | 41.95 347 | 91.51 235 | 55.64 316 | 78.14 266 | 87.17 289 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IB-MVS | | 68.01 15 | 75.85 247 | 73.36 262 | 83.31 155 | 84.76 259 | 66.03 171 | 83.38 264 | 85.06 265 | 70.21 203 | 69.40 308 | 81.05 331 | 45.76 322 | 94.66 106 | 65.10 236 | 75.49 300 | 89.25 237 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| baseline2 | | | 75.70 248 | 73.83 258 | 81.30 214 | 83.26 290 | 61.79 258 | 82.57 277 | 80.65 322 | 66.81 258 | 66.88 331 | 83.42 305 | 57.86 208 | 92.19 208 | 63.47 246 | 79.57 249 | 89.91 217 |
|
| WTY-MVS | | | 75.65 249 | 75.68 229 | 75.57 306 | 86.40 232 | 56.82 314 | 77.92 338 | 82.40 306 | 65.10 282 | 76.18 213 | 87.72 201 | 63.13 148 | 80.90 351 | 60.31 277 | 81.96 222 | 89.00 247 |
|
| thres200 | | | 75.55 250 | 74.47 249 | 78.82 265 | 87.78 197 | 57.85 300 | 83.07 272 | 83.51 287 | 72.44 156 | 75.84 219 | 84.42 282 | 52.08 258 | 91.75 223 | 47.41 360 | 83.64 199 | 86.86 298 |
|
| test_vis1_n_1920 | | | 75.52 251 | 75.78 227 | 74.75 316 | 79.84 347 | 57.44 307 | 83.26 266 | 85.52 261 | 62.83 311 | 79.34 143 | 86.17 250 | 45.10 327 | 79.71 355 | 78.75 106 | 81.21 230 | 87.10 295 |
|
| EPNet_dtu | | | 75.46 252 | 74.86 243 | 77.23 293 | 82.57 310 | 54.60 344 | 86.89 177 | 83.09 295 | 71.64 168 | 66.25 342 | 85.86 255 | 55.99 221 | 88.04 300 | 54.92 318 | 86.55 154 | 89.05 243 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IterMVS-SCA-FT | | | 75.43 253 | 73.87 257 | 80.11 242 | 82.69 307 | 64.85 200 | 81.57 287 | 83.47 288 | 69.16 229 | 70.49 292 | 84.15 292 | 51.95 261 | 88.15 298 | 69.23 198 | 72.14 338 | 87.34 285 |
|
| XXY-MVS | | | 75.41 254 | 75.56 232 | 74.96 312 | 83.59 283 | 57.82 301 | 80.59 303 | 83.87 282 | 66.54 268 | 74.93 248 | 88.31 188 | 63.24 142 | 80.09 354 | 62.16 261 | 76.85 279 | 86.97 296 |
|
| TransMVSNet (Re) | | | 75.39 255 | 74.56 247 | 77.86 281 | 85.50 245 | 57.10 311 | 86.78 182 | 86.09 255 | 72.17 162 | 71.53 285 | 87.34 212 | 63.01 149 | 89.31 280 | 56.84 310 | 61.83 372 | 87.17 289 |
|
| CostFormer | | | 75.24 256 | 73.90 256 | 79.27 258 | 82.65 309 | 58.27 292 | 80.80 296 | 82.73 304 | 61.57 323 | 75.33 236 | 83.13 309 | 55.52 222 | 91.07 252 | 64.98 237 | 78.34 265 | 88.45 264 |
|
| testing11 | | | 75.14 257 | 74.01 253 | 78.53 272 | 88.16 179 | 56.38 323 | 80.74 300 | 80.42 327 | 70.67 190 | 72.69 273 | 83.72 300 | 43.61 335 | 89.86 269 | 62.29 259 | 83.76 193 | 89.36 234 |
|
| D2MVS | | | 74.82 258 | 73.21 263 | 79.64 253 | 79.81 348 | 62.56 247 | 80.34 308 | 87.35 233 | 64.37 292 | 68.86 313 | 82.66 317 | 46.37 313 | 90.10 265 | 67.91 211 | 81.24 229 | 86.25 307 |
|
| pmmvs6 | | | 74.69 259 | 73.39 261 | 78.61 268 | 81.38 328 | 57.48 306 | 86.64 187 | 87.95 219 | 64.99 286 | 70.18 296 | 86.61 236 | 50.43 279 | 89.52 276 | 62.12 262 | 70.18 348 | 88.83 254 |
|
| tfpnnormal | | | 74.39 260 | 73.16 264 | 78.08 279 | 86.10 237 | 58.05 294 | 84.65 237 | 87.53 229 | 70.32 199 | 71.22 288 | 85.63 261 | 54.97 225 | 89.86 269 | 43.03 376 | 75.02 313 | 86.32 306 |
|
| IterMVS | | | 74.29 261 | 72.94 266 | 78.35 275 | 81.53 325 | 63.49 229 | 81.58 286 | 82.49 305 | 68.06 250 | 69.99 301 | 83.69 301 | 51.66 267 | 85.54 320 | 65.85 230 | 71.64 341 | 86.01 314 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| OurMVSNet-221017-0 | | | 74.26 262 | 72.42 271 | 79.80 248 | 83.76 281 | 59.59 284 | 85.92 208 | 86.64 245 | 66.39 269 | 66.96 330 | 87.58 205 | 39.46 356 | 91.60 227 | 65.76 231 | 69.27 351 | 88.22 267 |
|
| SCA | | | 74.22 263 | 72.33 272 | 79.91 245 | 84.05 275 | 62.17 252 | 79.96 313 | 79.29 339 | 66.30 270 | 72.38 277 | 80.13 341 | 51.95 261 | 88.60 293 | 59.25 285 | 77.67 270 | 88.96 249 |
|
| miper_lstm_enhance | | | 74.11 264 | 73.11 265 | 77.13 294 | 80.11 343 | 59.62 283 | 72.23 365 | 86.92 242 | 66.76 260 | 70.40 293 | 82.92 312 | 56.93 218 | 82.92 340 | 69.06 201 | 72.63 334 | 88.87 252 |
|
| testing222 | | | 74.04 265 | 72.66 268 | 78.19 277 | 87.89 190 | 55.36 336 | 81.06 294 | 79.20 340 | 71.30 177 | 74.65 252 | 83.57 303 | 39.11 359 | 88.67 292 | 51.43 336 | 85.75 169 | 90.53 186 |
|
| EG-PatchMatch MVS | | | 74.04 265 | 71.82 275 | 80.71 230 | 84.92 257 | 67.42 145 | 85.86 210 | 88.08 215 | 66.04 273 | 64.22 354 | 83.85 295 | 35.10 372 | 92.56 193 | 57.44 303 | 80.83 234 | 82.16 361 |
|
| pmmvs4 | | | 74.03 267 | 71.91 274 | 80.39 235 | 81.96 318 | 68.32 123 | 81.45 289 | 82.14 308 | 59.32 340 | 69.87 304 | 85.13 273 | 52.40 251 | 88.13 299 | 60.21 278 | 74.74 316 | 84.73 334 |
