3Dnovator | | 96.53 2 | 93.94 1 | 90.03 3 | 96.55 2 | 96.08 8 | 96.95 4 | 85.43 3 | 94.62 6 | 96.62 3 |
|
test_1124 | | | 93.84 2 | 93.94 1 | 93.78 15 | 98.74 2 | 85.65 41 | 93.23 1 | 94.65 5 | 96.94 1 |
|
test_1120 |  | | 93.24 3 | 93.60 2 | 93.00 18 | 97.25 6 | 85.92 40 | 91.86 2 | 95.34 2 | 95.83 7 |
|
Pnet-new- | | | 92.40 4 | 89.38 4 | 94.42 11 | 97.52 5 | 88.91 29 | 83.32 5 | 95.44 1 | 96.83 2 |
|
3Dnovator+ | | 96.13 3 | 92.29 5 | 87.63 5 | 95.40 6 | 94.86 14 | 95.31 11 | 82.29 6 | 92.97 9 | 96.03 5 |
|
AttMVS | | | 91.69 6 | 84.94 15 | 96.20 3 | 99.02 1 | 93.24 14 | 77.86 14 | 92.02 16 | 96.33 4 |
|
LTVRE_ROB | | 96.88 1 | 91.35 7 | 86.15 8 | 94.81 7 | 95.87 9 | 94.76 12 | 85.06 4 | 87.25 30 | 93.80 21 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MVSNet | | | 91.32 8 | 84.12 17 | 96.13 4 | 98.67 3 | 99.19 1 | 73.29 21 | 94.95 3 | 90.53 35 |
|
test_1126 | | | 91.28 9 | 86.68 7 | 94.36 12 | 96.53 7 | 93.15 16 | 81.50 7 | 91.85 17 | 93.39 23 |
|
OpenMVS |  | 94.22 8 | 91.21 10 | 86.10 9 | 94.61 8 | 93.08 20 | 95.94 7 | 79.58 10 | 92.61 11 | 94.82 15 |
|
tmmvs | | | 91.01 11 | 85.87 10 | 94.43 10 | 95.72 10 | 92.39 19 | 80.42 8 | 91.32 18 | 95.17 12 |
|
mvs_zhu_1030 | | | 90.16 12 | 81.94 21 | 95.63 5 | 94.87 13 | 97.32 3 | 69.88 29 | 94.00 8 | 94.70 16 |
|
TAPA-MVS(SR) | | | 89.94 13 | 87.22 6 | 91.74 24 | 93.91 18 | 88.71 31 | 80.31 9 | 94.13 7 | 92.61 25 |
|
DeepC-MVS | | 95.41 4 | 89.62 14 | 85.22 13 | 92.56 20 | 91.17 26 | 92.38 21 | 78.02 13 | 92.43 14 | 94.13 20 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CasMVSNet(SR_B) | | | 89.61 15 | 77.50 31 | 97.68 1 | 98.62 4 | 99.07 2 | 66.98 34 | 88.02 27 | 95.36 10 |
|
TAPA-MVS | | 93.32 12 | 89.43 16 | 84.97 14 | 92.40 21 | 92.59 21 | 92.76 17 | 77.17 16 | 92.77 10 | 91.86 28 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Pnet-blend++ | | | 89.08 17 | 85.48 11 | 91.49 25 | 94.54 15 | 95.61 9 | 78.52 11 | 92.44 12 | 84.31 42 |
|
Pnet-blend | | | 89.08 17 | 85.48 11 | 91.49 25 | 94.54 15 | 95.61 9 | 78.52 11 | 92.44 12 | 84.31 42 |
|
DeepPCF-MVS | | 94.58 5 | 89.02 19 | 82.96 19 | 93.05 17 | 91.93 23 | 92.37 22 | 76.15 18 | 89.78 22 | 94.87 14 |
|
tm-dncc | | | 88.78 20 | 80.08 25 | 94.58 9 | 95.72 10 | 92.39 19 | 72.62 24 | 87.54 28 | 95.64 8 |
|
P-MVSNet | | | 88.77 21 | 81.05 22 | 93.92 14 | 95.26 12 | 91.17 25 | 72.77 23 | 89.32 23 | 95.32 11 |
|
LPCS | | | 88.71 22 | 80.50 24 | 94.18 13 | 91.38 24 | 95.63 8 | 75.15 20 | 85.84 36 | 95.53 9 |
|
