LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 25 | 93.86 32 | 99.07 2 | 98.98 5 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 179 | 96.85 2 | 99.77 10 | 99.31 27 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 5 | 98.61 3 | 98.81 7 | 97.41 10 | 97.28 48 | 98.46 25 | 94.62 58 | 98.84 137 | 94.64 17 | 99.53 35 | 98.99 54 |
|
DVP-MVS++ | | | 95.93 53 | 96.34 34 | 94.70 117 | 96.54 170 | 86.66 155 | 98.45 4 | 98.22 32 | 93.26 70 | 97.54 37 | 97.36 75 | 93.12 88 | 99.38 56 | 93.88 34 | 98.68 148 | 98.04 148 |
|
FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 7 | 97.73 6 | 98.27 20 | | | | | | |
|
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 70 | 93.87 31 | 98.42 6 | 98.19 35 | 96.95 14 | 95.46 130 | 99.23 4 | 93.45 76 | 99.57 13 | 95.34 12 | 99.89 2 | 99.63 9 |
|
OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 36 | 99.03 11 | 91.85 59 | 97.98 7 | 98.01 69 | 94.15 52 | 98.93 3 | 99.07 5 | 88.07 185 | 99.57 13 | 95.86 9 | 99.69 15 | 99.46 18 |
|
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 89 | 99.51 2 | 87.38 136 | 97.70 8 | 97.54 110 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 99 | 90.73 130 | 99.73 14 | 99.59 12 |
|
HPM-MVS |  | | 96.81 12 | 96.62 23 | 97.36 24 | 98.89 19 | 93.53 39 | 97.51 9 | 98.44 12 | 92.35 84 | 95.95 107 | 96.41 137 | 96.71 8 | 99.42 31 | 93.99 33 | 99.36 56 | 99.13 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
EPP-MVSNet | | | 93.91 129 | 93.68 135 | 94.59 125 | 98.08 78 | 85.55 179 | 97.44 10 | 94.03 263 | 94.22 50 | 94.94 155 | 96.19 155 | 82.07 251 | 99.57 13 | 87.28 211 | 98.89 120 | 98.65 98 |
|
LS3D | | | 96.11 48 | 95.83 62 | 96.95 37 | 94.75 261 | 94.20 19 | 97.34 11 | 97.98 72 | 97.31 11 | 95.32 136 | 96.77 112 | 93.08 90 | 99.20 84 | 91.79 108 | 98.16 203 | 97.44 205 |
|
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 22 | 99.12 8 | 93.92 29 | 97.16 12 | 98.17 40 | 93.11 72 | 96.48 79 | 97.36 75 | 96.92 6 | 99.34 64 | 94.31 23 | 99.38 55 | 98.92 68 |
|
MVSFormer | | | 92.18 181 | 92.23 170 | 92.04 216 | 94.74 263 | 80.06 244 | 97.15 13 | 97.37 120 | 88.98 173 | 88.83 299 | 92.79 282 | 77.02 289 | 99.60 8 | 96.41 4 | 96.75 265 | 96.46 245 |
|
test_djsdf | | | 96.62 23 | 96.49 28 | 97.01 33 | 98.55 41 | 91.77 61 | 97.15 13 | 97.37 120 | 88.98 173 | 98.26 22 | 98.86 10 | 93.35 81 | 99.60 8 | 96.41 4 | 99.45 43 | 99.66 6 |
|
IS-MVSNet | | | 94.49 110 | 94.35 116 | 94.92 107 | 98.25 69 | 86.46 160 | 97.13 15 | 94.31 258 | 96.24 24 | 96.28 92 | 96.36 145 | 82.88 240 | 99.35 61 | 88.19 192 | 99.52 37 | 98.96 61 |
|
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 105 | 97.46 123 | 86.35 165 | 97.11 16 | 98.24 30 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 87 | 99.15 88 | 93.18 70 | 99.74 13 | 99.50 16 |
|
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 7 | 98.00 88 | 94.03 26 | 96.97 17 | 97.61 105 | 87.68 202 | 98.45 18 | 98.77 15 | 94.20 67 | 99.50 19 | 96.70 3 | 99.40 53 | 99.53 14 |
|
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 19 | 98.61 34 | 93.88 30 | 96.95 18 | 98.18 36 | 92.26 87 | 96.33 85 | 96.84 110 | 95.10 43 | 99.40 45 | 93.47 53 | 99.33 60 | 99.02 51 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
APDe-MVS | | | 96.46 32 | 96.64 22 | 95.93 63 | 97.68 109 | 89.38 99 | 96.90 19 | 98.41 16 | 92.52 79 | 97.43 43 | 97.92 45 | 95.11 42 | 99.50 19 | 94.45 19 | 99.30 65 | 98.92 68 |
|
EGC-MVSNET | | | 80.97 328 | 75.73 340 | 96.67 44 | 98.85 22 | 94.55 15 | 96.83 20 | 96.60 181 | 2.44 375 | 5.32 376 | 98.25 31 | 92.24 109 | 98.02 232 | 91.85 107 | 99.21 82 | 97.45 203 |
|
v7n | | | 96.82 10 | 97.31 10 | 95.33 91 | 98.54 43 | 86.81 150 | 96.83 20 | 98.07 56 | 96.59 20 | 98.46 17 | 98.43 27 | 92.91 95 | 99.52 17 | 96.25 6 | 99.76 11 | 99.65 8 |
|
CP-MVS | | | 96.44 35 | 96.08 49 | 97.54 11 | 98.29 64 | 94.62 14 | 96.80 22 | 98.08 53 | 92.67 77 | 95.08 150 | 96.39 142 | 94.77 54 | 99.42 31 | 93.17 71 | 99.44 45 | 98.58 111 |
|
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 23 | 97.13 28 | 98.38 59 | 94.31 17 | 96.79 23 | 98.32 20 | 96.69 17 | 96.86 65 | 97.56 60 | 95.48 25 | 98.77 155 | 90.11 151 | 99.44 45 | 98.31 128 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
WR-MVS_H | | | 96.60 25 | 97.05 14 | 95.24 97 | 99.02 12 | 86.44 161 | 96.78 24 | 98.08 53 | 97.42 9 | 98.48 16 | 97.86 49 | 91.76 122 | 99.63 6 | 94.23 26 | 99.84 3 | 99.66 6 |
|
CS-MVS | | | 95.72 61 | 95.58 70 | 96.15 53 | 96.86 152 | 91.06 69 | 96.74 25 | 99.07 4 | 94.22 50 | 92.42 236 | 94.79 225 | 93.58 73 | 99.48 24 | 93.45 54 | 99.06 98 | 97.91 167 |
|
pmmvs6 | | | 96.80 13 | 97.36 9 | 95.15 101 | 99.12 8 | 87.82 131 | 96.68 26 | 97.86 83 | 96.10 26 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 216 | 91.38 121 | 99.69 15 | 99.42 19 |
|
3Dnovator | | 92.54 3 | 94.80 99 | 94.90 92 | 94.47 132 | 95.47 241 | 87.06 143 | 96.63 27 | 97.28 135 | 91.82 106 | 94.34 175 | 97.41 69 | 90.60 153 | 98.65 176 | 92.47 91 | 98.11 209 | 97.70 187 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 131 | 99.13 6 | 84.09 197 | 96.61 28 | 97.97 75 | 97.91 5 | 98.64 13 | 98.13 34 | 95.24 36 | 99.65 3 | 93.39 61 | 99.84 3 | 99.72 2 |
|
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 43 | 95.32 7 | 96.61 28 | 98.35 19 | 95.81 31 | 97.55 36 | 97.44 68 | 96.51 9 | 99.40 45 | 94.06 30 | 99.23 79 | 98.85 77 |
|
mvs_tets | | | 96.83 9 | 96.71 19 | 97.17 27 | 98.83 23 | 92.51 50 | 96.58 30 | 97.61 105 | 87.57 205 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 12 | 96.15 7 | 99.47 39 | 99.40 21 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 120 | 99.16 4 | 84.50 188 | 96.54 31 | 98.05 60 | 98.06 4 | 98.64 13 | 98.25 31 | 95.01 48 | 99.65 3 | 92.95 80 | 99.83 6 | 99.68 4 |
|
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 118 | 99.13 6 | 84.68 187 | 96.51 32 | 97.94 81 | 98.14 3 | 98.67 12 | 98.32 29 | 95.04 45 | 99.69 2 | 93.27 67 | 99.82 8 | 99.62 10 |
|
XVS | | | 96.49 29 | 96.18 42 | 97.44 17 | 98.56 38 | 93.99 27 | 96.50 33 | 97.95 78 | 94.58 41 | 94.38 173 | 96.49 131 | 94.56 59 | 99.39 50 | 93.57 44 | 99.05 103 | 98.93 64 |
|
X-MVStestdata | | | 90.70 208 | 88.45 250 | 97.44 17 | 98.56 38 | 93.99 27 | 96.50 33 | 97.95 78 | 94.58 41 | 94.38 173 | 26.89 373 | 94.56 59 | 99.39 50 | 93.57 44 | 99.05 103 | 98.93 64 |
|
DROMVSNet | | | 95.44 70 | 95.62 69 | 94.89 108 | 96.93 147 | 87.69 132 | 96.48 35 | 99.14 3 | 93.93 57 | 92.77 224 | 94.52 233 | 93.95 70 | 99.49 22 | 93.62 43 | 99.22 81 | 97.51 200 |
|
mPP-MVS | | | 96.46 32 | 96.05 51 | 97.69 5 | 98.62 32 | 94.65 13 | 96.45 36 | 97.74 96 | 92.59 78 | 95.47 128 | 96.68 122 | 94.50 61 | 99.42 31 | 93.10 74 | 99.26 75 | 98.99 54 |
