3Dnovator | | 92.54 3 | 87.14 1 | 82.53 4 | 90.22 2 | 92.38 6 | 87.90 7 | 76.07 3 | 88.99 3 | 90.37 3 |
|
test_1120 |  | | 85.87 2 | 90.81 1 | 82.58 24 | 92.77 5 | 71.70 39 | 90.04 2 | 91.57 1 | 83.26 25 |
|
test_1124 | | | 85.71 3 | 89.49 2 | 83.20 19 | 93.00 4 | 69.67 43 | 90.66 1 | 88.31 4 | 86.91 14 |
|
3Dnovator+ | | 92.74 2 | 85.26 4 | 79.20 5 | 89.30 6 | 91.06 11 | 85.88 12 | 71.70 7 | 86.71 5 | 90.95 1 |
|
LTVRE_ROB | | 93.87 1 | 84.10 5 | 76.06 10 | 89.46 5 | 92.03 7 | 89.46 3 | 74.68 5 | 77.44 25 | 86.88 16 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Pnet-new- | | | 83.71 6 | 82.83 3 | 84.29 17 | 91.11 10 | 71.44 41 | 75.11 4 | 90.55 2 | 90.33 4 |
|
MVSNet | | | 83.40 7 | 73.23 16 | 90.18 3 | 96.40 3 | 96.26 1 | 60.66 19 | 85.80 7 | 77.89 38 |
|
tmmvs | | | 83.24 8 | 76.41 9 | 87.80 9 | 91.55 8 | 83.34 17 | 70.47 8 | 82.35 14 | 88.50 11 |
|
OpenMVS |  | 89.45 8 | 82.68 9 | 76.80 8 | 86.60 13 | 87.53 16 | 85.75 13 | 67.54 10 | 86.07 6 | 86.53 18 |
|
AttMVS | | | 82.46 10 | 75.33 12 | 87.21 11 | 96.89 2 | 75.50 32 | 65.76 14 | 84.90 8 | 89.24 7 |
|
CasMVSNet(SR_B) | | | 82.29 11 | 64.88 29 | 93.90 1 | 97.33 1 | 93.46 2 | 52.57 33 | 77.19 26 | 90.91 2 |
|
DeepC-MVS | | 91.39 4 | 81.68 12 | 75.54 11 | 85.78 14 | 85.54 23 | 84.87 15 | 66.52 11 | 84.56 10 | 86.91 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_1126 | | | 81.50 13 | 76.94 7 | 84.53 16 | 90.07 12 | 80.09 22 | 72.16 6 | 81.72 15 | 83.44 24 |
|
DeepPCF-MVS | | 90.46 6 | 81.47 14 | 72.84 17 | 87.22 10 | 86.87 18 | 85.94 11 | 64.61 17 | 81.08 18 | 88.86 9 |
|
mvs_zhu_1030 | | | 81.21 15 | 70.41 20 | 88.40 8 | 89.88 13 | 88.12 5 | 56.56 28 | 84.27 11 | 87.20 13 |
|
DeepC-MVS_fast | | 89.96 7 | 80.90 16 | 71.96 18 | 86.87 12 | 86.16 19 | 85.65 14 | 63.68 18 | 80.23 19 | 88.79 10 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
tm-dncc | | | 80.42 17 | 68.45 23 | 88.41 7 | 91.55 8 | 83.34 17 | 58.49 24 | 78.40 24 | 90.33 4 |
|
TAPA-MVS | | 88.58 10 | 79.17 18 | 74.71 13 | 82.14 26 | 83.86 26 | 80.69 21 | 65.33 15 | 84.10 12 | 81.86 27 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Pnet-blend++ | | | 79.10 19 | 73.55 14 | 82.79 22 | 85.61 21 | 87.39 8 | 65.83 12 | 81.27 16 | 75.38 40 |
|
Pnet-blend | | | 79.10 19 | 73.55 14 | 82.79 22 | 85.61 21 | 87.39 8 | 65.83 12 | 81.27 16 | 75.38 40 |
|
TAPA-MVS(SR) | | | 79.05 21 | 76.98 6 | 80.43 29 | 86.95 17 | 72.03 38 | 69.38 9 | 84.57 9 | 82.32 26 |
|
LPCS | | | 77.52 22 | 66.30 27 | 85.00 15 | 84.90 24 | 83.49 16 | 59.63 22 | 72.97 34 | 86.62 17 |