HY-MVS | | 91.43 15 | 88.66 23 | 84.44 16 | 91.47 27 | 91.38 24 | 89.67 28 | 76.53 17 | 92.35 15 | 93.36 24 |
|
DeepC-MVS_fast | | 94.34 7 | 88.57 24 | 82.00 20 | 92.95 19 | 91.15 27 | 92.65 18 | 75.30 19 | 88.70 24 | 95.05 13 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OpenMVS_ROB |  | 91.80 14 | 87.38 25 | 83.78 18 | 89.79 31 | 94.43 17 | 83.34 43 | 77.69 15 | 89.88 21 | 91.59 30 |
|
GSE | | | 86.24 26 | 77.00 32 | 92.39 22 | 89.33 30 | 93.63 13 | 71.06 27 | 82.94 42 | 94.22 19 |
|
COLMAP_ROB |  | 94.48 6 | 85.43 27 | 78.72 27 | 89.90 30 | 84.17 39 | 91.10 26 | 68.97 32 | 88.47 26 | 94.42 18 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CasMVSNet(base) | | | 85.15 28 | 74.67 37 | 92.14 23 | 88.81 31 | 96.80 5 | 62.49 43 | 86.85 31 | 90.81 34 |
|
COLMAP(base) | | | 85.07 29 | 78.37 28 | 89.55 32 | 86.00 33 | 88.85 30 | 71.31 26 | 85.43 38 | 93.78 22 |
|
COLMAP(SR) | | | 84.90 30 | 79.01 26 | 88.83 34 | 86.24 32 | 87.81 36 | 72.86 22 | 85.16 39 | 92.45 26 |
|
CasMVSNet(SR_A) | | | 84.65 31 | 76.33 36 | 90.20 29 | 84.56 37 | 96.27 6 | 65.84 37 | 86.81 32 | 89.77 38 |
|
PLC |  | 91.02 16 | 83.72 32 | 77.86 29 | 87.63 35 | 83.31 41 | 87.52 39 | 70.85 28 | 84.87 40 | 92.08 27 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PCF-MVS | | 89.43 18 | 82.97 33 | 73.73 39 | 89.13 33 | 90.40 28 | 87.68 37 | 68.35 33 | 79.10 45 | 89.30 39 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ACMH+ | | 93.58 10 | 82.41 34 | 77.68 30 | 85.56 42 | 85.31 35 | 80.89 47 | 69.59 30 | 85.78 37 | 90.47 36 |
|
ACMH | | 93.61 9 | 82.01 35 | 76.51 35 | 85.67 41 | 85.78 34 | 80.27 49 | 66.29 36 | 86.73 34 | 90.97 33 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMM | | 93.33 11 | 81.98 36 | 74.23 38 | 87.15 36 | 82.31 45 | 88.08 35 | 65.33 38 | 83.12 41 | 91.07 31 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CIDER | | | 81.10 37 | 81.01 23 | 81.16 47 | 78.95 51 | 81.68 46 | 71.35 25 | 90.68 19 | 82.84 48 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
PVSNet_LR | | | 81.05 38 | 72.92 41 | 86.47 38 | 84.32 38 | 87.64 38 | 58.56 46 | 87.27 29 | 87.46 40 |
|
ACMP | | 92.54 13 | 80.70 39 | 71.88 43 | 86.59 37 | 80.49 49 | 88.25 34 | 63.03 41 | 80.72 44 | 91.01 32 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
R-MVSNet | | | 80.37 40 | 76.91 33 | 82.68 44 | 83.10 42 | 81.84 45 | 65.20 39 | 88.62 25 | 83.11 47 |
|
Pnet_fast | | | 79.81 41 | 72.73 42 | 84.52 43 | 82.40 44 | 88.35 33 | 58.67 45 | 86.79 33 | 82.82 49 |
|