|
QAPM | | | 92.88 158 | 92.77 157 | 93.22 175 | 95.82 223 | 83.31 204 | 96.45 36 | 97.35 127 | 83.91 256 | 93.75 191 | 96.77 112 | 89.25 173 | 98.88 129 | 84.56 249 | 97.02 254 | 97.49 201 |
|
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 28 | 92.49 51 | 96.44 38 | 97.42 118 | 86.96 214 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 16 | 95.92 8 | 99.45 43 | 99.32 26 |
|
Gipuma |  | | 95.31 78 | 95.80 64 | 93.81 157 | 97.99 91 | 90.91 73 | 96.42 39 | 97.95 78 | 96.69 17 | 91.78 254 | 98.85 12 | 91.77 121 | 95.49 328 | 91.72 111 | 99.08 97 | 95.02 292 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MSP-MVS | | | 95.34 75 | 94.63 107 | 97.48 14 | 98.67 29 | 94.05 23 | 96.41 40 | 98.18 36 | 91.26 123 | 95.12 146 | 95.15 204 | 86.60 214 | 99.50 19 | 93.43 59 | 96.81 262 | 98.89 71 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SR-MVS-dyc-post | | | 96.84 8 | 96.60 25 | 97.56 10 | 98.07 79 | 95.27 8 | 96.37 41 | 98.12 46 | 95.66 33 | 97.00 58 | 97.03 96 | 94.85 52 | 99.42 31 | 93.49 48 | 98.84 127 | 98.00 153 |
|
RE-MVS-def | | | | 96.66 20 | | 98.07 79 | 95.27 8 | 96.37 41 | 98.12 46 | 95.66 33 | 97.00 58 | 97.03 96 | 95.40 27 | | 93.49 48 | 98.84 127 | 98.00 153 |
|
TSAR-MVS + MP. | | | 94.96 89 | 94.75 99 | 95.57 83 | 98.86 21 | 88.69 109 | 96.37 41 | 96.81 169 | 85.23 238 | 94.75 163 | 97.12 91 | 91.85 119 | 99.40 45 | 93.45 54 | 98.33 182 | 98.62 106 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 144 | 98.56 38 | 85.33 181 | 96.33 44 | 98.30 23 | 94.66 40 | 98.72 8 | 98.30 30 | 97.51 5 | 98.00 234 | 94.87 14 | 99.59 27 | 98.86 74 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
region2R | | | 96.41 37 | 96.09 48 | 97.38 23 | 98.62 32 | 93.81 36 | 96.32 45 | 97.96 76 | 92.26 87 | 95.28 139 | 96.57 129 | 95.02 47 | 99.41 38 | 93.63 42 | 99.11 96 | 98.94 63 |
|
APD-MVS_3200maxsize | | | 96.82 10 | 96.65 21 | 97.32 25 | 97.95 92 | 93.82 34 | 96.31 46 | 98.25 27 | 95.51 35 | 96.99 60 | 97.05 95 | 95.63 21 | 99.39 50 | 93.31 64 | 98.88 122 | 98.75 86 |
|
CP-MVSNet | | | 96.19 46 | 96.80 17 | 94.38 137 | 98.99 14 | 83.82 200 | 96.31 46 | 97.53 112 | 97.60 7 | 98.34 19 | 97.52 63 | 91.98 117 | 99.63 6 | 93.08 76 | 99.81 9 | 99.70 3 |
|
HFP-MVS | | | 96.39 39 | 96.17 44 | 97.04 31 | 98.51 47 | 93.37 40 | 96.30 48 | 97.98 72 | 92.35 84 | 95.63 122 | 96.47 132 | 95.37 28 | 99.27 77 | 93.78 38 | 99.14 92 | 98.48 117 |
|
ACMMPR | | | 96.46 32 | 96.14 45 | 97.41 21 | 98.60 35 | 93.82 34 | 96.30 48 | 97.96 76 | 92.35 84 | 95.57 125 | 96.61 127 | 94.93 51 | 99.41 38 | 93.78 38 | 99.15 91 | 99.00 52 |
|
3Dnovator+ | | 92.74 2 | 95.86 57 | 95.77 65 | 96.13 55 | 96.81 156 | 90.79 76 | 96.30 48 | 97.82 89 | 96.13 25 | 94.74 164 | 97.23 85 | 91.33 132 | 99.16 87 | 93.25 68 | 98.30 187 | 98.46 119 |
|
MIMVSNet1 | | | 95.52 67 | 95.45 74 | 95.72 77 | 99.14 5 | 89.02 103 | 96.23 51 | 96.87 165 | 93.73 61 | 97.87 27 | 98.49 24 | 90.73 150 | 99.05 104 | 86.43 226 | 99.60 25 | 99.10 45 |
|
test2506 | | | 85.42 299 | 84.57 301 | 87.96 309 | 97.81 97 | 66.53 361 | 96.14 52 | 56.35 378 | 89.04 171 | 93.55 198 | 98.10 35 | 42.88 380 | 98.68 171 | 88.09 196 | 99.18 87 | 98.67 96 |
|
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 81 | 94.69 11 | 96.13 53 | 98.07 56 | 95.17 37 | 96.82 67 | 96.73 119 | 95.09 44 | 99.43 30 | 92.99 79 | 98.71 144 | 98.50 115 |
|
MP-MVS |  | | 96.14 47 | 95.68 67 | 97.51 13 | 98.81 25 | 94.06 21 | 96.10 54 | 97.78 95 | 92.73 74 | 93.48 199 | 96.72 120 | 94.23 66 | 99.42 31 | 91.99 101 | 99.29 68 | 99.05 49 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 96.42 36 | 96.20 41 | 97.07 30 | 98.80 27 | 92.79 48 | 96.08 55 | 98.16 43 | 91.74 111 | 95.34 135 | 96.36 145 | 95.68 19 | 99.44 26 | 94.41 21 | 99.28 73 | 98.97 60 |
|
test1172 | | | 96.79 15 | 96.52 27 | 97.60 9 | 98.03 85 | 94.87 10 | 96.07 56 | 98.06 59 | 95.76 32 | 96.89 63 | 96.85 107 | 94.85 52 | 99.42 31 | 93.35 63 | 98.81 135 | 98.53 113 |
|
GBi-Net | | | 93.21 147 | 92.96 152 | 93.97 147 | 95.40 243 | 84.29 190 | 95.99 57 | 96.56 184 | 88.63 181 | 95.10 147 | 98.53 21 | 81.31 258 | 98.98 115 | 86.74 217 | 98.38 175 | 98.65 98 |
|
test1 | | | 93.21 147 | 92.96 152 | 93.97 147 | 95.40 243 | 84.29 190 | 95.99 57 | 96.56 184 | 88.63 181 | 95.10 147 | 98.53 21 | 81.31 258 | 98.98 115 | 86.74 217 | 98.38 175 | 98.65 98 |
|
FMVSNet1 | | | 94.84 96 | 95.13 87 | 93.97 147 | 97.60 114 | 84.29 190 | 95.99 57 | 96.56 184 | 92.38 81 | 97.03 57 | 98.53 21 | 90.12 161 | 98.98 115 | 88.78 182 | 99.16 90 | 98.65 98 |
|
RPSCF | | | 95.58 66 | 94.89 93 | 97.62 8 | 97.58 115 | 96.30 4 | 95.97 60 | 97.53 112 | 92.42 80 | 93.41 200 | 97.78 50 | 91.21 138 | 97.77 255 | 91.06 123 | 97.06 252 | 98.80 81 |
|
SixPastTwentyTwo | | | 94.91 90 | 95.21 84 | 93.98 146 | 98.52 46 | 83.19 207 | 95.93 61 | 94.84 244 | 94.86 39 | 98.49 15 | 98.74 16 | 81.45 256 | 99.60 8 | 94.69 16 | 99.39 54 | 99.15 37 |
|
ambc | | | | | 92.98 179 | 96.88 150 | 83.01 211 | 95.92 62 | 96.38 194 | | 96.41 80 | 97.48 66 | 88.26 181 | 97.80 251 | 89.96 156 | 98.93 119 | 98.12 143 |
|
FC-MVSNet-test | | | 95.32 76 | 95.88 58 | 93.62 160 | 98.49 55 | 81.77 221 | 95.90 63 | 98.32 20 | 93.93 57 | 97.53 39 | 97.56 60 | 88.48 178 | 99.40 45 | 92.91 81 | 99.83 6 | 99.68 4 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 16 | 94.05 23 | 95.88 64 | 97.62 102 | 94.46 45 | 96.29 89 | 96.94 100 | 93.56 74 | 99.37 58 | 94.29 24 | 99.42 47 | 98.99 54 |
|
CPTT-MVS | | | 94.74 100 | 94.12 124 | 96.60 45 | 98.15 74 | 93.01 44 | 95.84 65 | 97.66 100 | 89.21 170 | 93.28 206 | 95.46 193 | 88.89 175 | 98.98 115 | 89.80 158 | 98.82 133 | 97.80 180 |
|
ab-mvs | | | 92.40 174 | 92.62 164 | 91.74 222 | 97.02 141 | 81.65 223 | 95.84 65 | 95.50 229 | 86.95 215 | 92.95 220 | 97.56 60 | 90.70 151 | 97.50 268 | 79.63 296 | 97.43 243 | 96.06 260 |
|
nrg030 | | | 96.32 41 | 96.55 26 | 95.62 80 | 97.83 96 | 88.55 115 | 95.77 67 | 98.29 26 | 92.68 75 | 98.03 26 | 97.91 46 | 95.13 40 | 98.95 122 | 93.85 36 | 99.49 38 | 99.36 24 |
|
ECVR-MVS |  | | 90.12 227 | 90.16 219 | 90.00 277 | 97.81 97 | 72.68 335 | 95.76 68 | 78.54 371 | 89.04 171 | 95.36 134 | 98.10 35 | 70.51 315 | 98.64 177 | 87.10 213 | 99.18 87 | 98.67 96 |
|
SteuartSystems-ACMMP | | | 96.40 38 | 96.30 36 | 96.71 42 | 98.63 31 | 91.96 57 | 95.70 69 | 98.01 69 | 93.34 69 | 96.64 74 | 96.57 129 | 94.99 49 | 99.36 60 | 93.48 51 | 99.34 58 | 98.82 79 |
Skip Steuart: Steuart Systems R&D Blog. |