|
| MS-PatchMatch | | | 73.83 268 | 72.67 267 | 77.30 292 | 83.87 278 | 66.02 172 | 81.82 282 | 84.66 269 | 61.37 326 | 68.61 316 | 82.82 315 | 47.29 305 | 88.21 297 | 59.27 284 | 84.32 186 | 77.68 376 |
|
| test_cas_vis1_n_1920 | | | 73.76 269 | 73.74 259 | 73.81 324 | 75.90 368 | 59.77 281 | 80.51 304 | 82.40 306 | 58.30 349 | 81.62 116 | 85.69 258 | 44.35 331 | 76.41 373 | 76.29 130 | 78.61 258 | 85.23 325 |
|
| sss | | | 73.60 270 | 73.64 260 | 73.51 326 | 82.80 304 | 55.01 341 | 76.12 345 | 81.69 313 | 62.47 316 | 74.68 251 | 85.85 256 | 57.32 214 | 78.11 362 | 60.86 274 | 80.93 232 | 87.39 283 |
|
| RPMNet | | | 73.51 271 | 70.49 291 | 82.58 189 | 81.32 331 | 65.19 191 | 75.92 347 | 92.27 81 | 57.60 355 | 72.73 271 | 76.45 368 | 52.30 252 | 95.43 67 | 48.14 357 | 77.71 268 | 87.11 293 |
|
| SixPastTwentyTwo | | | 73.37 272 | 71.26 284 | 79.70 250 | 85.08 255 | 57.89 299 | 85.57 214 | 83.56 286 | 71.03 184 | 65.66 344 | 85.88 254 | 42.10 345 | 92.57 192 | 59.11 287 | 63.34 370 | 88.65 261 |
|
| CR-MVSNet | | | 73.37 272 | 71.27 283 | 79.67 252 | 81.32 331 | 65.19 191 | 75.92 347 | 80.30 329 | 59.92 335 | 72.73 271 | 81.19 329 | 52.50 249 | 86.69 309 | 59.84 280 | 77.71 268 | 87.11 293 |
|
| MSDG | | | 73.36 274 | 70.99 286 | 80.49 234 | 84.51 266 | 65.80 179 | 80.71 301 | 86.13 254 | 65.70 277 | 65.46 345 | 83.74 299 | 44.60 328 | 90.91 254 | 51.13 337 | 76.89 277 | 84.74 333 |
|
| tpm2 | | | 73.26 275 | 71.46 279 | 78.63 267 | 83.34 288 | 56.71 317 | 80.65 302 | 80.40 328 | 56.63 361 | 73.55 262 | 82.02 326 | 51.80 265 | 91.24 244 | 56.35 314 | 78.42 263 | 87.95 270 |
|
| RPSCF | | | 73.23 276 | 71.46 279 | 78.54 271 | 82.50 311 | 59.85 280 | 82.18 280 | 82.84 303 | 58.96 344 | 71.15 289 | 89.41 162 | 45.48 326 | 84.77 328 | 58.82 291 | 71.83 340 | 91.02 169 |
|
| PatchmatchNet |  | | 73.12 277 | 71.33 282 | 78.49 274 | 83.18 293 | 60.85 267 | 79.63 315 | 78.57 343 | 64.13 294 | 71.73 283 | 79.81 346 | 51.20 270 | 85.97 316 | 57.40 304 | 76.36 291 | 88.66 260 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| COLMAP_ROB |  | 66.92 17 | 73.01 278 | 70.41 293 | 80.81 228 | 87.13 220 | 65.63 182 | 88.30 135 | 84.19 278 | 62.96 308 | 63.80 358 | 87.69 203 | 38.04 364 | 92.56 193 | 46.66 362 | 74.91 314 | 84.24 338 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CVMVSNet | | | 72.99 279 | 72.58 269 | 74.25 320 | 84.28 268 | 50.85 371 | 86.41 193 | 83.45 289 | 44.56 384 | 73.23 266 | 87.54 209 | 49.38 291 | 85.70 317 | 65.90 229 | 78.44 262 | 86.19 309 |
|
| test-LLR | | | 72.94 280 | 72.43 270 | 74.48 317 | 81.35 329 | 58.04 295 | 78.38 331 | 77.46 349 | 66.66 262 | 69.95 302 | 79.00 352 | 48.06 302 | 79.24 356 | 66.13 225 | 84.83 175 | 86.15 310 |
|
| test_0402 | | | 72.79 281 | 70.44 292 | 79.84 247 | 88.13 181 | 65.99 174 | 85.93 207 | 84.29 275 | 65.57 279 | 67.40 327 | 85.49 264 | 46.92 309 | 92.61 191 | 35.88 388 | 74.38 319 | 80.94 367 |
|
| tpmrst | | | 72.39 282 | 72.13 273 | 73.18 330 | 80.54 338 | 49.91 375 | 79.91 314 | 79.08 341 | 63.11 305 | 71.69 284 | 79.95 343 | 55.32 223 | 82.77 341 | 65.66 232 | 73.89 323 | 86.87 297 |
|
| PatchMatch-RL | | | 72.38 283 | 70.90 287 | 76.80 297 | 88.60 164 | 67.38 147 | 79.53 316 | 76.17 360 | 62.75 313 | 69.36 309 | 82.00 327 | 45.51 324 | 84.89 327 | 53.62 324 | 80.58 238 | 78.12 375 |
|
| CL-MVSNet_self_test | | | 72.37 284 | 71.46 279 | 75.09 311 | 79.49 354 | 53.53 352 | 80.76 299 | 85.01 267 | 69.12 230 | 70.51 291 | 82.05 325 | 57.92 207 | 84.13 331 | 52.27 331 | 66.00 364 | 87.60 278 |
|
| tpm | | | 72.37 284 | 71.71 276 | 74.35 319 | 82.19 316 | 52.00 360 | 79.22 321 | 77.29 352 | 64.56 289 | 72.95 269 | 83.68 302 | 51.35 268 | 83.26 339 | 58.33 296 | 75.80 295 | 87.81 274 |
|
| ETVMVS | | | 72.25 286 | 71.05 285 | 75.84 302 | 87.77 198 | 51.91 362 | 79.39 318 | 74.98 363 | 69.26 224 | 73.71 260 | 82.95 311 | 40.82 352 | 86.14 314 | 46.17 366 | 84.43 185 | 89.47 231 |
|
| UWE-MVS | | | 72.13 287 | 71.49 278 | 74.03 322 | 86.66 229 | 47.70 379 | 81.40 291 | 76.89 356 | 63.60 302 | 75.59 222 | 84.22 290 | 39.94 355 | 85.62 319 | 48.98 350 | 86.13 162 | 88.77 257 |
|
| PVSNet | | 64.34 18 | 72.08 288 | 70.87 288 | 75.69 304 | 86.21 234 | 56.44 321 | 74.37 359 | 80.73 321 | 62.06 321 | 70.17 297 | 82.23 323 | 42.86 339 | 83.31 338 | 54.77 319 | 84.45 184 | 87.32 286 |
|
| WB-MVSnew | | | 71.96 289 | 71.65 277 | 72.89 331 | 84.67 264 | 51.88 363 | 82.29 279 | 77.57 348 | 62.31 317 | 73.67 261 | 83.00 310 | 53.49 244 | 81.10 350 | 45.75 369 | 82.13 220 | 85.70 319 |