|
COLMAP_ROB |  | 91.06 5 | 77.39 23 | 68.75 22 | 83.16 20 | 77.98 32 | 82.59 19 | 57.72 26 | 79.78 20 | 88.89 8 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
P-MVSNet | | | 77.22 24 | 69.44 21 | 82.40 25 | 88.76 15 | 72.48 37 | 59.92 21 | 78.95 22 | 85.96 19 |
|
COLMAP(base) | | | 75.61 25 | 66.44 26 | 81.73 27 | 78.81 30 | 78.86 23 | 58.69 23 | 74.19 30 | 87.52 12 |
|
GSE | | | 75.15 26 | 62.89 35 | 83.32 18 | 83.05 27 | 81.11 20 | 55.75 31 | 70.03 42 | 85.80 20 |
|
CasMVSNet(base) | | | 74.99 27 | 62.90 34 | 83.05 21 | 79.99 29 | 88.10 6 | 49.26 38 | 76.54 27 | 81.07 30 |
|
OpenMVS_ROB |  | 85.12 16 | 74.56 28 | 71.88 19 | 76.34 36 | 86.01 20 | 62.96 47 | 65.18 16 | 78.58 23 | 80.05 32 |
|
CasMVSNet(SR_A) | | | 73.59 29 | 63.86 32 | 80.08 30 | 73.85 37 | 86.72 10 | 51.68 36 | 76.04 28 | 79.66 34 |
|
PCF-MVS | | 84.52 17 | 73.49 30 | 62.30 36 | 80.95 28 | 84.42 25 | 78.59 24 | 55.89 30 | 68.72 45 | 79.83 33 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PLC |  | 85.34 15 | 73.20 31 | 65.63 28 | 78.25 32 | 73.53 39 | 77.42 27 | 57.50 27 | 73.77 32 | 83.78 23 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
COLMAP(SR) | | | 73.18 32 | 64.70 30 | 78.83 31 | 76.92 34 | 75.11 33 | 58.32 25 | 71.09 39 | 84.45 22 |
|
HY-MVS | | 82.50 18 | 72.16 33 | 66.92 25 | 75.64 37 | 78.74 31 | 69.74 42 | 60.03 20 | 73.81 31 | 78.45 37 |
|
ACMM | | 88.83 9 | 70.91 34 | 60.87 37 | 77.60 33 | 73.74 38 | 78.44 25 | 50.09 37 | 71.64 36 | 80.61 31 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 88.15 13 | 70.01 35 | 59.11 40 | 77.27 34 | 72.09 42 | 77.94 26 | 48.49 39 | 69.73 43 | 81.78 28 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMH+ | | 88.43 11 | 69.12 36 | 64.25 31 | 72.37 40 | 75.42 36 | 62.09 48 | 55.28 32 | 73.23 33 | 79.59 35 |
|
ACMH | | 88.36 12 | 68.62 37 | 63.35 33 | 72.13 42 | 76.30 35 | 61.45 50 | 52.32 34 | 74.39 29 | 78.63 36 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PMVS |  | 87.21 14 | 68.59 38 | 37.06 57 | 89.61 4 | 89.58 14 | 88.93 4 | 43.78 45 | 30.34 68 | 90.31 6 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CIDER | | | 68.12 39 | 67.69 24 | 68.40 44 | 67.10 46 | 67.39 44 | 56.32 29 | 79.06 21 | 70.71 46 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
vp_mvsnet | | | 66.63 40 | 50.71 47 | 77.24 35 | 80.40 28 | 74.20 34 | 17.94 74 | 83.49 13 | 77.11 39 |
|
Pnet_fast | | | 66.28 41 | 58.61 41 | 71.39 43 | 67.96 45 | 76.81 31 | 46.02 43 | 71.20 38 | 69.40 48 |
|