OpenMVS |  | 89.45 8 | 92.27 179 | 92.13 173 | 92.68 192 | 94.53 272 | 84.10 196 | 95.70 69 | 97.03 150 | 82.44 273 | 91.14 264 | 96.42 136 | 88.47 179 | 98.38 202 | 85.95 231 | 97.47 242 | 95.55 282 |
|
GST-MVS | | | 96.24 44 | 95.99 54 | 97.00 34 | 98.65 30 | 92.71 49 | 95.69 71 | 98.01 69 | 92.08 92 | 95.74 118 | 96.28 150 | 95.22 37 | 99.42 31 | 93.17 71 | 99.06 98 | 98.88 73 |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 16 | 95.47 86 | 98.54 43 | 89.06 102 | 95.65 72 | 98.61 10 | 96.10 26 | 98.16 23 | 97.52 63 | 96.90 7 | 98.62 178 | 90.30 142 | 99.60 25 | 98.72 92 |
|
test1111 | | | 90.39 217 | 90.61 211 | 89.74 280 | 98.04 84 | 71.50 341 | 95.59 73 | 79.72 370 | 89.41 161 | 95.94 109 | 98.14 33 | 70.79 314 | 98.81 144 | 88.52 188 | 99.32 62 | 98.90 70 |
|
canonicalmvs | | | 94.59 105 | 94.69 102 | 94.30 138 | 95.60 238 | 87.03 145 | 95.59 73 | 98.24 30 | 91.56 117 | 95.21 145 | 92.04 300 | 94.95 50 | 98.66 174 | 91.45 119 | 97.57 239 | 97.20 219 |
|
SF-MVS | | | 95.88 56 | 95.88 58 | 95.87 69 | 98.12 75 | 89.65 91 | 95.58 75 | 98.56 11 | 91.84 103 | 96.36 83 | 96.68 122 | 94.37 64 | 99.32 70 | 92.41 93 | 99.05 103 | 98.64 102 |
|
PS-MVSNAJss | | | 96.01 51 | 96.04 52 | 95.89 68 | 98.82 24 | 88.51 117 | 95.57 76 | 97.88 82 | 88.72 179 | 98.81 6 | 98.86 10 | 90.77 146 | 99.60 8 | 95.43 11 | 99.53 35 | 99.57 13 |
|
test_part1 | | | 94.39 112 | 94.55 109 | 93.92 151 | 96.14 202 | 82.86 212 | 95.54 77 | 98.09 52 | 95.36 36 | 98.27 20 | 98.36 28 | 75.91 297 | 99.44 26 | 93.41 60 | 99.84 3 | 99.47 17 |
|
PMVS |  | 87.21 14 | 94.97 88 | 95.33 79 | 93.91 152 | 98.97 15 | 97.16 2 | 95.54 77 | 95.85 214 | 96.47 21 | 93.40 202 | 97.46 67 | 95.31 33 | 95.47 329 | 86.18 230 | 98.78 139 | 89.11 356 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
VDDNet | | | 94.03 127 | 94.27 121 | 93.31 172 | 98.87 20 | 82.36 216 | 95.51 79 | 91.78 305 | 97.19 12 | 96.32 86 | 98.60 18 | 84.24 231 | 98.75 156 | 87.09 214 | 98.83 132 | 98.81 80 |
|
pm-mvs1 | | | 95.43 71 | 95.94 55 | 93.93 150 | 98.38 59 | 85.08 184 | 95.46 80 | 97.12 146 | 91.84 103 | 97.28 48 | 98.46 25 | 95.30 34 | 97.71 260 | 90.17 149 | 99.42 47 | 98.99 54 |
|
Vis-MVSNet |  | | 95.50 68 | 95.48 73 | 95.56 84 | 98.11 76 | 89.40 98 | 95.35 81 | 98.22 32 | 92.36 83 | 94.11 177 | 98.07 37 | 92.02 114 | 99.44 26 | 93.38 62 | 97.67 235 | 97.85 175 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test0726 | | | | | | 98.51 47 | 86.69 153 | 95.34 82 | 98.18 36 | 91.85 100 | 97.63 32 | 97.37 72 | 95.58 22 | | | | |
|
FIs | | | 94.90 91 | 95.35 77 | 93.55 163 | 98.28 65 | 81.76 222 | 95.33 83 | 98.14 44 | 93.05 73 | 97.07 53 | 97.18 88 | 87.65 192 | 99.29 73 | 91.72 111 | 99.69 15 | 99.61 11 |
|
PGM-MVS | | | 96.32 41 | 95.94 55 | 97.43 19 | 98.59 37 | 93.84 33 | 95.33 83 | 98.30 23 | 91.40 120 | 95.76 116 | 96.87 106 | 95.26 35 | 99.45 25 | 92.77 82 | 99.21 82 | 99.00 52 |
|
LPG-MVS_test | | | 96.38 40 | 96.23 39 | 96.84 40 | 98.36 62 | 92.13 54 | 95.33 83 | 98.25 27 | 91.78 107 | 97.07 53 | 97.22 86 | 96.38 13 | 99.28 75 | 92.07 99 | 99.59 27 | 99.11 42 |
|
AllTest | | | 94.88 93 | 94.51 112 | 96.00 58 | 98.02 86 | 92.17 52 | 95.26 86 | 98.43 13 | 90.48 141 | 95.04 152 | 96.74 117 | 92.54 105 | 97.86 246 | 85.11 241 | 98.98 111 | 97.98 157 |
|
SED-MVS | | | 96.00 52 | 96.41 32 | 94.76 114 | 98.51 47 | 86.97 146 | 95.21 87 | 98.10 49 | 91.95 94 | 97.63 32 | 97.25 83 | 96.48 11 | 99.35 61 | 93.29 65 | 99.29 68 | 97.95 161 |
|
OPU-MVS | | | | | 95.15 101 | 96.84 153 | 89.43 96 | 95.21 87 | | | | 95.66 181 | 93.12 88 | 98.06 227 | 86.28 229 | 98.61 153 | 97.95 161 |
|
DVP-MVS |  | | 95.82 58 | 96.18 42 | 94.72 116 | 98.51 47 | 86.69 153 | 95.20 89 | 97.00 152 | 91.85 100 | 97.40 46 | 97.35 78 | 95.58 22 | 99.34 64 | 93.44 57 | 99.31 63 | 98.13 142 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 94.88 109 | 98.55 41 | 86.72 152 | 95.20 89 | 98.22 32 | | | | | 99.38 56 | 93.44 57 | 99.31 63 | 98.53 113 |
|
Anonymous20240529 | | | 95.50 68 | 95.83 62 | 94.50 129 | 97.33 129 | 85.93 173 | 95.19 91 | 96.77 173 | 96.64 19 | 97.61 35 | 98.05 38 | 93.23 84 | 98.79 147 | 88.60 187 | 99.04 108 | 98.78 83 |
|
#test# | | | 95.89 54 | 95.51 72 | 97.04 31 | 98.51 47 | 93.37 40 | 95.14 92 | 97.98 72 | 89.34 164 | 95.63 122 | 96.47 132 | 95.37 28 | 99.27 77 | 91.99 101 | 99.14 92 | 98.48 117 |
|
SMA-MVS |  | | 95.77 59 | 95.54 71 | 96.47 51 | 98.27 66 | 91.19 67 | 95.09 93 | 97.79 94 | 86.48 218 | 97.42 45 | 97.51 65 | 94.47 63 | 99.29 73 | 93.55 46 | 99.29 68 | 98.93 64 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NR-MVSNet | | | 95.28 79 | 95.28 82 | 95.26 96 | 97.75 101 | 87.21 140 | 95.08 94 | 97.37 120 | 93.92 59 | 97.65 31 | 95.90 166 | 90.10 164 | 99.33 69 | 90.11 151 | 99.66 21 | 99.26 29 |
|
TransMVSNet (Re) | | | 95.27 81 | 96.04 52 | 92.97 180 | 98.37 61 | 81.92 220 | 95.07 95 | 96.76 174 | 93.97 56 | 97.77 28 | 98.57 19 | 95.72 18 | 97.90 240 | 88.89 180 | 99.23 79 | 99.08 46 |
|
UGNet | | | 93.08 150 | 92.50 167 | 94.79 113 | 93.87 287 | 87.99 127 | 95.07 95 | 94.26 260 | 90.64 138 | 87.33 324 | 97.67 55 | 86.89 209 | 98.49 193 | 88.10 195 | 98.71 144 | 97.91 167 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tttt0517 | | | 89.81 238 | 88.90 244 | 92.55 199 | 97.00 142 | 79.73 255 | 95.03 97 | 83.65 359 | 89.88 153 | 95.30 137 | 94.79 225 | 53.64 367 | 99.39 50 | 91.99 101 | 98.79 138 | 98.54 112 |
|
LFMVS | | | 91.33 198 | 91.16 200 | 91.82 219 | 96.27 191 | 79.36 261 | 95.01 98 | 85.61 347 | 96.04 29 | 94.82 160 | 97.06 94 | 72.03 311 | 98.46 199 | 84.96 244 | 98.70 146 | 97.65 191 |
|
CSCG | | | 94.69 102 | 94.75 99 | 94.52 128 | 97.55 117 | 87.87 129 | 95.01 98 | 97.57 108 | 92.68 75 | 96.20 97 | 93.44 267 | 91.92 118 | 98.78 151 | 89.11 175 | 99.24 78 | 96.92 227 |
|
GG-mvs-BLEND | | | | | 83.24 343 | 85.06 372 | 71.03 343 | 94.99 100 | 65.55 376 | | 74.09 370 | 75.51 370 | 44.57 375 | 94.46 342 | 59.57 368 | 87.54 358 | 84.24 363 |
|
EU-MVSNet | | | 87.39 281 | 86.71 284 | 89.44 284 | 93.40 292 | 76.11 307 | 94.93 101 | 90.00 316 | 57.17 369 | 95.71 120 | 97.37 72 | 64.77 339 | 97.68 262 | 92.67 87 | 94.37 314 | 94.52 303 |
|
KD-MVS_self_test | | | 94.10 125 | 94.73 101 | 92.19 208 | 97.66 111 | 79.49 259 | 94.86 102 | 97.12 146 | 89.59 159 | 96.87 64 | 97.65 56 | 90.40 158 | 98.34 206 | 89.08 176 | 99.35 57 | 98.75 86 |
|
MTMP | | | | | | | | 94.82 103 | 54.62 379 | | | | | | | | |
|
PHI-MVS | | | 94.34 116 | 93.80 129 | 95.95 60 | 95.65 234 | 91.67 63 | 94.82 103 | 97.86 83 | 87.86 197 | 93.04 217 | 94.16 245 | 91.58 126 | 98.78 151 | 90.27 144 | 98.96 117 | 97.41 206 |
|