|
| pmmvs5 | | | 71.55 290 | 70.20 296 | 75.61 305 | 77.83 361 | 56.39 322 | 81.74 284 | 80.89 318 | 57.76 353 | 67.46 325 | 84.49 281 | 49.26 294 | 85.32 324 | 57.08 307 | 75.29 309 | 85.11 329 |
|
| test-mter | | | 71.41 291 | 70.39 294 | 74.48 317 | 81.35 329 | 58.04 295 | 78.38 331 | 77.46 349 | 60.32 331 | 69.95 302 | 79.00 352 | 36.08 370 | 79.24 356 | 66.13 225 | 84.83 175 | 86.15 310 |
|
| K. test v3 | | | 71.19 292 | 68.51 304 | 79.21 260 | 83.04 298 | 57.78 302 | 84.35 248 | 76.91 355 | 72.90 153 | 62.99 361 | 82.86 314 | 39.27 357 | 91.09 251 | 61.65 267 | 52.66 388 | 88.75 258 |
|
| dmvs_re | | | 71.14 293 | 70.58 289 | 72.80 332 | 81.96 318 | 59.68 282 | 75.60 351 | 79.34 338 | 68.55 242 | 69.27 311 | 80.72 337 | 49.42 290 | 76.54 370 | 52.56 330 | 77.79 267 | 82.19 360 |
|
| tpmvs | | | 71.09 294 | 69.29 299 | 76.49 298 | 82.04 317 | 56.04 328 | 78.92 326 | 81.37 317 | 64.05 297 | 67.18 329 | 78.28 358 | 49.74 287 | 89.77 271 | 49.67 347 | 72.37 335 | 83.67 345 |
|
| AllTest | | | 70.96 295 | 68.09 310 | 79.58 254 | 85.15 252 | 63.62 223 | 84.58 239 | 79.83 333 | 62.31 317 | 60.32 369 | 86.73 227 | 32.02 376 | 88.96 288 | 50.28 342 | 71.57 342 | 86.15 310 |
|
| test_fmvs1 | | | 70.93 296 | 70.52 290 | 72.16 336 | 73.71 378 | 55.05 340 | 80.82 295 | 78.77 342 | 51.21 378 | 78.58 155 | 84.41 283 | 31.20 380 | 76.94 368 | 75.88 136 | 80.12 246 | 84.47 336 |
|
| test_fmvs1_n | | | 70.86 297 | 70.24 295 | 72.73 333 | 72.51 388 | 55.28 338 | 81.27 292 | 79.71 335 | 51.49 377 | 78.73 150 | 84.87 277 | 27.54 385 | 77.02 367 | 76.06 133 | 79.97 247 | 85.88 317 |
|
| Patchmtry | | | 70.74 298 | 69.16 301 | 75.49 308 | 80.72 335 | 54.07 349 | 74.94 358 | 80.30 329 | 58.34 348 | 70.01 299 | 81.19 329 | 52.50 249 | 86.54 310 | 53.37 326 | 71.09 345 | 85.87 318 |
|
| MIMVSNet | | | 70.69 299 | 69.30 298 | 74.88 313 | 84.52 265 | 56.35 325 | 75.87 349 | 79.42 337 | 64.59 288 | 67.76 320 | 82.41 319 | 41.10 349 | 81.54 347 | 46.64 364 | 81.34 227 | 86.75 301 |
|
| tpm cat1 | | | 70.57 300 | 68.31 306 | 77.35 291 | 82.41 314 | 57.95 298 | 78.08 335 | 80.22 331 | 52.04 373 | 68.54 317 | 77.66 363 | 52.00 260 | 87.84 302 | 51.77 332 | 72.07 339 | 86.25 307 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 301 | 68.19 307 | 77.65 286 | 80.26 340 | 59.41 286 | 85.01 228 | 82.96 300 | 58.76 346 | 65.43 346 | 82.33 320 | 37.63 366 | 91.23 245 | 45.34 372 | 76.03 293 | 82.32 358 |
|
| pmmvs-eth3d | | | 70.50 302 | 67.83 315 | 78.52 273 | 77.37 364 | 66.18 170 | 81.82 282 | 81.51 314 | 58.90 345 | 63.90 357 | 80.42 339 | 42.69 340 | 86.28 313 | 58.56 293 | 65.30 366 | 83.11 351 |
|
| USDC | | | 70.33 303 | 68.37 305 | 76.21 300 | 80.60 337 | 56.23 326 | 79.19 322 | 86.49 247 | 60.89 327 | 61.29 365 | 85.47 265 | 31.78 378 | 89.47 278 | 53.37 326 | 76.21 292 | 82.94 355 |
|
| Patchmatch-RL test | | | 70.24 304 | 67.78 317 | 77.61 287 | 77.43 363 | 59.57 285 | 71.16 368 | 70.33 377 | 62.94 309 | 68.65 315 | 72.77 380 | 50.62 276 | 85.49 321 | 69.58 196 | 66.58 361 | 87.77 275 |
|
| CMPMVS |  | 51.72 21 | 70.19 305 | 68.16 308 | 76.28 299 | 73.15 384 | 57.55 305 | 79.47 317 | 83.92 280 | 48.02 381 | 56.48 382 | 84.81 278 | 43.13 337 | 86.42 312 | 62.67 255 | 81.81 225 | 84.89 331 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ppachtmachnet_test | | | 70.04 306 | 67.34 323 | 78.14 278 | 79.80 349 | 61.13 263 | 79.19 322 | 80.59 323 | 59.16 342 | 65.27 347 | 79.29 349 | 46.75 311 | 87.29 306 | 49.33 348 | 66.72 359 | 86.00 316 |
|
| gg-mvs-nofinetune | | | 69.95 307 | 67.96 311 | 75.94 301 | 83.07 296 | 54.51 346 | 77.23 342 | 70.29 378 | 63.11 305 | 70.32 294 | 62.33 389 | 43.62 334 | 88.69 291 | 53.88 323 | 87.76 137 | 84.62 335 |
|
| TESTMET0.1,1 | | | 69.89 308 | 69.00 302 | 72.55 334 | 79.27 357 | 56.85 313 | 78.38 331 | 74.71 367 | 57.64 354 | 68.09 319 | 77.19 365 | 37.75 365 | 76.70 369 | 63.92 244 | 84.09 189 | 84.10 341 |
|
| test_vis1_n | | | 69.85 309 | 69.21 300 | 71.77 338 | 72.66 387 | 55.27 339 | 81.48 288 | 76.21 359 | 52.03 374 | 75.30 237 | 83.20 308 | 28.97 383 | 76.22 375 | 74.60 146 | 78.41 264 | 83.81 344 |
|
| FMVSNet5 | | | 69.50 310 | 67.96 311 | 74.15 321 | 82.97 302 | 55.35 337 | 80.01 312 | 82.12 309 | 62.56 315 | 63.02 359 | 81.53 328 | 36.92 367 | 81.92 345 | 48.42 352 | 74.06 321 | 85.17 328 |
|
| PMMVS | | | 69.34 311 | 68.67 303 | 71.35 343 | 75.67 370 | 62.03 253 | 75.17 353 | 73.46 370 | 50.00 379 | 68.68 314 | 79.05 350 | 52.07 259 | 78.13 361 | 61.16 272 | 82.77 212 | 73.90 382 |
