DeepC-MVS_fast | | 96.13 1 | 90.94 1 | 92.20 2 | 90.11 1 | 88.82 3 | 89.85 3 | 93.36 4 | 87.11 1 | 95.58 2 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator | | 93.79 8 | 85.21 17 | 85.62 20 | 84.93 17 | 79.72 20 | 85.52 18 | 92.87 6 | 76.41 17 | 91.53 16 |
|
OpenMVS | | 92.33 11 | 84.09 19 | 84.77 22 | 83.63 18 | 78.56 22 | 84.52 21 | 91.52 12 | 74.86 19 | 90.98 19 |
|
PLC | | 94.95 3 | 88.67 12 | 91.36 5 | 86.88 14 | 87.76 10 | 87.68 12 | 89.37 24 | 83.60 12 | 94.95 5 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator+ | | 93.91 7 | 85.28 16 | 85.33 21 | 85.24 16 | 79.62 21 | 85.33 19 | 92.89 5 | 77.50 16 | 91.04 18 |
|
TAPA-MVS | | 94.18 5 | 88.45 13 | 89.81 12 | 87.55 11 | 86.30 11 | 86.96 15 | 92.78 8 | 82.90 13 | 93.33 9 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepC-MVS | | 94.87 4 | 89.95 3 | 91.17 6 | 89.14 5 | 88.02 6 | 89.92 2 | 91.23 15 | 86.27 2 | 94.32 7 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
COLMAP_ROB | | 90.49 14 | 83.26 21 | 85.82 19 | 81.55 22 | 82.60 17 | 84.70 20 | 90.60 16 | 69.35 21 | 89.04 22 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PCF-MVS | | 93.95 6 | 89.54 6 | 89.88 11 | 89.31 3 | 87.84 8 | 88.77 8 | 93.74 2 | 85.42 6 | 91.93 14 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DeepPCF-MVS | | 95.28 2 | 90.81 2 | 92.43 1 | 89.74 2 | 89.48 2 | 90.81 1 | 92.19 10 | 86.22 3 | 95.37 4 |
|
ACMM | | 92.75 10 | 88.44 14 | 89.50 14 | 87.73 10 | 83.45 15 | 89.50 4 | 89.60 22 | 84.07 10 | 95.56 3 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 92.88 9 | 88.85 10 | 90.87 7 | 87.50 12 | 85.90 13 | 89.04 6 | 89.44 23 | 84.01 11 | 95.84 1 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
IB-MVS | | 89.56 15 | 83.97 20 | 86.30 18 | 82.42 21 | 81.06 19 | 88.13 9 | 90.15 20 | 68.99 23 | 91.55 15 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ACMH | | 90.77 13 | 88.84 11 | 89.59 13 | 88.35 9 | 86.19 12 | 87.49 13 | 92.09 11 | 85.47 5 | 92.98 10 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CMPMVS | | 65.18 17 | 14.29 34 | 35.51 34 | 0.14 34 | 0.00 34 | 0.00 34 | 0.42 34 | 0.00 34 | 71.01 34 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ACMH+ | | 90.88 12 | 89.52 7 | 90.82 8 | 88.65 6 | 87.84 8 | 88.79 7 | 91.27 14 | 85.90 4 | 93.79 8 |
|
LTVRE_ROB | | 87.32 16 | 86.71 15 | 87.48 15 | 86.19 15 | 85.19 14 | 82.89 23 | 92.87 6 | 82.80 14 | 89.78 21 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PMVS | | 63.12 18 | 52.32 33 | 65.84 29 | 43.30 33 | 47.64 29 | 47.26 32 | 64.19 32 | 18.44 33 | 84.04 30 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE | | 50.86 19 | 54.30 30 | 58.07 31 | 51.79 29 | 34.01 33 | 56.04 29 | 49.97 33 | 49.37 28 | 82.12 31 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
unsupervisedMVS_cas | | | 67.52 28 | 74.85 28 | 62.63 28 | 62.01 28 | 66.63 27 | 74.37 28 | 46.89 29 | 87.68 26 |
|
BP-MVSNet | | | 83.21 22 | 86.41 17 | 81.08 23 | 81.38 18 | 86.89 16 | 89.69 21 | 66.65 24 | 91.45 17 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
CasMVSNet(SR_A) | | | 68.49 27 | 77.25 26 | 62.65 27 | 66.50 26 | 59.94 28 | 76.21 27 | 51.79 25 | 88.00 23 |
|
CasMVSNet(SR_B) | | | 74.84 25 | 77.25 26 | 73.23 25 | 66.50 26 | 81.27 25 | 86.63 25 | 51.79 25 | 88.00 23 |
|
TAPA-MVS(SR) | | | 89.65 4 | 90.36 9 | 89.18 4 | 88.43 5 | 88.13 9 | 94.10 1 | 85.31 7 | 92.29 12 |
|
CasMVSNet(base) | | | 74.01 26 | 77.33 25 | 71.79 26 | 67.32 25 | 79.52 26 | 85.68 26 | 50.18 27 | 87.34 27 |
|
GSE | | | 89.62 5 | 91.37 4 | 88.46 8 | 90.21 1 | 89.35 5 | 93.42 3 | 82.60 15 | 92.54 11 |
|
LPCS | | | 84.61 18 | 86.97 16 | 83.04 20 | 83.12 16 | 82.92 22 | 91.30 13 | 74.89 18 | 90.82 20 |
|
COLMAP(SR) | | | 89.14 8 | 90.11 10 | 88.50 7 | 87.96 7 | 88.10 11 | 92.26 9 | 85.14 8 | 92.27 13 |
|
COLMAP(base) | | | 88.99 9 | 91.50 3 | 87.31 13 | 88.59 4 | 87.20 14 | 90.52 17 | 84.20 9 | 94.42 6 |
|
dnet | | | 0.00 35 | 0.00 35 | 0.00 35 | 0.00 34 | 0.00 34 | 0.00 35 | 0.00 34 | 0.00 35 |
|
CIDER | | | 80.48 24 | 80.41 24 | 80.54 24 | 75.96 23 | 81.91 24 | 90.42 18 | 69.28 22 | 84.85 29 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
A-TVSNet + Gipuma | | | 82.64 23 | 81.67 23 | 83.28 19 | 75.62 24 | 85.59 17 | 90.18 19 | 74.08 20 | 87.73 25 |
|
hgnet | | | 52.82 31 | 57.62 32 | 49.62 31 | 36.41 30 | 48.11 30 | 72.42 30 | 28.33 31 | 78.82 32 |
|
example | | | 54.42 29 | 59.80 30 | 50.84 30 | 34.60 32 | 42.22 33 | 73.18 29 | 37.13 30 | 85.00 28 |
|
DPSNet | | | 52.82 31 | 57.62 32 | 49.62 31 | 36.41 30 | 48.11 30 | 72.42 30 | 28.33 31 | 78.82 32 |
|