testtj | | | 94.81 98 | 94.42 113 | 96.01 57 | 97.23 131 | 90.51 80 | 94.77 105 | 97.85 86 | 91.29 122 | 94.92 157 | 95.66 181 | 91.71 123 | 99.40 45 | 88.07 197 | 98.25 193 | 98.11 144 |
|
gg-mvs-nofinetune | | | 82.10 321 | 81.02 323 | 85.34 331 | 87.46 363 | 71.04 342 | 94.74 106 | 67.56 375 | 96.44 22 | 79.43 365 | 98.99 6 | 45.24 374 | 96.15 315 | 67.18 360 | 92.17 342 | 88.85 357 |
|
ACMM | | 88.83 9 | 96.30 43 | 96.07 50 | 96.97 35 | 98.39 58 | 92.95 46 | 94.74 106 | 98.03 65 | 90.82 133 | 97.15 51 | 96.85 107 | 96.25 15 | 99.00 114 | 93.10 74 | 99.33 60 | 98.95 62 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SD-MVS | | | 95.19 82 | 95.73 66 | 93.55 163 | 96.62 164 | 88.88 108 | 94.67 108 | 98.05 60 | 91.26 123 | 97.25 50 | 96.40 138 | 95.42 26 | 94.36 345 | 92.72 86 | 99.19 85 | 97.40 209 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
API-MVS | | | 91.52 193 | 91.61 185 | 91.26 237 | 94.16 278 | 86.26 168 | 94.66 109 | 94.82 245 | 91.17 126 | 92.13 248 | 91.08 314 | 90.03 167 | 97.06 288 | 79.09 303 | 97.35 246 | 90.45 354 |
|
v10 | | | 94.68 103 | 95.27 83 | 92.90 185 | 96.57 167 | 80.15 240 | 94.65 110 | 97.57 108 | 90.68 137 | 97.43 43 | 98.00 41 | 88.18 182 | 99.15 88 | 94.84 15 | 99.55 34 | 99.41 20 |
|
v8 | | | 94.65 104 | 95.29 81 | 92.74 190 | 96.65 160 | 79.77 254 | 94.59 111 | 97.17 141 | 91.86 99 | 97.47 42 | 97.93 44 | 88.16 183 | 99.08 99 | 94.32 22 | 99.47 39 | 99.38 22 |
|
APD-MVS |  | | 95.00 87 | 94.69 102 | 95.93 63 | 97.38 126 | 90.88 74 | 94.59 111 | 97.81 90 | 89.22 169 | 95.46 130 | 96.17 158 | 93.42 79 | 99.34 64 | 89.30 167 | 98.87 125 | 97.56 197 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
VPA-MVSNet | | | 95.14 84 | 95.67 68 | 93.58 162 | 97.76 100 | 83.15 208 | 94.58 113 | 97.58 107 | 93.39 68 | 97.05 56 | 98.04 39 | 93.25 83 | 98.51 192 | 89.75 161 | 99.59 27 | 99.08 46 |
|
ACMMP_NAP | | | 96.21 45 | 96.12 47 | 96.49 50 | 98.90 18 | 91.42 64 | 94.57 114 | 98.03 65 | 90.42 144 | 96.37 82 | 97.35 78 | 95.68 19 | 99.25 79 | 94.44 20 | 99.34 58 | 98.80 81 |
|
HQP_MVS | | | 94.26 120 | 93.93 126 | 95.23 98 | 97.71 105 | 88.12 123 | 94.56 115 | 97.81 90 | 91.74 111 | 93.31 203 | 95.59 183 | 86.93 206 | 98.95 122 | 89.26 171 | 98.51 164 | 98.60 109 |
|
plane_prior2 | | | | | | | | 94.56 115 | | 91.74 111 | | | | | | | |
|
tfpnnormal | | | 94.27 119 | 94.87 94 | 92.48 202 | 97.71 105 | 80.88 235 | 94.55 117 | 95.41 231 | 93.70 62 | 96.67 73 | 97.72 53 | 91.40 130 | 98.18 220 | 87.45 207 | 99.18 87 | 98.36 124 |
|
CS-MVS-test | | | 95.15 83 | 94.81 95 | 96.19 52 | 96.89 149 | 91.14 68 | 94.55 117 | 98.85 6 | 94.31 48 | 92.43 235 | 91.91 301 | 91.79 120 | 99.49 22 | 93.48 51 | 99.06 98 | 97.93 163 |
|
XVG-ACMP-BASELINE | | | 95.68 63 | 95.34 78 | 96.69 43 | 98.40 57 | 93.04 43 | 94.54 119 | 98.05 60 | 90.45 143 | 96.31 87 | 96.76 114 | 92.91 95 | 98.72 161 | 91.19 122 | 99.42 47 | 98.32 126 |
|
DP-MVS | | | 95.62 64 | 95.84 61 | 94.97 106 | 97.16 136 | 88.62 112 | 94.54 119 | 97.64 101 | 96.94 15 | 96.58 77 | 97.32 81 | 93.07 91 | 98.72 161 | 90.45 134 | 98.84 127 | 97.57 195 |
|
MIMVSNet | | | 87.13 289 | 86.54 287 | 88.89 294 | 96.05 209 | 76.11 307 | 94.39 121 | 88.51 321 | 81.37 279 | 88.27 313 | 96.75 116 | 72.38 308 | 95.52 326 | 65.71 363 | 95.47 291 | 95.03 291 |
|
K. test v3 | | | 93.37 139 | 93.27 149 | 93.66 159 | 98.05 81 | 82.62 214 | 94.35 122 | 86.62 336 | 96.05 28 | 97.51 40 | 98.85 12 | 76.59 295 | 99.65 3 | 93.21 69 | 98.20 201 | 98.73 91 |
|
Vis-MVSNet (Re-imp) | | | 90.42 215 | 90.16 219 | 91.20 241 | 97.66 111 | 77.32 292 | 94.33 123 | 87.66 329 | 91.20 125 | 92.99 218 | 95.13 206 | 75.40 299 | 98.28 209 | 77.86 308 | 99.19 85 | 97.99 156 |
|
ANet_high | | | 94.83 97 | 96.28 37 | 90.47 262 | 96.65 160 | 73.16 330 | 94.33 123 | 98.74 9 | 96.39 23 | 98.09 25 | 98.93 8 | 93.37 80 | 98.70 167 | 90.38 137 | 99.68 18 | 99.53 14 |
|
ACMP | | 88.15 13 | 95.71 62 | 95.43 76 | 96.54 47 | 98.17 73 | 91.73 62 | 94.24 125 | 98.08 53 | 89.46 160 | 96.61 76 | 96.47 132 | 95.85 17 | 99.12 94 | 90.45 134 | 99.56 33 | 98.77 85 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MAR-MVS | | | 90.32 222 | 88.87 245 | 94.66 119 | 94.82 257 | 91.85 59 | 94.22 126 | 94.75 248 | 80.91 280 | 87.52 322 | 88.07 346 | 86.63 213 | 97.87 245 | 76.67 319 | 96.21 275 | 94.25 309 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
FMVSNet2 | | | 92.78 162 | 92.73 161 | 92.95 182 | 95.40 243 | 81.98 219 | 94.18 127 | 95.53 228 | 88.63 181 | 96.05 104 | 97.37 72 | 81.31 258 | 98.81 144 | 87.38 210 | 98.67 150 | 98.06 145 |
|
Anonymous20240521 | | | 92.86 160 | 93.57 139 | 90.74 256 | 96.57 167 | 75.50 314 | 94.15 128 | 95.60 220 | 89.38 162 | 95.90 112 | 97.90 48 | 80.39 265 | 97.96 238 | 92.60 89 | 99.68 18 | 98.75 86 |
|
GeoE | | | 94.55 107 | 94.68 104 | 94.15 141 | 97.23 131 | 85.11 183 | 94.14 129 | 97.34 128 | 88.71 180 | 95.26 140 | 95.50 191 | 94.65 57 | 99.12 94 | 90.94 127 | 98.40 170 | 98.23 133 |
|
9.14 | | | | 94.81 95 | | 97.49 120 | | 94.11 130 | 98.37 17 | 87.56 206 | 95.38 132 | 96.03 162 | 94.66 56 | 99.08 99 | 90.70 131 | 98.97 115 | |
|
HPM-MVS++ |  | | 95.02 86 | 94.39 114 | 96.91 38 | 97.88 94 | 93.58 38 | 94.09 131 | 96.99 154 | 91.05 128 | 92.40 238 | 95.22 203 | 91.03 144 | 99.25 79 | 92.11 96 | 98.69 147 | 97.90 169 |
|
ETH3D-3000-0.1 | | | 94.86 94 | 94.55 109 | 95.81 70 | 97.61 113 | 89.72 89 | 94.05 132 | 98.37 17 | 88.09 192 | 95.06 151 | 95.85 168 | 92.58 103 | 99.10 98 | 90.33 141 | 98.99 110 | 98.62 106 |
|
HY-MVS | | 82.50 18 | 86.81 293 | 85.93 294 | 89.47 283 | 93.63 290 | 77.93 282 | 94.02 133 | 91.58 307 | 75.68 317 | 83.64 345 | 93.64 261 | 77.40 284 | 97.42 274 | 71.70 346 | 92.07 343 | 93.05 334 |
|
Effi-MVS+-dtu | | | 93.90 130 | 92.60 165 | 97.77 4 | 94.74 263 | 96.67 3 | 94.00 134 | 95.41 231 | 89.94 150 | 91.93 252 | 92.13 298 | 90.12 161 | 98.97 119 | 87.68 204 | 97.48 241 | 97.67 190 |
|
Effi-MVS+ | | | 92.79 161 | 92.74 159 | 92.94 183 | 95.10 251 | 83.30 205 | 94.00 134 | 97.53 112 | 91.36 121 | 89.35 295 | 90.65 323 | 94.01 69 | 98.66 174 | 87.40 209 | 95.30 296 | 96.88 230 |
|
VDD-MVS | | | 94.37 113 | 94.37 115 | 94.40 136 | 97.49 120 | 86.07 171 | 93.97 136 | 93.28 275 | 94.49 44 | 96.24 93 | 97.78 50 | 87.99 188 | 98.79 147 | 88.92 178 | 99.14 92 | 98.34 125 |
|
h-mvs33 | | | 92.89 157 | 91.99 176 | 95.58 82 | 96.97 143 | 90.55 78 | 93.94 137 | 94.01 266 | 89.23 167 | 93.95 185 | 96.19 155 | 76.88 292 | 99.14 90 | 91.02 124 | 95.71 285 | 97.04 223 |
|