|
| our_test_3 | | | 69.14 312 | 67.00 325 | 75.57 306 | 79.80 349 | 58.80 287 | 77.96 336 | 77.81 346 | 59.55 338 | 62.90 362 | 78.25 359 | 47.43 304 | 83.97 332 | 51.71 333 | 67.58 358 | 83.93 343 |
|
| EPMVS | | | 69.02 313 | 68.16 308 | 71.59 339 | 79.61 352 | 49.80 377 | 77.40 340 | 66.93 386 | 62.82 312 | 70.01 299 | 79.05 350 | 45.79 321 | 77.86 364 | 56.58 312 | 75.26 310 | 87.13 292 |
|
| KD-MVS_self_test | | | 68.81 314 | 67.59 321 | 72.46 335 | 74.29 376 | 45.45 384 | 77.93 337 | 87.00 240 | 63.12 304 | 63.99 356 | 78.99 354 | 42.32 342 | 84.77 328 | 56.55 313 | 64.09 369 | 87.16 291 |
|
| Anonymous20240521 | | | 68.80 315 | 67.22 324 | 73.55 325 | 74.33 375 | 54.11 348 | 83.18 267 | 85.61 260 | 58.15 350 | 61.68 364 | 80.94 334 | 30.71 381 | 81.27 349 | 57.00 308 | 73.34 331 | 85.28 324 |
|
| Anonymous20231206 | | | 68.60 316 | 67.80 316 | 71.02 346 | 80.23 342 | 50.75 372 | 78.30 334 | 80.47 325 | 56.79 360 | 66.11 343 | 82.63 318 | 46.35 314 | 78.95 358 | 43.62 375 | 75.70 296 | 83.36 348 |
|
| MIMVSNet1 | | | 68.58 317 | 66.78 327 | 73.98 323 | 80.07 344 | 51.82 364 | 80.77 298 | 84.37 272 | 64.40 291 | 59.75 372 | 82.16 324 | 36.47 368 | 83.63 335 | 42.73 377 | 70.33 347 | 86.48 305 |
|
| testing3 | | | 68.56 318 | 67.67 319 | 71.22 345 | 87.33 215 | 42.87 393 | 83.06 273 | 71.54 375 | 70.36 197 | 69.08 312 | 84.38 284 | 30.33 382 | 85.69 318 | 37.50 387 | 75.45 304 | 85.09 330 |
|
| EU-MVSNet | | | 68.53 319 | 67.61 320 | 71.31 344 | 78.51 360 | 47.01 382 | 84.47 241 | 84.27 276 | 42.27 387 | 66.44 341 | 84.79 279 | 40.44 353 | 83.76 333 | 58.76 292 | 68.54 356 | 83.17 349 |
|
| PatchT | | | 68.46 320 | 67.85 313 | 70.29 349 | 80.70 336 | 43.93 391 | 72.47 364 | 74.88 364 | 60.15 333 | 70.55 290 | 76.57 367 | 49.94 284 | 81.59 346 | 50.58 338 | 74.83 315 | 85.34 323 |
|
| test_fmvs2 | | | 68.35 321 | 67.48 322 | 70.98 347 | 69.50 391 | 51.95 361 | 80.05 311 | 76.38 358 | 49.33 380 | 74.65 252 | 84.38 284 | 23.30 391 | 75.40 382 | 74.51 147 | 75.17 312 | 85.60 320 |
|
| Syy-MVS | | | 68.05 322 | 67.85 313 | 68.67 358 | 84.68 261 | 40.97 399 | 78.62 329 | 73.08 372 | 66.65 265 | 66.74 334 | 79.46 347 | 52.11 257 | 82.30 343 | 32.89 391 | 76.38 289 | 82.75 356 |
|
| test0.0.03 1 | | | 68.00 323 | 67.69 318 | 68.90 355 | 77.55 362 | 47.43 380 | 75.70 350 | 72.95 374 | 66.66 262 | 66.56 336 | 82.29 322 | 48.06 302 | 75.87 377 | 44.97 373 | 74.51 318 | 83.41 347 |
|
| TDRefinement | | | 67.49 324 | 64.34 334 | 76.92 295 | 73.47 382 | 61.07 264 | 84.86 232 | 82.98 299 | 59.77 336 | 58.30 376 | 85.13 273 | 26.06 386 | 87.89 301 | 47.92 359 | 60.59 377 | 81.81 363 |
|
| test20.03 | | | 67.45 325 | 66.95 326 | 68.94 354 | 75.48 372 | 44.84 389 | 77.50 339 | 77.67 347 | 66.66 262 | 63.01 360 | 83.80 297 | 47.02 308 | 78.40 360 | 42.53 378 | 68.86 355 | 83.58 346 |
|
| UnsupCasMVSNet_eth | | | 67.33 326 | 65.99 330 | 71.37 341 | 73.48 381 | 51.47 368 | 75.16 354 | 85.19 264 | 65.20 281 | 60.78 367 | 80.93 336 | 42.35 341 | 77.20 366 | 57.12 306 | 53.69 387 | 85.44 322 |
|
| TinyColmap | | | 67.30 327 | 64.81 332 | 74.76 315 | 81.92 320 | 56.68 318 | 80.29 309 | 81.49 315 | 60.33 330 | 56.27 383 | 83.22 306 | 24.77 388 | 87.66 305 | 45.52 370 | 69.47 350 | 79.95 371 |
|
| myMVS_eth3d | | | 67.02 328 | 66.29 329 | 69.21 353 | 84.68 261 | 42.58 394 | 78.62 329 | 73.08 372 | 66.65 265 | 66.74 334 | 79.46 347 | 31.53 379 | 82.30 343 | 39.43 384 | 76.38 289 | 82.75 356 |
|
| dp | | | 66.80 329 | 65.43 331 | 70.90 348 | 79.74 351 | 48.82 378 | 75.12 356 | 74.77 365 | 59.61 337 | 64.08 355 | 77.23 364 | 42.89 338 | 80.72 352 | 48.86 351 | 66.58 361 | 83.16 350 |
|
| MDA-MVSNet-bldmvs | | | 66.68 330 | 63.66 339 | 75.75 303 | 79.28 356 | 60.56 272 | 73.92 361 | 78.35 344 | 64.43 290 | 50.13 390 | 79.87 345 | 44.02 333 | 83.67 334 | 46.10 367 | 56.86 380 | 83.03 353 |
|
| testgi | | | 66.67 331 | 66.53 328 | 67.08 363 | 75.62 371 | 41.69 398 | 75.93 346 | 76.50 357 | 66.11 271 | 65.20 350 | 86.59 237 | 35.72 371 | 74.71 384 | 43.71 374 | 73.38 330 | 84.84 332 |
|
| CHOSEN 280x420 | | | 66.51 332 | 64.71 333 | 71.90 337 | 81.45 326 | 63.52 228 | 57.98 396 | 68.95 384 | 53.57 369 | 62.59 363 | 76.70 366 | 46.22 316 | 75.29 383 | 55.25 317 | 79.68 248 | 76.88 378 |
|
| PM-MVS | | | 66.41 333 | 64.14 335 | 73.20 329 | 73.92 377 | 56.45 320 | 78.97 325 | 64.96 392 | 63.88 301 | 64.72 351 | 80.24 340 | 19.84 394 | 83.44 337 | 66.24 224 | 64.52 368 | 79.71 372 |