PVSNet_LR | | | 65.63 42 | 55.66 42 | 72.28 41 | 69.26 44 | 73.17 35 | 40.76 47 | 70.56 41 | 74.42 42 |
|
ANet | | | 64.16 43 | 49.90 48 | 73.66 38 | 72.65 40 | 77.24 28 | 43.69 46 | 56.11 49 | 71.09 44 |
|
IB-MVS | | 77.21 19 | 63.04 44 | 59.74 39 | 65.23 48 | 69.93 43 | 62.02 49 | 47.98 40 | 71.51 37 | 63.73 51 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
R-MVSNet | | | 62.92 45 | 59.84 38 | 64.98 49 | 66.63 48 | 67.11 46 | 47.38 41 | 72.30 35 | 61.19 52 |
|
test_1205 | | | 60.45 46 | 51.48 45 | 66.42 45 | 66.80 47 | 73.02 36 | 46.79 42 | 56.17 48 | 59.45 54 |
|
PVSNet | | 76.22 20 | 60.21 47 | 55.24 43 | 63.53 50 | 62.99 52 | 56.76 52 | 51.86 35 | 58.62 46 | 70.83 45 |
|
PVSNet_0 | | 70.34 21 | 60.14 48 | 51.55 44 | 65.87 47 | 64.30 51 | 59.84 51 | 45.76 44 | 57.35 47 | 73.47 43 |
|
MVSCRF | | | 58.45 49 | 50.89 46 | 63.49 51 | 65.53 49 | 67.21 45 | 32.48 52 | 69.31 44 | 57.74 55 |
|
ANet-0.75 | | | 55.72 50 | 29.52 65 | 73.18 39 | 72.65 40 | 77.24 28 | 22.81 62 | 36.23 63 | 69.65 47 |
|
A-TVSNet + Gipuma |  | | 55.66 51 | 39.87 51 | 66.19 46 | 61.25 53 | 71.47 40 | 39.48 48 | 40.27 61 | 65.86 50 |
|
BP-MVSNet | | | 54.95 52 | 44.08 49 | 62.20 52 | 64.58 50 | 55.08 54 | 35.81 49 | 52.35 52 | 66.94 49 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
MVSNet_plusplus | | | 53.83 53 | 41.31 50 | 62.18 53 | 77.12 33 | 27.65 63 | 11.93 80 | 70.69 40 | 81.76 29 |
|
unsupervisedMVS_cas | | | 45.33 54 | 35.07 58 | 52.17 54 | 49.98 56 | 55.86 53 | 26.75 58 | 43.39 56 | 50.68 56 |
|
Pnet-eth | | | 41.50 55 | 37.56 54 | 44.12 56 | 59.98 54 | 35.12 60 | 25.76 59 | 49.36 53 | 37.26 64 |
|
MVS_test_1 | | | 41.26 56 | 33.59 60 | 46.37 55 | 57.31 55 | 36.32 58 | 14.34 79 | 52.84 51 | 45.48 57 |
|
F/T MVSNet+Gipuma | | | 37.77 57 | 38.70 52 | 37.15 61 | 41.21 59 | 26.31 64 | 34.11 50 | 43.29 57 | 43.92 58 |
|
MVSNet_++ | | | 36.74 58 | 29.99 64 | 41.25 57 | 41.08 61 | 21.58 76 | 4.20 84 | 55.79 50 | 61.07 53 |
|
MVSNet + Gipuma | | | 36.49 59 | 37.36 55 | 35.92 63 | 39.51 63 | 25.68 70 | 33.78 51 | 40.94 59 | 42.57 61 |
|
Snet | | | 35.89 60 | 38.02 53 | 34.46 64 | 42.09 58 | 25.34 71 | 31.63 53 | 44.41 55 | 35.96 67 |
|
Cas-MVS_preliminary | | | 34.22 61 | 23.72 72 | 41.22 58 | 24.86 69 | 13.53 81 | 21.84 66 | 25.60 77 | 85.27 21 |
|
CPR_FA | | | 31.79 62 | 33.68 59 | 30.53 65 | 26.52 68 | 27.95 62 | 26.79 57 | 40.57 60 | 37.13 65 |
|
CCVNet | | | 31.72 63 | 23.36 76 | 37.29 60 | 32.94 67 | 35.83 59 | 23.09 61 | 23.62 79 | 43.10 59 |
|