EPNet | | | 89.80 239 | 88.25 255 | 94.45 134 | 83.91 374 | 86.18 169 | 93.87 138 | 87.07 334 | 91.16 127 | 80.64 362 | 94.72 227 | 78.83 272 | 98.89 128 | 85.17 236 | 98.89 120 | 98.28 130 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepC-MVS | | 91.39 4 | 95.43 71 | 95.33 79 | 95.71 78 | 97.67 110 | 90.17 82 | 93.86 139 | 98.02 67 | 87.35 207 | 96.22 95 | 97.99 42 | 94.48 62 | 99.05 104 | 92.73 85 | 99.68 18 | 97.93 163 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LCM-MVSNet-Re | | | 94.20 123 | 94.58 108 | 93.04 177 | 95.91 220 | 83.13 209 | 93.79 140 | 99.19 2 | 92.00 93 | 98.84 5 | 98.04 39 | 93.64 72 | 99.02 110 | 81.28 278 | 98.54 160 | 96.96 226 |
|
TranMVSNet+NR-MVSNet | | | 96.07 50 | 96.26 38 | 95.50 85 | 98.26 67 | 87.69 132 | 93.75 141 | 97.86 83 | 95.96 30 | 97.48 41 | 97.14 90 | 95.33 32 | 99.44 26 | 90.79 129 | 99.76 11 | 99.38 22 |
|
PAPM_NR | | | 91.03 202 | 90.81 206 | 91.68 226 | 96.73 158 | 81.10 232 | 93.72 142 | 96.35 195 | 88.19 190 | 88.77 305 | 92.12 299 | 85.09 227 | 97.25 281 | 82.40 268 | 93.90 320 | 96.68 237 |
|
zzz-MVS | | | 96.47 31 | 96.14 45 | 97.47 15 | 98.95 16 | 94.05 23 | 93.69 143 | 97.62 102 | 94.46 45 | 96.29 89 | 96.94 100 | 93.56 74 | 99.37 58 | 94.29 24 | 99.42 47 | 98.99 54 |
|
baseline | | | 94.26 120 | 94.80 97 | 92.64 193 | 96.08 207 | 80.99 233 | 93.69 143 | 98.04 64 | 90.80 134 | 94.89 158 | 96.32 147 | 93.19 85 | 98.48 197 | 91.68 113 | 98.51 164 | 98.43 121 |
|
MVS_0304 | | | 90.96 203 | 90.15 222 | 93.37 169 | 93.17 296 | 87.06 143 | 93.62 145 | 92.43 294 | 89.60 158 | 82.25 353 | 95.50 191 | 82.56 247 | 97.83 249 | 84.41 251 | 97.83 227 | 95.22 286 |
|
F-COLMAP | | | 92.28 178 | 91.06 201 | 95.95 60 | 97.52 118 | 91.90 58 | 93.53 146 | 97.18 140 | 83.98 255 | 88.70 307 | 94.04 248 | 88.41 180 | 98.55 189 | 80.17 289 | 95.99 279 | 97.39 210 |
|
FMVSNet5 | | | 87.82 271 | 86.56 286 | 91.62 227 | 92.31 310 | 79.81 253 | 93.49 147 | 94.81 247 | 83.26 260 | 91.36 258 | 96.93 102 | 52.77 369 | 97.49 270 | 76.07 323 | 98.03 216 | 97.55 198 |
|
DPE-MVS |  | | 95.89 54 | 95.88 58 | 95.92 65 | 97.93 93 | 89.83 88 | 93.46 148 | 98.30 23 | 92.37 82 | 97.75 29 | 96.95 99 | 95.14 39 | 99.51 18 | 91.74 110 | 99.28 73 | 98.41 123 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
alignmvs | | | 93.26 144 | 92.85 155 | 94.50 129 | 95.70 230 | 87.45 134 | 93.45 149 | 95.76 216 | 91.58 116 | 95.25 142 | 92.42 294 | 81.96 253 | 98.72 161 | 91.61 114 | 97.87 225 | 97.33 214 |
|
114514_t | | | 90.51 212 | 89.80 228 | 92.63 195 | 98.00 88 | 82.24 217 | 93.40 150 | 97.29 133 | 65.84 360 | 89.40 294 | 94.80 224 | 86.99 204 | 98.75 156 | 83.88 254 | 98.61 153 | 96.89 229 |
|
DeepC-MVS_fast | | 89.96 7 | 93.73 132 | 93.44 143 | 94.60 124 | 96.14 202 | 87.90 128 | 93.36 151 | 97.14 143 | 85.53 235 | 93.90 188 | 95.45 194 | 91.30 134 | 98.59 183 | 89.51 164 | 98.62 152 | 97.31 215 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS-pluss | | | 96.08 49 | 95.92 57 | 96.57 46 | 99.06 10 | 91.21 66 | 93.25 152 | 98.32 20 | 87.89 196 | 96.86 65 | 97.38 71 | 95.55 24 | 99.39 50 | 95.47 10 | 99.47 39 | 99.11 42 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
test_0402 | | | 95.73 60 | 96.22 40 | 94.26 139 | 98.19 72 | 85.77 176 | 93.24 153 | 97.24 137 | 96.88 16 | 97.69 30 | 97.77 52 | 94.12 68 | 99.13 92 | 91.54 118 | 99.29 68 | 97.88 171 |
|
MSLP-MVS++ | | | 93.25 146 | 93.88 127 | 91.37 233 | 96.34 185 | 82.81 213 | 93.11 154 | 97.74 96 | 89.37 163 | 94.08 179 | 95.29 202 | 90.40 158 | 96.35 312 | 90.35 139 | 98.25 193 | 94.96 293 |
|
baseline1 | | | 87.62 276 | 87.31 271 | 88.54 300 | 94.71 267 | 74.27 324 | 93.10 155 | 88.20 325 | 86.20 223 | 92.18 247 | 93.04 275 | 73.21 305 | 95.52 326 | 79.32 300 | 85.82 360 | 95.83 270 |
|
plane_prior | | | | | | | 88.12 123 | 93.01 156 | | 88.98 173 | | | | | | 98.06 213 | |
|
thres100view900 | | | 87.35 282 | 86.89 280 | 88.72 297 | 96.14 202 | 73.09 331 | 93.00 157 | 85.31 350 | 92.13 91 | 93.26 208 | 90.96 316 | 63.42 345 | 98.28 209 | 71.27 349 | 96.54 269 | 94.79 296 |
|
Patchmtry | | | 90.11 228 | 89.92 226 | 90.66 258 | 90.35 341 | 77.00 296 | 92.96 158 | 92.81 282 | 90.25 147 | 94.74 164 | 96.93 102 | 67.11 323 | 97.52 267 | 85.17 236 | 98.98 111 | 97.46 202 |
|
LF4IMVS | | | 92.72 164 | 92.02 175 | 94.84 111 | 95.65 234 | 91.99 56 | 92.92 159 | 96.60 181 | 85.08 245 | 92.44 234 | 93.62 262 | 86.80 210 | 96.35 312 | 86.81 216 | 98.25 193 | 96.18 256 |
|
UniMVSNet (Re) | | | 95.32 76 | 95.15 86 | 95.80 72 | 97.79 99 | 88.91 105 | 92.91 160 | 98.07 56 | 93.46 67 | 96.31 87 | 95.97 165 | 90.14 160 | 99.34 64 | 92.11 96 | 99.64 23 | 99.16 36 |
|
TAPA-MVS | | 88.58 10 | 92.49 172 | 91.75 184 | 94.73 115 | 96.50 174 | 89.69 90 | 92.91 160 | 97.68 99 | 78.02 308 | 92.79 223 | 94.10 246 | 90.85 145 | 97.96 238 | 84.76 247 | 98.16 203 | 96.54 238 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
thisisatest0530 | | | 88.69 258 | 87.52 269 | 92.20 207 | 96.33 186 | 79.36 261 | 92.81 162 | 84.01 358 | 86.44 219 | 93.67 194 | 92.68 286 | 53.62 368 | 99.25 79 | 89.65 163 | 98.45 168 | 98.00 153 |
|
EIA-MVS | | | 92.35 176 | 92.03 174 | 93.30 173 | 95.81 225 | 83.97 198 | 92.80 163 | 98.17 40 | 87.71 200 | 89.79 289 | 87.56 347 | 91.17 142 | 99.18 86 | 87.97 199 | 97.27 247 | 96.77 234 |
|
ETH3D cwj APD-0.16 | | | 93.99 128 | 93.38 145 | 95.80 72 | 96.82 154 | 89.92 85 | 92.72 164 | 98.02 67 | 84.73 251 | 93.65 195 | 95.54 190 | 91.68 124 | 99.22 82 | 88.78 182 | 98.49 167 | 98.26 132 |
|
thres600view7 | | | 87.66 274 | 87.10 278 | 89.36 287 | 96.05 209 | 73.17 329 | 92.72 164 | 85.31 350 | 91.89 98 | 93.29 205 | 90.97 315 | 63.42 345 | 98.39 200 | 73.23 337 | 96.99 259 | 96.51 240 |
|
wuyk23d | | | 87.83 270 | 90.79 207 | 78.96 351 | 90.46 340 | 88.63 111 | 92.72 164 | 90.67 313 | 91.65 115 | 98.68 11 | 97.64 57 | 96.06 16 | 77.53 372 | 59.84 367 | 99.41 52 | 70.73 370 |
|
V42 | | | 93.43 138 | 93.58 138 | 92.97 180 | 95.34 247 | 81.22 230 | 92.67 167 | 96.49 189 | 87.25 209 | 96.20 97 | 96.37 144 | 87.32 198 | 98.85 136 | 92.39 95 | 98.21 199 | 98.85 77 |
|
OPM-MVS | | | 95.61 65 | 95.45 74 | 96.08 56 | 98.49 55 | 91.00 71 | 92.65 168 | 97.33 129 | 90.05 149 | 96.77 70 | 96.85 107 | 95.04 45 | 98.56 187 | 92.77 82 | 99.06 98 | 98.70 95 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
DU-MVS | | | 95.28 79 | 95.12 88 | 95.75 76 | 97.75 101 | 88.59 113 | 92.58 169 | 97.81 90 | 93.99 54 | 96.80 68 | 95.90 166 | 90.10 164 | 99.41 38 | 91.60 115 | 99.58 31 | 99.26 29 |
|
FMVSNet3 | | | 90.78 206 | 90.32 218 | 92.16 212 | 93.03 301 | 79.92 249 | 92.54 170 | 94.95 240 | 86.17 225 | 95.10 147 | 96.01 163 | 69.97 317 | 98.75 156 | 86.74 217 | 98.38 175 | 97.82 178 |