|
| JIA-IIPM | | | 66.32 334 | 62.82 345 | 76.82 296 | 77.09 365 | 61.72 259 | 65.34 389 | 75.38 361 | 58.04 352 | 64.51 352 | 62.32 390 | 42.05 346 | 86.51 311 | 51.45 335 | 69.22 352 | 82.21 359 |
|
| KD-MVS_2432*1600 | | | 66.22 335 | 63.89 337 | 73.21 327 | 75.47 373 | 53.42 354 | 70.76 371 | 84.35 273 | 64.10 295 | 66.52 338 | 78.52 356 | 34.55 373 | 84.98 325 | 50.40 340 | 50.33 391 | 81.23 365 |
|
| miper_refine_blended | | | 66.22 335 | 63.89 337 | 73.21 327 | 75.47 373 | 53.42 354 | 70.76 371 | 84.35 273 | 64.10 295 | 66.52 338 | 78.52 356 | 34.55 373 | 84.98 325 | 50.40 340 | 50.33 391 | 81.23 365 |
|
| ADS-MVSNet2 | | | 66.20 337 | 63.33 340 | 74.82 314 | 79.92 345 | 58.75 288 | 67.55 382 | 75.19 362 | 53.37 370 | 65.25 348 | 75.86 371 | 42.32 342 | 80.53 353 | 41.57 379 | 68.91 353 | 85.18 326 |
|
| YYNet1 | | | 65.03 338 | 62.91 343 | 71.38 340 | 75.85 369 | 56.60 319 | 69.12 379 | 74.66 368 | 57.28 358 | 54.12 385 | 77.87 361 | 45.85 320 | 74.48 385 | 49.95 345 | 61.52 374 | 83.05 352 |
|
| MDA-MVSNet_test_wron | | | 65.03 338 | 62.92 342 | 71.37 341 | 75.93 367 | 56.73 315 | 69.09 380 | 74.73 366 | 57.28 358 | 54.03 386 | 77.89 360 | 45.88 319 | 74.39 386 | 49.89 346 | 61.55 373 | 82.99 354 |
|
| Patchmatch-test | | | 64.82 340 | 63.24 341 | 69.57 351 | 79.42 355 | 49.82 376 | 63.49 393 | 69.05 383 | 51.98 375 | 59.95 371 | 80.13 341 | 50.91 272 | 70.98 391 | 40.66 381 | 73.57 326 | 87.90 272 |
|
| ADS-MVSNet | | | 64.36 341 | 62.88 344 | 68.78 357 | 79.92 345 | 47.17 381 | 67.55 382 | 71.18 376 | 53.37 370 | 65.25 348 | 75.86 371 | 42.32 342 | 73.99 387 | 41.57 379 | 68.91 353 | 85.18 326 |
|
| LF4IMVS | | | 64.02 342 | 62.19 346 | 69.50 352 | 70.90 389 | 53.29 357 | 76.13 344 | 77.18 353 | 52.65 372 | 58.59 374 | 80.98 333 | 23.55 390 | 76.52 371 | 53.06 328 | 66.66 360 | 78.68 374 |
|
| UnsupCasMVSNet_bld | | | 63.70 343 | 61.53 349 | 70.21 350 | 73.69 379 | 51.39 369 | 72.82 363 | 81.89 310 | 55.63 365 | 57.81 378 | 71.80 382 | 38.67 360 | 78.61 359 | 49.26 349 | 52.21 389 | 80.63 368 |
|
| test_fmvs3 | | | 63.36 344 | 61.82 347 | 67.98 360 | 62.51 398 | 46.96 383 | 77.37 341 | 74.03 369 | 45.24 383 | 67.50 324 | 78.79 355 | 12.16 402 | 72.98 390 | 72.77 167 | 66.02 363 | 83.99 342 |
|
| dmvs_testset | | | 62.63 345 | 64.11 336 | 58.19 373 | 78.55 359 | 24.76 409 | 75.28 352 | 65.94 389 | 67.91 251 | 60.34 368 | 76.01 370 | 53.56 242 | 73.94 388 | 31.79 392 | 67.65 357 | 75.88 380 |
|
| mvsany_test1 | | | 62.30 346 | 61.26 350 | 65.41 365 | 69.52 390 | 54.86 342 | 66.86 384 | 49.78 405 | 46.65 382 | 68.50 318 | 83.21 307 | 49.15 295 | 66.28 397 | 56.93 309 | 60.77 375 | 75.11 381 |
|
| new-patchmatchnet | | | 61.73 347 | 61.73 348 | 61.70 369 | 72.74 386 | 24.50 410 | 69.16 378 | 78.03 345 | 61.40 324 | 56.72 381 | 75.53 374 | 38.42 361 | 76.48 372 | 45.95 368 | 57.67 379 | 84.13 340 |
|
| PVSNet_0 | | 57.27 20 | 61.67 348 | 59.27 351 | 68.85 356 | 79.61 352 | 57.44 307 | 68.01 381 | 73.44 371 | 55.93 364 | 58.54 375 | 70.41 385 | 44.58 329 | 77.55 365 | 47.01 361 | 35.91 397 | 71.55 385 |
|
| test_vis1_rt | | | 60.28 349 | 58.42 352 | 65.84 364 | 67.25 394 | 55.60 334 | 70.44 373 | 60.94 397 | 44.33 385 | 59.00 373 | 66.64 387 | 24.91 387 | 68.67 395 | 62.80 251 | 69.48 349 | 73.25 383 |
|
| MVS-HIRNet | | | 59.14 350 | 57.67 353 | 63.57 367 | 81.65 322 | 43.50 392 | 71.73 366 | 65.06 391 | 39.59 391 | 51.43 388 | 57.73 395 | 38.34 362 | 82.58 342 | 39.53 382 | 73.95 322 | 64.62 391 |
|
| pmmvs3 | | | 57.79 351 | 54.26 356 | 68.37 359 | 64.02 397 | 56.72 316 | 75.12 356 | 65.17 390 | 40.20 389 | 52.93 387 | 69.86 386 | 20.36 393 | 75.48 380 | 45.45 371 | 55.25 386 | 72.90 384 |
|
| DSMNet-mixed | | | 57.77 352 | 56.90 354 | 60.38 371 | 67.70 393 | 35.61 402 | 69.18 377 | 53.97 403 | 32.30 399 | 57.49 379 | 79.88 344 | 40.39 354 | 68.57 396 | 38.78 385 | 72.37 335 | 76.97 377 |
|
| WB-MVS | | | 54.94 353 | 54.72 355 | 55.60 379 | 73.50 380 | 20.90 411 | 74.27 360 | 61.19 396 | 59.16 342 | 50.61 389 | 74.15 376 | 47.19 307 | 75.78 378 | 17.31 403 | 35.07 398 | 70.12 386 |
|
| LCM-MVSNet | | | 54.25 354 | 49.68 364 | 67.97 361 | 53.73 406 | 45.28 387 | 66.85 385 | 80.78 320 | 35.96 395 | 39.45 396 | 62.23 391 | 8.70 406 | 78.06 363 | 48.24 356 | 51.20 390 | 80.57 369 |
|
| mvsany_test3 | | | 53.99 355 | 51.45 360 | 61.61 370 | 55.51 402 | 44.74 390 | 63.52 392 | 45.41 409 | 43.69 386 | 58.11 377 | 76.45 368 | 17.99 395 | 63.76 400 | 54.77 319 | 47.59 393 | 76.34 379 |
