DeepC-MVS_fast | | 78.24 3 | 62.57 2 | 64.27 3 | 61.43 1 | 53.65 2 | 65.83 1 | 70.22 2 | 48.24 1 | 74.89 3 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS | | 78.47 2 | 61.99 3 | 64.34 2 | 60.43 3 | 53.21 3 | 65.62 2 | 68.07 6 | 47.59 2 | 75.48 2 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepPCF-MVS | | 79.04 1 | 62.76 1 | 66.22 1 | 60.45 2 | 53.69 1 | 65.50 3 | 68.81 5 | 47.05 3 | 78.76 1 |
|
3Dnovator+ | | 75.73 4 | 58.40 4 | 59.88 5 | 57.41 4 | 46.92 7 | 62.89 4 | 70.54 1 | 38.80 13 | 72.84 6 |
|
ACMM | | 72.26 8 | 55.12 12 | 54.88 19 | 55.28 9 | 38.65 20 | 61.75 6 | 60.21 19 | 43.87 4 | 71.11 11 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 73.23 7 | 56.18 7 | 59.37 7 | 54.05 10 | 47.31 5 | 61.10 8 | 58.60 20 | 42.44 7 | 71.44 10 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
OpenMVS | | 70.44 10 | 55.58 10 | 58.77 8 | 53.44 12 | 44.82 10 | 58.83 9 | 65.59 10 | 35.91 18 | 72.72 7 |
|
3Dnovator | | 73.76 5 | 58.20 5 | 60.10 4 | 56.93 5 | 45.58 9 | 62.04 5 | 70.17 3 | 38.57 14 | 74.61 5 |
|
PCF-MVS | | 73.28 6 | 57.32 6 | 59.66 6 | 55.76 7 | 48.61 4 | 56.36 13 | 67.24 8 | 43.68 5 | 70.70 12 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PLC | | 68.99 11 | 51.58 17 | 55.07 18 | 49.25 20 | 41.73 15 | 52.26 21 | 56.95 22 | 38.53 15 | 68.41 17 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMH+ | | 66.54 13 | 53.99 14 | 56.90 12 | 52.05 14 | 44.66 11 | 57.37 11 | 56.79 23 | 41.98 8 | 69.14 15 |
|
ACMH | | 65.37 14 | 51.50 18 | 53.46 21 | 50.20 18 | 38.46 21 | 52.73 19 | 57.24 21 | 40.63 10 | 68.46 16 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAPA-MVS | | 71.42 9 | 55.13 11 | 58.21 10 | 53.07 13 | 41.62 16 | 56.79 12 | 62.68 15 | 39.75 12 | 74.79 4 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
COLMAP_ROB | | 62.73 15 | 49.91 22 | 51.76 22 | 48.68 22 | 37.30 22 | 52.31 20 | 61.83 17 | 31.91 24 | 66.23 22 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IB-MVS | | 66.94 12 | 55.84 9 | 55.92 16 | 55.78 6 | 40.33 17 | 61.21 7 | 68.84 4 | 37.29 17 | 71.51 9 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
LTVRE_ROB | | 59.44 16 | 53.25 16 | 56.08 15 | 51.36 16 | 39.82 19 | 53.93 16 | 62.24 16 | 37.92 16 | 72.34 8 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
CMPMVS | | 47.78 17 | 9.53 34 | 23.73 33 | 0.07 34 | 0.00 34 | 0.00 34 | 0.20 34 | 0.00 34 | 47.47 30 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PMVS | | 39.38 18 | 22.01 29 | 32.82 28 | 14.80 29 | 5.84 32 | 11.38 30 | 26.05 29 | 6.98 31 | 59.80 27 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE | | 19.12 19 | 15.60 31 | 22.59 34 | 10.94 31 | 5.22 33 | 14.12 29 | 8.87 33 | 9.84 29 | 39.95 34 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
unsupervisedMVS_cas | | | 30.63 28 | 31.53 29 | 30.04 28 | 21.80 28 | 27.12 28 | 40.58 28 | 22.40 28 | 41.26 33 |
|
BP-MVSNet | | | 50.87 20 | 53.66 20 | 49.01 21 | 40.10 18 | 49.76 23 | 63.03 14 | 34.23 21 | 67.21 21 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
CasMVSNet(SR_A) | | | 41.59 27 | 48.09 23 | 37.27 27 | 33.02 24 | 27.16 27 | 55.24 25 | 29.40 25 | 63.15 24 |
|
CasMVSNet(SR_B) | | | 49.66 23 | 48.09 23 | 50.71 17 | 33.02 24 | 55.30 14 | 67.43 7 | 29.40 25 | 63.15 24 |
|
TAPA-MVS(SR) | | | 56.09 8 | 56.78 13 | 55.62 8 | 43.28 13 | 58.11 10 | 65.17 11 | 43.60 6 | 70.29 13 |
|
CasMVSNet(base) | | | 49.00 24 | 48.08 25 | 49.61 19 | 34.83 23 | 53.10 18 | 66.82 9 | 28.93 27 | 61.32 26 |
|
GSE | | | 51.31 19 | 58.55 9 | 46.48 25 | 47.08 6 | 49.58 24 | 54.32 27 | 35.53 20 | 70.02 14 |
|
LPCS | | | 50.41 21 | 55.27 17 | 47.16 24 | 43.12 14 | 51.06 22 | 54.57 26 | 35.86 19 | 67.43 19 |
|
COLMAP(SR) | | | 54.99 13 | 57.09 11 | 53.58 11 | 46.78 8 | 55.24 15 | 63.74 13 | 41.76 9 | 67.41 20 |
|
COLMAP(base) | | | 53.42 15 | 56.15 14 | 51.59 15 | 44.02 12 | 53.93 16 | 60.80 18 | 40.05 11 | 68.28 18 |
|
dnet | | | 0.00 35 | 0.00 35 | 0.00 35 | 0.00 34 | 0.00 34 | 0.00 35 | 0.00 34 | 0.00 35 |
|
CIDER | | | 45.22 26 | 41.50 27 | 47.70 23 | 28.55 27 | 46.16 25 | 64.03 12 | 32.90 22 | 54.46 28 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
A-TVSNet + Gipuma | | | 45.36 25 | 47.40 26 | 44.00 26 | 29.86 26 | 43.85 26 | 55.31 24 | 32.84 23 | 64.94 23 |
|
hgnet | | | 15.22 32 | 24.38 31 | 9.11 32 | 6.26 29 | 5.91 31 | 17.93 31 | 3.49 32 | 42.51 31 |
|
example | | | 18.45 30 | 28.74 30 | 11.60 30 | 6.01 31 | 5.21 33 | 22.21 30 | 7.37 30 | 51.47 29 |
|
DPSNet | | | 15.22 32 | 24.38 31 | 9.11 32 | 6.26 29 | 5.91 31 | 17.93 31 | 3.49 32 | 42.51 31 |
|