|
hse-mvs2 | | | 92.24 180 | 91.20 197 | 95.38 88 | 96.16 200 | 90.65 77 | 92.52 171 | 92.01 303 | 89.23 167 | 93.95 185 | 92.99 277 | 76.88 292 | 98.69 169 | 91.02 124 | 96.03 277 | 96.81 232 |
|
MVS_Test | | | 92.57 171 | 93.29 146 | 90.40 265 | 93.53 291 | 75.85 310 | 92.52 171 | 96.96 155 | 88.73 178 | 92.35 241 | 96.70 121 | 90.77 146 | 98.37 205 | 92.53 90 | 95.49 290 | 96.99 225 |
|
CR-MVSNet | | | 87.89 268 | 87.12 277 | 90.22 270 | 91.01 332 | 78.93 268 | 92.52 171 | 92.81 282 | 73.08 333 | 89.10 296 | 96.93 102 | 67.11 323 | 97.64 263 | 88.80 181 | 92.70 336 | 94.08 310 |
|
RPMNet | | | 90.31 223 | 90.14 223 | 90.81 255 | 91.01 332 | 78.93 268 | 92.52 171 | 98.12 46 | 91.91 97 | 89.10 296 | 96.89 105 | 68.84 318 | 99.41 38 | 90.17 149 | 92.70 336 | 94.08 310 |
|
RRT_MVS | | | 91.36 197 | 90.05 224 | 95.29 95 | 89.21 353 | 88.15 122 | 92.51 175 | 94.89 242 | 86.73 217 | 95.54 126 | 95.68 180 | 61.82 352 | 99.30 72 | 94.91 13 | 99.13 95 | 98.43 121 |
|
XVG-OURS-SEG-HR | | | 95.38 73 | 95.00 90 | 96.51 48 | 98.10 77 | 94.07 20 | 92.46 176 | 98.13 45 | 90.69 136 | 93.75 191 | 96.25 153 | 98.03 2 | 97.02 289 | 92.08 98 | 95.55 288 | 98.45 120 |
|
EI-MVSNet-Vis-set | | | 94.36 114 | 94.28 119 | 94.61 120 | 92.55 308 | 85.98 172 | 92.44 177 | 94.69 251 | 93.70 62 | 96.12 102 | 95.81 172 | 91.24 136 | 98.86 134 | 93.76 41 | 98.22 198 | 98.98 59 |
|
Anonymous202405211 | | | 92.58 169 | 92.50 167 | 92.83 188 | 96.55 169 | 83.22 206 | 92.43 178 | 91.64 306 | 94.10 53 | 95.59 124 | 96.64 125 | 81.88 255 | 97.50 268 | 85.12 240 | 98.52 162 | 97.77 182 |
|
AUN-MVS | | | 90.05 232 | 88.30 253 | 95.32 94 | 96.09 206 | 90.52 79 | 92.42 179 | 92.05 302 | 82.08 276 | 88.45 310 | 92.86 279 | 65.76 333 | 98.69 169 | 88.91 179 | 96.07 276 | 96.75 236 |
|
EI-MVSNet-UG-set | | | 94.35 115 | 94.27 121 | 94.59 125 | 92.46 309 | 85.87 174 | 92.42 179 | 94.69 251 | 93.67 66 | 96.13 101 | 95.84 171 | 91.20 139 | 98.86 134 | 93.78 38 | 98.23 196 | 99.03 50 |
|
Regformer-3 | | | 94.28 118 | 94.23 123 | 94.46 133 | 92.78 306 | 86.28 167 | 92.39 181 | 94.70 250 | 93.69 65 | 95.97 105 | 95.56 188 | 91.34 131 | 98.48 197 | 93.45 54 | 98.14 205 | 98.62 106 |
|
Regformer-4 | | | 94.90 91 | 94.67 105 | 95.59 81 | 92.78 306 | 89.02 103 | 92.39 181 | 95.91 211 | 94.50 43 | 96.41 80 | 95.56 188 | 92.10 113 | 99.01 112 | 94.23 26 | 98.14 205 | 98.74 89 |
|
NCCC | | | 94.08 126 | 93.54 141 | 95.70 79 | 96.49 175 | 89.90 87 | 92.39 181 | 96.91 161 | 90.64 138 | 92.33 244 | 94.60 230 | 90.58 154 | 98.96 120 | 90.21 148 | 97.70 233 | 98.23 133 |
|
casdiffmvs | | | 94.32 117 | 94.80 97 | 92.85 187 | 96.05 209 | 81.44 227 | 92.35 184 | 98.05 60 | 91.53 118 | 95.75 117 | 96.80 111 | 93.35 81 | 98.49 193 | 91.01 126 | 98.32 184 | 98.64 102 |
|
ETV-MVS | | | 92.99 154 | 92.74 159 | 93.72 158 | 95.86 222 | 86.30 166 | 92.33 185 | 97.84 87 | 91.70 114 | 92.81 222 | 86.17 357 | 92.22 110 | 99.19 85 | 88.03 198 | 97.73 229 | 95.66 278 |
|
EI-MVSNet | | | 92.99 154 | 93.26 150 | 92.19 208 | 92.12 316 | 79.21 266 | 92.32 186 | 94.67 253 | 91.77 109 | 95.24 143 | 95.85 168 | 87.14 202 | 98.49 193 | 91.99 101 | 98.26 190 | 98.86 74 |
|
CVMVSNet | | | 85.16 301 | 84.72 299 | 86.48 321 | 92.12 316 | 70.19 346 | 92.32 186 | 88.17 326 | 56.15 370 | 90.64 271 | 95.85 168 | 67.97 321 | 96.69 300 | 88.78 182 | 90.52 351 | 92.56 340 |
|
OMC-MVS | | | 94.22 122 | 93.69 134 | 95.81 70 | 97.25 130 | 91.27 65 | 92.27 188 | 97.40 119 | 87.10 213 | 94.56 168 | 95.42 196 | 93.74 71 | 98.11 225 | 86.62 221 | 98.85 126 | 98.06 145 |
|
PM-MVS | | | 93.33 140 | 92.67 163 | 95.33 91 | 96.58 166 | 94.06 21 | 92.26 189 | 92.18 296 | 85.92 229 | 96.22 95 | 96.61 127 | 85.64 225 | 95.99 321 | 90.35 139 | 98.23 196 | 95.93 265 |
|
UniMVSNet_NR-MVSNet | | | 95.35 74 | 95.21 84 | 95.76 75 | 97.69 108 | 88.59 113 | 92.26 189 | 97.84 87 | 94.91 38 | 96.80 68 | 95.78 176 | 90.42 155 | 99.41 38 | 91.60 115 | 99.58 31 | 99.29 28 |
|
AdaColmap |  | | 91.63 190 | 91.36 193 | 92.47 203 | 95.56 239 | 86.36 164 | 92.24 191 | 96.27 197 | 88.88 177 | 89.90 285 | 92.69 285 | 91.65 125 | 98.32 207 | 77.38 315 | 97.64 236 | 92.72 339 |
|
mvs-test1 | | | 93.07 152 | 91.80 182 | 96.89 39 | 94.74 263 | 95.83 6 | 92.17 192 | 95.41 231 | 89.94 150 | 89.85 286 | 90.59 324 | 90.12 161 | 98.88 129 | 87.68 204 | 95.66 286 | 95.97 263 |
|
PVSNet_Blended_VisFu | | | 91.63 190 | 91.20 197 | 92.94 183 | 97.73 104 | 83.95 199 | 92.14 193 | 97.46 116 | 78.85 303 | 92.35 241 | 94.98 214 | 84.16 232 | 99.08 99 | 86.36 227 | 96.77 264 | 95.79 272 |
|
ETH3 D test6400 | | | 91.91 185 | 91.25 196 | 93.89 153 | 96.59 165 | 84.41 189 | 92.10 194 | 97.72 98 | 78.52 304 | 91.82 253 | 93.78 260 | 88.70 176 | 99.13 92 | 83.61 255 | 98.39 173 | 98.14 140 |
|
Baseline_NR-MVSNet | | | 94.47 111 | 95.09 89 | 92.60 197 | 98.50 54 | 80.82 236 | 92.08 195 | 96.68 177 | 93.82 60 | 96.29 89 | 98.56 20 | 90.10 164 | 97.75 258 | 90.10 153 | 99.66 21 | 99.24 31 |
|
Fast-Effi-MVS+-dtu | | | 92.77 163 | 92.16 171 | 94.58 127 | 94.66 269 | 88.25 120 | 92.05 196 | 96.65 179 | 89.62 157 | 90.08 280 | 91.23 311 | 92.56 104 | 98.60 181 | 86.30 228 | 96.27 274 | 96.90 228 |
|
xxxxxxxxxxxxxcwj | | | 95.03 85 | 94.93 91 | 95.33 91 | 97.46 123 | 88.05 125 | 92.04 197 | 98.42 15 | 87.63 203 | 96.36 83 | 96.68 122 | 94.37 64 | 99.32 70 | 92.41 93 | 99.05 103 | 98.64 102 |
|
save fliter | | | | | | 97.46 123 | 88.05 125 | 92.04 197 | 97.08 148 | 87.63 203 | | | | | | | |
|
PatchT | | | 87.51 278 | 88.17 259 | 85.55 328 | 90.64 335 | 66.91 356 | 92.02 199 | 86.09 340 | 92.20 89 | 89.05 298 | 97.16 89 | 64.15 341 | 96.37 311 | 89.21 174 | 92.98 334 | 93.37 329 |
|
EG-PatchMatch MVS | | | 94.54 109 | 94.67 105 | 94.14 142 | 97.87 95 | 86.50 157 | 92.00 200 | 96.74 175 | 88.16 191 | 96.93 62 | 97.61 58 | 93.04 92 | 97.90 240 | 91.60 115 | 98.12 208 | 98.03 151 |
|
v144192 | | | 93.20 149 | 93.54 141 | 92.16 212 | 96.05 209 | 78.26 279 | 91.95 201 | 97.14 143 | 84.98 247 | 95.96 106 | 96.11 159 | 87.08 203 | 99.04 107 | 93.79 37 | 98.84 127 | 99.17 35 |
|
VNet | | | 92.67 166 | 92.96 152 | 91.79 220 | 96.27 191 | 80.15 240 | 91.95 201 | 94.98 239 | 92.19 90 | 94.52 170 | 96.07 160 | 87.43 196 | 97.39 277 | 84.83 245 | 98.38 175 | 97.83 176 |
|
1314 | | | 86.46 294 | 86.33 291 | 86.87 320 | 91.65 324 | 74.54 319 | 91.94 203 | 94.10 262 | 74.28 325 | 84.78 338 | 87.33 351 | 83.03 239 | 95.00 338 | 78.72 304 | 91.16 349 | 91.06 351 |
|
1121 | | | 90.26 224 | 89.23 234 | 93.34 170 | 97.15 138 | 87.40 135 | 91.94 203 | 94.39 256 | 67.88 355 | 91.02 265 | 94.91 217 | 86.91 208 | 98.59 183 | 81.17 281 | 97.71 232 | 94.02 315 |