|
| SSC-MVS | | | 53.88 356 | 53.59 357 | 54.75 381 | 72.87 385 | 19.59 412 | 73.84 362 | 60.53 398 | 57.58 356 | 49.18 391 | 73.45 379 | 46.34 315 | 75.47 381 | 16.20 406 | 32.28 400 | 69.20 387 |
|
| FPMVS | | | 53.68 357 | 51.64 359 | 59.81 372 | 65.08 396 | 51.03 370 | 69.48 376 | 69.58 381 | 41.46 388 | 40.67 394 | 72.32 381 | 16.46 398 | 70.00 394 | 24.24 400 | 65.42 365 | 58.40 396 |
|
| APD_test1 | | | 53.31 358 | 49.93 363 | 63.42 368 | 65.68 395 | 50.13 374 | 71.59 367 | 66.90 387 | 34.43 396 | 40.58 395 | 71.56 383 | 8.65 407 | 76.27 374 | 34.64 390 | 55.36 385 | 63.86 392 |
|
| N_pmnet | | | 52.79 359 | 53.26 358 | 51.40 383 | 78.99 358 | 7.68 415 | 69.52 375 | 3.89 414 | 51.63 376 | 57.01 380 | 74.98 375 | 40.83 351 | 65.96 398 | 37.78 386 | 64.67 367 | 80.56 370 |
|
| test_f | | | 52.09 360 | 50.82 361 | 55.90 377 | 53.82 405 | 42.31 397 | 59.42 395 | 58.31 401 | 36.45 394 | 56.12 384 | 70.96 384 | 12.18 401 | 57.79 402 | 53.51 325 | 56.57 382 | 67.60 388 |
|
| EGC-MVSNET | | | 52.07 361 | 47.05 365 | 67.14 362 | 83.51 285 | 60.71 269 | 80.50 305 | 67.75 385 | 0.07 409 | 0.43 410 | 75.85 373 | 24.26 389 | 81.54 347 | 28.82 394 | 62.25 371 | 59.16 394 |
|
| new_pmnet | | | 50.91 362 | 50.29 362 | 52.78 382 | 68.58 392 | 34.94 404 | 63.71 391 | 56.63 402 | 39.73 390 | 44.95 392 | 65.47 388 | 21.93 392 | 58.48 401 | 34.98 389 | 56.62 381 | 64.92 390 |
|
| ANet_high | | | 50.57 363 | 46.10 367 | 63.99 366 | 48.67 409 | 39.13 400 | 70.99 370 | 80.85 319 | 61.39 325 | 31.18 398 | 57.70 396 | 17.02 397 | 73.65 389 | 31.22 393 | 15.89 406 | 79.18 373 |
|
| test_vis3_rt | | | 49.26 364 | 47.02 366 | 56.00 376 | 54.30 403 | 45.27 388 | 66.76 386 | 48.08 406 | 36.83 393 | 44.38 393 | 53.20 398 | 7.17 409 | 64.07 399 | 56.77 311 | 55.66 383 | 58.65 395 |
|
| testf1 | | | 45.72 365 | 41.96 368 | 57.00 374 | 56.90 400 | 45.32 385 | 66.14 387 | 59.26 399 | 26.19 400 | 30.89 399 | 60.96 393 | 4.14 410 | 70.64 392 | 26.39 398 | 46.73 395 | 55.04 397 |
|
| APD_test2 | | | 45.72 365 | 41.96 368 | 57.00 374 | 56.90 400 | 45.32 385 | 66.14 387 | 59.26 399 | 26.19 400 | 30.89 399 | 60.96 393 | 4.14 410 | 70.64 392 | 26.39 398 | 46.73 395 | 55.04 397 |
|
| Gipuma |  | | 45.18 367 | 41.86 370 | 55.16 380 | 77.03 366 | 51.52 367 | 32.50 402 | 80.52 324 | 32.46 398 | 27.12 401 | 35.02 402 | 9.52 405 | 75.50 379 | 22.31 401 | 60.21 378 | 38.45 401 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 37.38 22 | 44.16 368 | 40.28 371 | 55.82 378 | 40.82 411 | 42.54 396 | 65.12 390 | 63.99 393 | 34.43 396 | 24.48 402 | 57.12 397 | 3.92 412 | 76.17 376 | 17.10 404 | 55.52 384 | 48.75 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PMMVS2 | | | 40.82 369 | 38.86 372 | 46.69 384 | 53.84 404 | 16.45 413 | 48.61 399 | 49.92 404 | 37.49 392 | 31.67 397 | 60.97 392 | 8.14 408 | 56.42 403 | 28.42 395 | 30.72 401 | 67.19 389 |
|
| E-PMN | | | 31.77 370 | 30.64 373 | 35.15 387 | 52.87 407 | 27.67 406 | 57.09 397 | 47.86 407 | 24.64 402 | 16.40 407 | 33.05 403 | 11.23 403 | 54.90 404 | 14.46 407 | 18.15 404 | 22.87 403 |
|
| test_method | | | 31.52 371 | 29.28 375 | 38.23 386 | 27.03 413 | 6.50 416 | 20.94 404 | 62.21 395 | 4.05 407 | 22.35 405 | 52.50 399 | 13.33 399 | 47.58 406 | 27.04 397 | 34.04 399 | 60.62 393 |
|
| EMVS | | | 30.81 372 | 29.65 374 | 34.27 388 | 50.96 408 | 25.95 408 | 56.58 398 | 46.80 408 | 24.01 403 | 15.53 408 | 30.68 404 | 12.47 400 | 54.43 405 | 12.81 408 | 17.05 405 | 22.43 404 |
|
| MVE |  | 26.22 23 | 30.37 373 | 25.89 377 | 43.81 385 | 44.55 410 | 35.46 403 | 28.87 403 | 39.07 410 | 18.20 404 | 18.58 406 | 40.18 401 | 2.68 413 | 47.37 407 | 17.07 405 | 23.78 403 | 48.60 400 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| cdsmvs_eth3d_5k | | | 19.96 374 | 26.61 376 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 89.26 180 | 0.00 412 | 0.00 413 | 88.61 178 | 61.62 168 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| tmp_tt | | | 18.61 375 | 21.40 378 | 10.23 391 | 4.82 414 | 10.11 414 | 34.70 401 | 30.74 412 | 1.48 408 | 23.91 404 | 26.07 405 | 28.42 384 | 13.41 410 | 27.12 396 | 15.35 407 | 7.17 405 |
|
| wuyk23d | | | 16.82 376 | 15.94 379 | 19.46 390 | 58.74 399 | 31.45 405 | 39.22 400 | 3.74 415 | 6.84 406 | 6.04 409 | 2.70 409 | 1.27 414 | 24.29 409 | 10.54 409 | 14.40 408 | 2.63 406 |
|