test_mvsss | | | 29.61 64 | 19.32 79 | 36.47 62 | 33.95 66 | 44.00 55 | 10.69 81 | 27.94 72 | 31.45 70 |
|
hgnet | | | 28.77 65 | 28.46 67 | 28.98 67 | 37.72 64 | 36.88 56 | 22.34 63 | 34.57 64 | 12.35 80 |
|
DPSNet | | | 28.77 65 | 28.46 67 | 28.98 67 | 37.72 64 | 36.88 56 | 22.34 63 | 34.57 64 | 12.35 80 |
|
A1Net | | | 28.59 67 | 31.33 62 | 26.77 73 | 23.32 71 | 20.44 79 | 25.11 60 | 37.56 62 | 36.53 66 |
|
unMVSmet | | | 27.29 68 | 37.09 56 | 20.76 79 | 21.57 73 | 19.92 80 | 29.37 54 | 44.81 54 | 20.79 75 |
|
QQQNet | | | 27.27 69 | 23.68 73 | 29.66 66 | 20.58 75 | 25.28 72 | 20.44 70 | 26.93 73 | 43.10 59 |
|
TVSNet | | | 26.87 70 | 26.31 69 | 27.24 72 | 22.04 72 | 25.97 66 | 21.82 67 | 30.81 67 | 33.71 68 |
|
SVVNet | | | 26.60 71 | 23.52 74 | 28.65 69 | 19.11 79 | 25.79 68 | 20.11 71 | 26.93 73 | 41.05 62 |
|
ternet | | | 26.60 71 | 23.52 74 | 28.65 69 | 19.11 79 | 25.79 68 | 20.11 71 | 26.93 73 | 41.05 62 |
|
MVE |  | 59.87 23 | 26.31 73 | 31.05 63 | 23.15 77 | 16.99 83 | 26.25 65 | 28.39 55 | 33.71 66 | 26.21 73 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test3 | | | 25.90 74 | 25.56 70 | 26.12 74 | 20.86 74 | 25.97 66 | 21.87 65 | 29.25 71 | 31.54 69 |
|
CMPMVS |  | 68.83 22 | 24.56 75 | 0.66 83 | 40.49 59 | 44.64 57 | 76.82 30 | 1.32 85 | 0.00 84 | 0.00 85 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
SGNet | | | 23.30 76 | 22.41 77 | 23.89 76 | 19.97 77 | 24.65 73 | 18.80 73 | 26.01 76 | 27.05 72 |
|
example | | | 22.96 77 | 15.83 82 | 27.71 71 | 39.92 62 | 34.87 61 | 16.64 77 | 15.02 82 | 8.35 82 |
|
RMVSNet | | | 22.89 78 | 28.83 66 | 18.93 80 | 20.40 76 | 21.96 75 | 28.10 56 | 29.56 69 | 14.42 79 |
|
firsttry | | | 22.43 79 | 18.70 80 | 24.92 75 | 24.56 70 | 21.07 77 | 17.26 75 | 20.14 80 | 29.14 71 |
|
PSD-MVSNet | | | 22.04 80 | 20.75 78 | 22.90 78 | 19.67 78 | 23.59 74 | 17.26 75 | 24.24 78 | 25.46 74 |
|
metmvs_fine | | | 20.53 81 | 32.00 61 | 12.88 83 | 12.30 84 | 11.56 83 | 21.14 68 | 42.86 58 | 14.77 78 |
|
confMetMVS | | | 20.09 82 | 25.00 71 | 16.82 82 | 18.50 82 | 12.38 82 | 20.47 69 | 29.53 70 | 19.57 76 |
|
unMVSv1 | | | 17.38 83 | 16.06 81 | 18.27 81 | 19.03 81 | 20.72 78 | 15.92 78 | 16.19 81 | 15.05 77 |
|
FADENet | | | 0.40 84 | 0.50 84 | 0.33 85 | 0.58 86 | 0.22 85 | 0.62 86 | 0.38 83 | 0.18 84 |
|
dnet | | | 0.00 85 | 0.00 85 | 0.00 86 | 0.00 87 | 0.00 86 | 0.00 87 | 0.00 84 | 0.00 85 |
|
test_MVS | | | | | | | | 10.18 82 | | |
|
test_robustmvs | | | | | 4.01 84 | 6.76 85 | 3.49 84 | 6.41 83 | | 1.77 83 |
|
UnsupFinetunedMVSNet | | | | | | 41.21 59 | | | | |
|