IB-MVS | | 85.98 20 | 79.62 42 | 76.62 34 | 81.62 46 | 85.10 36 | 80.82 48 | 66.55 35 | 86.69 35 | 78.96 52 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
vp_mvsnet | | | 79.40 43 | 61.80 49 | 91.14 28 | 93.13 19 | 89.83 27 | 28.94 76 | 94.66 4 | 90.45 37 |
|
ANet | | | 78.35 44 | 67.13 47 | 85.83 40 | 81.24 48 | 92.34 23 | 57.90 47 | 76.37 48 | 83.92 45 |
|
test_1205 | | | 76.84 45 | 69.16 46 | 81.96 45 | 82.96 43 | 88.41 32 | 62.91 42 | 75.41 50 | 74.53 55 |
|
PVSNet | | 86.72 19 | 76.20 46 | 73.67 40 | 77.88 52 | 79.20 50 | 72.57 54 | 69.58 31 | 77.77 46 | 81.87 50 |
|
PVSNet_0 | | 81.89 21 | 75.64 47 | 69.86 44 | 79.48 50 | 78.69 52 | 74.99 51 | 63.13 40 | 76.60 47 | 84.77 41 |
|
MVSCRF | | | 75.50 48 | 69.78 45 | 79.31 51 | 77.67 54 | 82.99 44 | 49.66 51 | 89.90 20 | 77.28 53 |
|
BP-MVSNet | | | 73.12 49 | 63.32 48 | 79.66 49 | 81.44 46 | 74.39 52 | 52.82 48 | 73.82 51 | 83.14 46 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
A-TVSNet + Gipuma |  | | 72.66 50 | 60.91 51 | 80.50 48 | 75.15 55 | 84.76 42 | 59.05 44 | 62.76 59 | 81.58 51 |
|
PMVS |  | 89.60 17 | 72.53 51 | 40.67 72 | 93.77 16 | 92.28 22 | 93.18 15 | 48.78 53 | 32.55 80 | 95.84 6 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ANet-0.75 | | | 70.67 52 | 47.80 65 | 85.91 39 | 81.25 47 | 92.34 23 | 38.12 63 | 57.47 63 | 84.15 44 |
|
MVSNet_plusplus | | | 65.61 53 | 51.21 58 | 75.21 53 | 89.61 29 | 44.24 62 | 19.91 80 | 82.51 43 | 91.77 29 |
|
unsupervisedMVS_cas | | | 61.20 54 | 49.84 63 | 68.78 54 | 63.77 59 | 73.15 53 | 38.43 62 | 61.26 60 | 69.42 56 |
|
Pnet-eth | | | 61.19 55 | 57.15 55 | 63.88 56 | 83.71 40 | 47.10 60 | 41.45 59 | 72.85 53 | 60.82 60 |
|
MVS_test_1 | | | 60.08 56 | 50.72 59 | 66.32 55 | 78.10 53 | 52.08 56 | 25.70 79 | 75.74 49 | 68.79 57 |
|
F/T MVSNet+Gipuma | | | 59.72 57 | 61.47 50 | 58.55 57 | 70.70 56 | 40.01 65 | 52.07 49 | 70.87 54 | 64.95 58 |
|
MVSNet + Gipuma | | | 58.38 58 | 60.00 52 | 57.30 58 | 68.90 58 | 39.34 67 | 51.70 50 | 68.30 56 | 63.65 59 |
|
Snet | | | 53.20 59 | 57.22 54 | 50.52 63 | 62.60 60 | 36.23 69 | 49.14 52 | 65.30 58 | 52.73 66 |
|
Cas-MVS_preliminary | | | 50.29 60 | 41.63 70 | 56.06 60 | 43.18 71 | 30.41 80 | 35.30 69 | 47.96 71 | 94.60 17 |
|
CPR_FA | | | 50.17 61 | 52.38 56 | 48.69 64 | 44.83 70 | 42.31 63 | 43.51 58 | 61.26 60 | 58.94 61 |
|
MVSNet_++ | | | 50.06 62 | 40.45 73 | 56.46 59 | 57.82 61 | 34.95 72 | 7.47 84 | 73.43 52 | 76.61 54 |
|
unMVSmet | | | 49.47 63 | 58.19 53 | 43.66 67 | 50.58 66 | 39.49 66 | 47.78 54 | 68.60 55 | 40.90 74 |
|