| ab-mvs-re | | | 7.23 377 | 9.64 380 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 86.72 229 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| test123 | | | 6.12 378 | 8.11 381 | 0.14 392 | 0.06 416 | 0.09 417 | 71.05 369 | 0.03 417 | 0.04 411 | 0.25 412 | 1.30 411 | 0.05 415 | 0.03 412 | 0.21 411 | 0.01 410 | 0.29 407 |
|
| testmvs | | | 6.04 379 | 8.02 382 | 0.10 393 | 0.08 415 | 0.03 418 | 69.74 374 | 0.04 416 | 0.05 410 | 0.31 411 | 1.68 410 | 0.02 416 | 0.04 411 | 0.24 410 | 0.02 409 | 0.25 408 |
|
| pcd_1.5k_mvsjas | | | 5.26 380 | 7.02 383 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 63.15 145 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| test_blank | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| uanet_test | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| DCPMVS | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| sosnet-low-res | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| sosnet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| uncertanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| Regformer | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| uanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| WAC-MVS | | | | | | | 42.58 394 | | | | | | | | 39.46 383 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 115 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 36 |
|
| PC_three_1452 | | | | | | | | | | 68.21 248 | 92.02 12 | 94.00 46 | 82.09 5 | 95.98 51 | 84.58 48 | 96.68 2 | 94.95 10 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 36 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 55 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 417 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 417 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 62 | 70.98 185 | 87.75 32 | 94.07 41 | 74.01 32 | 96.70 27 | 84.66 47 | 94.84 43 | |
|
| RE-MVS-def | | | | 85.48 55 | | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 81 | 73.53 138 | 85.69 51 | 94.45 26 | 63.87 136 | | 82.75 68 | 91.87 83 | 92.50 120 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 57 | | 92.95 52 | 66.81 258 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 44 | 82.45 3 | 96.87 20 | 83.77 58 | 96.48 8 | 94.88 14 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 50 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 6 | 89.07 14 | 96.58 6 | 94.26 45 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 63 | | 94.06 10 | 77.17 53 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 11 | | | |
|
| 9.14 | | | | 88.26 15 | | 92.84 60 | | 91.52 46 | 94.75 1 | 73.93 127 | 88.57 22 | 94.67 19 | 75.57 22 | 95.79 53 | 86.77 35 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 63 | 91.17 123 | 74.31 118 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 8 | 89.42 9 | 96.57 7 | 94.67 25 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 56 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 46 |
|
| test0726 | | | | | | 95.27 5 | 71.25 57 | 93.60 6 | 94.11 6 | 77.33 48 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 249 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 269 | | | | 88.96 249 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 282 | | | | |
|
| ambc | | | | | 75.24 310 | 73.16 383 | 50.51 373 | 63.05 394 | 87.47 231 | | 64.28 353 | 77.81 362 | 17.80 396 | 89.73 273 | 57.88 300 | 60.64 376 | 85.49 321 |
|
| MTGPA |  | | | | | | | | 92.02 91 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 327 | | | | 5.43 408 | 48.81 301 | 85.44 323 | 59.25 285 | | |
|
| test_post | | | | | | | | | | | | 5.46 407 | 50.36 280 | 84.24 330 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 377 | 51.12 271 | 88.60 293 | | | |
|
| GG-mvs-BLEND | | | | | 75.38 309 | 81.59 324 | 55.80 331 | 79.32 319 | 69.63 380 | | 67.19 328 | 73.67 378 | 43.24 336 | 88.90 290 | 50.41 339 | 84.50 180 | 81.45 364 |
|
| MTMP | | | | | | | | 92.18 35 | 32.83 411 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 327 | 53.83 351 | | | 62.72 314 | | 80.94 334 | | 92.39 199 | 63.40 248 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 42 | 95.70 26 | 92.87 107 |
|
| TEST9 | | | | | | 93.26 50 | 72.96 25 | 88.75 114 | 91.89 99 | 68.44 245 | 85.00 59 | 93.10 67 | 74.36 28 | 95.41 69 | | | |
|
| test_8 | | | | | | 93.13 52 | 72.57 35 | 88.68 119 | 91.84 103 | 68.69 240 | 84.87 63 | 93.10 67 | 74.43 26 | 95.16 79 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 66 | 95.45 30 | 92.70 110 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 51 | | 91.78 106 | | 84.41 75 | | | 94.93 91 | | | |
|