|
MVS | | | 84.98 303 | 84.30 303 | 87.01 318 | 91.03 331 | 77.69 288 | 91.94 203 | 94.16 261 | 59.36 368 | 84.23 342 | 87.50 349 | 85.66 223 | 96.80 297 | 71.79 344 | 93.05 333 | 86.54 361 |
|
tfpn200view9 | | | 87.05 290 | 86.52 288 | 88.67 298 | 95.77 226 | 72.94 332 | 91.89 206 | 86.00 342 | 90.84 131 | 92.61 228 | 89.80 328 | 63.93 342 | 98.28 209 | 71.27 349 | 96.54 269 | 94.79 296 |
|
thres400 | | | 87.20 286 | 86.52 288 | 89.24 291 | 95.77 226 | 72.94 332 | 91.89 206 | 86.00 342 | 90.84 131 | 92.61 228 | 89.80 328 | 63.93 342 | 98.28 209 | 71.27 349 | 96.54 269 | 96.51 240 |
|
v1921920 | | | 93.26 144 | 93.61 137 | 92.19 208 | 96.04 213 | 78.31 278 | 91.88 208 | 97.24 137 | 85.17 240 | 96.19 99 | 96.19 155 | 86.76 211 | 99.05 104 | 94.18 28 | 98.84 127 | 99.22 32 |
|
Regformer-1 | | | 94.55 107 | 94.33 117 | 95.19 99 | 92.83 304 | 88.54 116 | 91.87 209 | 95.84 215 | 93.99 54 | 95.95 107 | 95.04 211 | 92.00 115 | 98.79 147 | 93.14 73 | 98.31 185 | 98.23 133 |
|
Regformer-2 | | | 94.86 94 | 94.55 109 | 95.77 74 | 92.83 304 | 89.98 84 | 91.87 209 | 96.40 192 | 94.38 47 | 96.19 99 | 95.04 211 | 92.47 108 | 99.04 107 | 93.49 48 | 98.31 185 | 98.28 130 |
|
XXY-MVS | | | 92.58 169 | 93.16 151 | 90.84 254 | 97.75 101 | 79.84 250 | 91.87 209 | 96.22 202 | 85.94 228 | 95.53 127 | 97.68 54 | 92.69 101 | 94.48 341 | 83.21 259 | 97.51 240 | 98.21 136 |
|
IterMVS-LS | | | 93.78 131 | 94.28 119 | 92.27 205 | 96.27 191 | 79.21 266 | 91.87 209 | 96.78 171 | 91.77 109 | 96.57 78 | 97.07 93 | 87.15 201 | 98.74 159 | 91.99 101 | 99.03 109 | 98.86 74 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1144 | | | 93.50 135 | 93.81 128 | 92.57 198 | 96.28 190 | 79.61 257 | 91.86 213 | 96.96 155 | 86.95 215 | 95.91 111 | 96.32 147 | 87.65 192 | 98.96 120 | 93.51 47 | 98.88 122 | 99.13 39 |
|
v1192 | | | 93.49 136 | 93.78 130 | 92.62 196 | 96.16 200 | 79.62 256 | 91.83 214 | 97.22 139 | 86.07 226 | 96.10 103 | 96.38 143 | 87.22 199 | 99.02 110 | 94.14 29 | 98.88 122 | 99.22 32 |
|
v1240 | | | 93.29 141 | 93.71 133 | 92.06 215 | 96.01 214 | 77.89 284 | 91.81 215 | 97.37 120 | 85.12 243 | 96.69 72 | 96.40 138 | 86.67 212 | 99.07 103 | 94.51 18 | 98.76 141 | 99.22 32 |
|
CNVR-MVS | | | 94.58 106 | 94.29 118 | 95.46 87 | 96.94 145 | 89.35 100 | 91.81 215 | 96.80 170 | 89.66 156 | 93.90 188 | 95.44 195 | 92.80 99 | 98.72 161 | 92.74 84 | 98.52 162 | 98.32 126 |
|
v2v482 | | | 93.29 141 | 93.63 136 | 92.29 204 | 96.35 184 | 78.82 272 | 91.77 217 | 96.28 196 | 88.45 185 | 95.70 121 | 96.26 152 | 86.02 220 | 98.90 126 | 93.02 77 | 98.81 135 | 99.14 38 |
|
RRT_test8_iter05 | | | 88.21 264 | 88.17 259 | 88.33 305 | 91.62 325 | 66.82 360 | 91.73 218 | 96.60 181 | 86.34 221 | 94.14 176 | 95.38 201 | 47.72 373 | 99.11 96 | 91.78 109 | 98.26 190 | 99.06 48 |
|
EPNet_dtu | | | 85.63 298 | 84.37 302 | 89.40 286 | 86.30 368 | 74.33 323 | 91.64 219 | 88.26 323 | 84.84 249 | 72.96 371 | 89.85 326 | 71.27 313 | 97.69 261 | 76.60 320 | 97.62 237 | 96.18 256 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PLC |  | 85.34 15 | 90.40 216 | 88.92 242 | 94.85 110 | 96.53 173 | 90.02 83 | 91.58 220 | 96.48 190 | 80.16 286 | 86.14 330 | 92.18 296 | 85.73 222 | 98.25 214 | 76.87 318 | 94.61 311 | 96.30 251 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VPNet | | | 93.08 150 | 93.76 131 | 91.03 245 | 98.60 35 | 75.83 312 | 91.51 221 | 95.62 219 | 91.84 103 | 95.74 118 | 97.10 92 | 89.31 172 | 98.32 207 | 85.07 243 | 99.06 98 | 98.93 64 |
|
XVG-OURS | | | 94.72 101 | 94.12 124 | 96.50 49 | 98.00 88 | 94.23 18 | 91.48 222 | 98.17 40 | 90.72 135 | 95.30 137 | 96.47 132 | 87.94 189 | 96.98 290 | 91.41 120 | 97.61 238 | 98.30 129 |
|
HQP-NCC | | | | | | 96.36 181 | | 91.37 223 | | 87.16 210 | 88.81 301 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 181 | | 91.37 223 | | 87.16 210 | 88.81 301 | | | | | | |
|
HQP-MVS | | | 92.09 182 | 91.49 190 | 93.88 154 | 96.36 181 | 84.89 185 | 91.37 223 | 97.31 130 | 87.16 210 | 88.81 301 | 93.40 268 | 84.76 228 | 98.60 181 | 86.55 223 | 97.73 229 | 98.14 140 |
|
MCST-MVS | | | 92.91 156 | 92.51 166 | 94.10 143 | 97.52 118 | 85.72 177 | 91.36 226 | 97.13 145 | 80.33 285 | 92.91 221 | 94.24 241 | 91.23 137 | 98.72 161 | 89.99 155 | 97.93 222 | 97.86 173 |
|
v148 | | | 92.87 159 | 93.29 146 | 91.62 227 | 96.25 194 | 77.72 287 | 91.28 227 | 95.05 237 | 89.69 155 | 95.93 110 | 96.04 161 | 87.34 197 | 98.38 202 | 90.05 154 | 97.99 219 | 98.78 83 |
|
tpmvs | | | 84.22 307 | 83.97 306 | 84.94 333 | 87.09 365 | 65.18 364 | 91.21 228 | 88.35 322 | 82.87 268 | 85.21 333 | 90.96 316 | 65.24 337 | 96.75 298 | 79.60 299 | 85.25 361 | 92.90 336 |
|
CANet | | | 92.38 175 | 91.99 176 | 93.52 167 | 93.82 289 | 83.46 203 | 91.14 229 | 97.00 152 | 89.81 154 | 86.47 328 | 94.04 248 | 87.90 190 | 99.21 83 | 89.50 165 | 98.27 189 | 97.90 169 |
|
CNLPA | | | 91.72 188 | 91.20 197 | 93.26 174 | 96.17 199 | 91.02 70 | 91.14 229 | 95.55 227 | 90.16 148 | 90.87 266 | 93.56 265 | 86.31 216 | 94.40 344 | 79.92 295 | 97.12 251 | 94.37 306 |
|
DP-MVS Recon | | | 92.31 177 | 91.88 179 | 93.60 161 | 97.18 135 | 86.87 149 | 91.10 231 | 97.37 120 | 84.92 248 | 92.08 249 | 94.08 247 | 88.59 177 | 98.20 217 | 83.50 256 | 98.14 205 | 95.73 274 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 242 | 89.05 239 | 90.92 250 | 94.58 271 | 81.21 231 | 91.10 231 | 93.41 274 | 77.03 314 | 93.41 200 | 93.99 252 | 83.23 237 | 97.80 251 | 79.93 293 | 94.80 306 | 93.74 322 |
|
TSAR-MVS + GP. | | | 93.07 152 | 92.41 169 | 95.06 104 | 95.82 223 | 90.87 75 | 90.97 233 | 92.61 290 | 88.04 193 | 94.61 167 | 93.79 259 | 88.08 184 | 97.81 250 | 89.41 166 | 98.39 173 | 96.50 243 |
|
MVP-Stereo | | | 90.07 231 | 88.92 242 | 93.54 165 | 96.31 188 | 86.49 158 | 90.93 234 | 95.59 224 | 79.80 287 | 91.48 256 | 95.59 183 | 80.79 262 | 97.39 277 | 78.57 306 | 91.19 348 | 96.76 235 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MVSTER | | | 89.32 244 | 88.75 246 | 91.03 245 | 90.10 343 | 76.62 302 | 90.85 235 | 94.67 253 | 82.27 274 | 95.24 143 | 95.79 173 | 61.09 355 | 98.49 193 | 90.49 133 | 98.26 190 | 97.97 160 |
|
pmmvs-eth3d | | | 91.54 192 | 90.73 209 | 93.99 145 | 95.76 228 | 87.86 130 | 90.83 236 | 93.98 267 | 78.23 307 | 94.02 184 | 96.22 154 | 82.62 246 | 96.83 296 | 86.57 222 | 98.33 182 | 97.29 216 |
|
CANet_DTU | | | 89.85 237 | 89.17 236 | 91.87 218 | 92.20 314 | 80.02 247 | 90.79 237 | 95.87 213 | 86.02 227 | 82.53 352 | 91.77 304 | 80.01 266 | 98.57 186 | 85.66 233 | 97.70 233 | 97.01 224 |