CCVNet | | | 46.86 64 | 39.85 76 | 51.54 62 | 50.35 67 | 46.44 61 | 36.28 68 | 43.42 77 | 57.82 62 |
|
test_mvsss | | | 46.43 65 | 32.75 80 | 55.54 61 | 53.54 65 | 61.33 55 | 19.75 81 | 45.75 75 | 51.76 68 |
|
hgnet | | | 44.78 66 | 46.10 66 | 43.90 65 | 55.34 63 | 51.87 57 | 37.81 64 | 54.38 65 | 24.49 80 |
|
DPSNet | | | 44.78 66 | 46.10 66 | 43.90 65 | 55.34 63 | 51.87 57 | 37.81 64 | 54.38 65 | 24.49 80 |
|
MVE |  | 73.61 22 | 42.73 68 | 50.51 60 | 37.54 77 | 28.32 83 | 41.81 64 | 47.01 55 | 54.00 67 | 42.50 73 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
A1Net | | | 42.71 69 | 50.00 61 | 37.85 76 | 32.83 77 | 28.57 82 | 41.36 60 | 58.63 62 | 52.14 67 |
|
RMVSNet | | | 42.28 70 | 49.56 64 | 37.43 78 | 46.49 69 | 36.28 68 | 46.14 56 | 52.98 68 | 29.51 77 |
|
TVSNet | | | 41.69 71 | 43.53 68 | 40.47 73 | 34.72 74 | 35.30 70 | 36.98 66 | 50.08 69 | 51.38 69 |
|
QQQNet | | | 41.37 72 | 40.86 71 | 41.70 69 | 32.74 78 | 34.55 76 | 34.93 70 | 46.80 72 | 57.82 62 |
|
confMetMVS | | | 40.92 73 | 49.99 62 | 34.88 81 | 42.05 72 | 28.82 81 | 45.31 57 | 54.67 64 | 33.76 76 |
|
SVVNet | | | 40.48 74 | 40.38 74 | 40.54 71 | 30.67 81 | 34.64 74 | 33.96 71 | 46.80 72 | 56.31 64 |
|
ternet | | | 40.48 74 | 40.38 74 | 40.54 71 | 30.67 81 | 34.64 74 | 33.96 71 | 46.80 72 | 56.31 64 |
|
test3 | | | 40.01 76 | 42.34 69 | 38.45 75 | 33.05 76 | 34.68 73 | 36.66 67 | 48.03 70 | 47.61 70 |
|
SGNet | | | 36.94 77 | 37.96 77 | 36.27 79 | 31.95 79 | 33.84 77 | 32.37 73 | 43.54 76 | 43.01 72 |
|
metmvs_fine | | | 36.70 78 | 52.31 57 | 26.30 83 | 26.70 84 | 24.23 83 | 38.64 61 | 65.98 57 | 27.95 78 |
|
firsttry | | | 36.63 79 | 33.24 79 | 38.88 74 | 37.30 73 | 33.37 78 | 30.72 74 | 35.75 79 | 45.97 71 |
|
example | | | 36.07 80 | 28.13 82 | 41.37 70 | 57.61 62 | 48.26 59 | 28.65 78 | 27.61 82 | 18.25 82 |
|
PSD-MVSNet | | | 35.22 81 | 35.50 78 | 35.04 80 | 31.65 80 | 32.64 79 | 29.99 75 | 41.01 78 | 40.82 75 |
|
unMVSv1 | | | 30.79 82 | 29.07 81 | 31.95 82 | 33.31 75 | 35.18 71 | 28.91 77 | 29.23 81 | 27.34 79 |
|
CMPMVS |  | 73.10 23 | 25.96 83 | 1.21 84 | 42.46 68 | 48.37 68 | 79.01 50 | 2.43 85 | 0.00 84 | 0.00 85 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FADENet | | | 1.00 84 | 1.26 83 | 0.82 85 | 1.49 86 | 0.55 85 | 1.56 86 | 0.96 83 | 0.41 84 |
|
dnet | | | 0.00 85 | 0.00 85 | 0.00 86 | 0.00 87 | 0.00 86 | 0.00 87 | 0.00 84 | 0.00 85 |
|
test_MVS | | | | | | | | 18.95 82 | | |
|
test_robustmvs | | | | | 7.77 84 | 12.93 85 | 6.88 84 | 12.31 83 | | 3.50 83 |
|
UnsupFinetunedMVSNet | | | | | | 70.70 56 | | | | |
|