| TestCases | | | | | 79.58 254 | 85.15 252 | 63.62 223 | | 79.83 333 | 62.31 317 | 60.32 369 | 86.73 227 | 32.02 376 | 88.96 288 | 50.28 342 | 71.57 342 | 86.15 310 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 105 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 111 | | 75.41 95 | 84.91 61 | 93.54 56 | 74.28 29 | | 83.31 61 | 95.86 20 | |
|
| test_prior | | | | | 86.33 54 | 92.61 65 | 69.59 88 | | 92.97 51 | | | | | 95.48 64 | | | 93.91 57 |
|
| 旧先验2 | | | | | | | | 86.56 190 | | 58.10 351 | 87.04 41 | | | 88.98 286 | 74.07 152 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 198 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 83.42 151 | 93.13 52 | 70.71 71 | | 85.48 262 | 57.43 357 | 81.80 113 | 91.98 90 | 63.28 140 | 92.27 205 | 64.60 240 | 92.99 69 | 87.27 287 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 180 | | 86.37 250 | | | 93.08 71 | 69.31 79 | | | 92.74 72 | 88.74 259 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 160 | 88.98 193 | 60.00 334 | | | | 94.12 123 | 67.28 217 | | 88.97 248 |
|
| 原ACMM2 | | | | | | | | 86.86 178 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.35 111 | 93.01 57 | 68.79 107 | | 92.44 74 | 63.96 300 | 81.09 124 | 91.57 101 | 66.06 118 | 95.45 65 | 67.19 219 | 94.82 45 | 88.81 255 |
|
| test222 | | | | | | 91.50 77 | 68.26 125 | 84.16 251 | 83.20 294 | 54.63 368 | 79.74 136 | 91.63 99 | 58.97 200 | | | 91.42 89 | 86.77 300 |
|
| testdata2 | | | | | | | | | | | | | | 91.01 253 | 62.37 258 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata | | | | | 79.97 244 | 90.90 86 | 64.21 214 | | 84.71 268 | 59.27 341 | 85.40 53 | 92.91 73 | 62.02 164 | 89.08 284 | 68.95 202 | 91.37 90 | 86.63 304 |
|
| testdata1 | | | | | | | | 84.14 252 | | 75.71 89 | | | | | | | |
|
| test12 | | | | | 86.80 49 | 92.63 64 | 70.70 72 | | 91.79 105 | | 82.71 104 | | 71.67 53 | 96.16 44 | | 94.50 50 | 93.54 82 |
|
| plane_prior7 | | | | | | 90.08 103 | 68.51 120 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 113 | 68.70 115 | | | | | | 60.42 193 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 74 | | | | | 95.38 71 | 78.71 107 | 86.32 157 | 91.33 157 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 122 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 118 | | | 78.44 31 | 78.92 148 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 50 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 111 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 113 | 90.38 67 | | 77.62 39 | | | | | | 86.16 161 | |
|
| n2 | | | | | | | | | 0.00 418 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 418 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 379 | | | | | | | | |
|
| lessismore_v0 | | | | | 78.97 263 | 81.01 334 | 57.15 310 | | 65.99 388 | | 61.16 366 | 82.82 315 | 39.12 358 | 91.34 242 | 59.67 281 | 46.92 394 | 88.43 265 |
|
| LGP-MVS_train | | | | | 84.50 103 | 89.23 140 | 68.76 109 | | 91.94 97 | 75.37 96 | 76.64 201 | 91.51 102 | 54.29 235 | 94.91 92 | 78.44 109 | 83.78 191 | 89.83 221 |
|
| test11 | | | | | | | | | 92.23 85 | | | | | | | | |
|
| door | | | | | | | | | 69.44 382 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 157 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 133 | | 89.17 98 | | 76.41 74 | 77.23 187 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 133 | | 89.17 98 | | 76.41 74 | 77.23 187 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 119 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 186 | | | 95.11 83 | | | 91.03 167 |
|
| HQP3-MVS | | | | | | | | | 92.19 88 | | | | | | | 85.99 165 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 196 | | | | |
|
| NP-MVS | | | | | | 89.62 117 | 68.32 123 | | | | | 90.24 136 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 401 | 75.16 354 | | 55.10 366 | 66.53 337 | | 49.34 292 | | 53.98 322 | | 87.94 271 |
|
| MDTV_nov1_ep13 | | | | 69.97 297 | | 83.18 293 | 53.48 353 | 77.10 343 | 80.18 332 | 60.45 329 | 69.33 310 | 80.44 338 | 48.89 300 | 86.90 308 | 51.60 334 | 78.51 261 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 223 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 228 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 132 | | | | |
|
| ITE_SJBPF | | | | | 78.22 276 | 81.77 321 | 60.57 271 | | 83.30 290 | 69.25 225 | 67.54 323 | 87.20 218 | 36.33 369 | 87.28 307 | 54.34 321 | 74.62 317 | 86.80 299 |
|
| DeepMVS_CX |  | | | | 27.40 389 | 40.17 412 | 26.90 407 | | 24.59 413 | 17.44 405 | 23.95 403 | 48.61 400 | 9.77 404 | 26.48 408 | 18.06 402 | 24.47 402 | 28.83 402 |
|