|
test_prior4 | | | | | | | 89.91 86 | 90.74 238 | | | | | | | | | |
|
TinyColmap | | | 92.00 184 | 92.76 158 | 89.71 281 | 95.62 237 | 77.02 295 | 90.72 239 | 96.17 205 | 87.70 201 | 95.26 140 | 96.29 149 | 92.54 105 | 96.45 307 | 81.77 273 | 98.77 140 | 95.66 278 |
|
CDPH-MVS | | | 92.67 166 | 91.83 180 | 95.18 100 | 96.94 145 | 88.46 118 | 90.70 240 | 97.07 149 | 77.38 310 | 92.34 243 | 95.08 209 | 92.67 102 | 98.88 129 | 85.74 232 | 98.57 156 | 98.20 137 |
|
DSMNet-mixed | | | 82.21 318 | 81.56 317 | 84.16 339 | 89.57 349 | 70.00 350 | 90.65 241 | 77.66 373 | 54.99 371 | 83.30 348 | 97.57 59 | 77.89 282 | 90.50 364 | 66.86 361 | 95.54 289 | 91.97 344 |
|
TEST9 | | | | | | 96.45 177 | 89.46 94 | 90.60 242 | 96.92 159 | 79.09 299 | 90.49 272 | 94.39 237 | 91.31 133 | 98.88 129 | | | |
|
train_agg | | | 92.71 165 | 91.83 180 | 95.35 89 | 96.45 177 | 89.46 94 | 90.60 242 | 96.92 159 | 79.37 294 | 90.49 272 | 94.39 237 | 91.20 139 | 98.88 129 | 88.66 186 | 98.43 169 | 97.72 186 |
|
PatchmatchNet |  | | 85.22 300 | 84.64 300 | 86.98 319 | 89.51 350 | 69.83 351 | 90.52 244 | 87.34 332 | 78.87 302 | 87.22 325 | 92.74 284 | 66.91 325 | 96.53 303 | 81.77 273 | 86.88 359 | 94.58 302 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test_8 | | | | | | 96.37 179 | 89.14 101 | 90.51 245 | 96.89 162 | 79.37 294 | 90.42 274 | 94.36 239 | 91.20 139 | 98.82 139 | | | |
|
test_yl | | | 90.11 228 | 89.73 231 | 91.26 237 | 94.09 281 | 79.82 251 | 90.44 246 | 92.65 287 | 90.90 129 | 93.19 212 | 93.30 270 | 73.90 302 | 98.03 229 | 82.23 269 | 96.87 260 | 95.93 265 |
|
DCV-MVSNet | | | 90.11 228 | 89.73 231 | 91.26 237 | 94.09 281 | 79.82 251 | 90.44 246 | 92.65 287 | 90.90 129 | 93.19 212 | 93.30 270 | 73.90 302 | 98.03 229 | 82.23 269 | 96.87 260 | 95.93 265 |
|
tpm2 | | | 81.46 323 | 80.35 330 | 84.80 334 | 89.90 344 | 65.14 365 | 90.44 246 | 85.36 349 | 65.82 361 | 82.05 356 | 92.44 292 | 57.94 359 | 96.69 300 | 70.71 352 | 88.49 356 | 92.56 340 |
|
agg_prior1 | | | 92.60 168 | 91.76 183 | 95.10 103 | 96.20 196 | 88.89 106 | 90.37 249 | 96.88 163 | 79.67 291 | 90.21 277 | 94.41 235 | 91.30 134 | 98.78 151 | 88.46 189 | 98.37 180 | 97.64 192 |
|
CostFormer | | | 83.09 312 | 82.21 315 | 85.73 327 | 89.27 352 | 67.01 355 | 90.35 250 | 86.47 337 | 70.42 346 | 83.52 347 | 93.23 273 | 61.18 354 | 96.85 295 | 77.21 316 | 88.26 357 | 93.34 330 |
|
TAMVS | | | 90.16 226 | 89.05 239 | 93.49 168 | 96.49 175 | 86.37 163 | 90.34 251 | 92.55 291 | 80.84 283 | 92.99 218 | 94.57 232 | 81.94 254 | 98.20 217 | 73.51 335 | 98.21 199 | 95.90 268 |
|
EPMVS | | | 81.17 327 | 80.37 329 | 83.58 341 | 85.58 370 | 65.08 366 | 90.31 252 | 71.34 374 | 77.31 312 | 85.80 332 | 91.30 310 | 59.38 357 | 92.70 357 | 79.99 290 | 82.34 367 | 92.96 335 |
|
CMPMVS |  | 68.83 22 | 87.28 283 | 85.67 296 | 92.09 214 | 88.77 357 | 85.42 180 | 90.31 252 | 94.38 257 | 70.02 348 | 88.00 316 | 93.30 270 | 73.78 304 | 94.03 349 | 75.96 325 | 96.54 269 | 96.83 231 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_post1 | | | | | | | | 90.21 254 | | | | 5.85 377 | 65.36 335 | 96.00 320 | 79.61 297 | | |
|
test_prior3 | | | 93.29 141 | 92.85 155 | 94.61 120 | 95.95 217 | 87.23 138 | 90.21 254 | 97.36 125 | 89.33 165 | 90.77 267 | 94.81 221 | 90.41 156 | 98.68 171 | 88.21 190 | 98.55 157 | 97.93 163 |
|
test_prior2 | | | | | | | | 90.21 254 | | 89.33 165 | 90.77 267 | 94.81 221 | 90.41 156 | | 88.21 190 | 98.55 157 | |
|
MVS_111021_LR | | | 93.66 133 | 93.28 148 | 94.80 112 | 96.25 194 | 90.95 72 | 90.21 254 | 95.43 230 | 87.91 194 | 93.74 193 | 94.40 236 | 92.88 97 | 96.38 310 | 90.39 136 | 98.28 188 | 97.07 220 |
|
WR-MVS | | | 93.49 136 | 93.72 132 | 92.80 189 | 97.57 116 | 80.03 246 | 90.14 258 | 95.68 218 | 93.70 62 | 96.62 75 | 95.39 199 | 87.21 200 | 99.04 107 | 87.50 206 | 99.64 23 | 99.33 25 |
|
tpmrst | | | 82.85 315 | 82.93 313 | 82.64 344 | 87.65 359 | 58.99 374 | 90.14 258 | 87.90 328 | 75.54 319 | 83.93 343 | 91.63 307 | 66.79 328 | 95.36 332 | 81.21 280 | 81.54 368 | 93.57 328 |
|
PVSNet_BlendedMVS | | | 90.35 220 | 89.96 225 | 91.54 230 | 94.81 258 | 78.80 274 | 90.14 258 | 96.93 157 | 79.43 293 | 88.68 308 | 95.06 210 | 86.27 217 | 98.15 223 | 80.27 286 | 98.04 215 | 97.68 189 |
|
BH-untuned | | | 90.68 209 | 90.90 202 | 90.05 276 | 95.98 215 | 79.57 258 | 90.04 261 | 94.94 241 | 87.91 194 | 94.07 180 | 93.00 276 | 87.76 191 | 97.78 254 | 79.19 302 | 95.17 299 | 92.80 337 |
|
新几何2 | | | | | | | | 90.02 262 | | | | | | | | | |
|
旧先验2 | | | | | | | | 90.00 263 | | 68.65 352 | 92.71 226 | | | 96.52 304 | 85.15 238 | | |
|
无先验 | | | | | | | | 89.94 264 | 95.75 217 | 70.81 345 | | | | 98.59 183 | 81.17 281 | | 94.81 295 |
|
xiu_mvs_v1_base_debu | | | 91.47 194 | 91.52 187 | 91.33 234 | 95.69 231 | 81.56 224 | 89.92 265 | 96.05 208 | 83.22 261 | 91.26 260 | 90.74 318 | 91.55 127 | 98.82 139 | 89.29 168 | 95.91 280 | 93.62 325 |
|
xiu_mvs_v1_base | | | 91.47 194 | 91.52 187 | 91.33 234 | 95.69 231 | 81.56 224 | 89.92 265 | 96.05 208 | 83.22 261 | 91.26 260 | 90.74 318 | 91.55 127 | 98.82 139 | 89.29 168 | 95.91 280 | 93.62 325 |
|
xiu_mvs_v1_base_debi | | | 91.47 194 | 91.52 187 | 91.33 234 | 95.69 231 | 81.56 224 | 89.92 265 | 96.05 208 | 83.22 261 | 91.26 260 | 90.74 318 | 91.55 127 | 98.82 139 | 89.29 168 | 95.91 280 | 93.62 325 |
|
DWT-MVSNet_test | | | 80.74 330 | 79.18 335 | 85.43 330 | 87.51 362 | 66.87 357 | 89.87 268 | 86.01 341 | 74.20 327 | 80.86 361 | 80.62 367 | 48.84 371 | 96.68 302 | 81.54 275 | 83.14 366 | 92.75 338 |
|
mvs_anonymous | | | 90.37 219 | 91.30 195 | 87.58 314 | 92.17 315 | 68.00 354 | 89.84 269 | 94.73 249 | 83.82 258 | 93.22 211 | 97.40 70 | 87.54 194 | 97.40 276 | 87.94 200 | 95.05 301 | 97.34 213 |
|
test20.03 | | | 90.80 205 | 90.85 205 | 90.63 259 | 95.63 236 | 79.24 264 | 89.81 270 | 92.87 281 | 89.90 152 | 94.39 172 | 96.40 138 | 85.77 221 | 95.27 336 | 73.86 334 | 99.05 103 | 97.39 210 |
|
1112_ss | | | 88.42 261 | 87.41 270 | 91.45 231 | 96.69 159 | 80.99 233 | 89.72 271 | 96.72 176 | 73.37 331 | 87.00 326 | 90.69 321 | 77.38 285 | 98.20 217 | 81.38 277 | 93.72 323 | 95.15 288 |
|
UnsupCasMVSNet_eth | | | 90.33 221 | 90.34 217 | 90.28 267 | 94.64 270 | 80.24 238 | 89.69 272 | 95.88 212 | 85.77 231 | 93.94 187 | 95.69 179 | 81.99 252 | 92.98 356 | 84.21 252 | 91.30 347 | 97.62 193 |
|
MG-MVS | | | 89.54 241 | 89.80 228 | 88.76 296 | 94.88 254 | 72.47 337 | 89.60 273 | 92.44 293 | 85.82 230 | 89.48 293 | 95.98 164 | 82.85 241 | 97.74 259 | 81.87 272 | 95.27 297 | 96.08 259 |
|
Patchmatch-test | | | 86.10 296 | 86.01 293 | 86.38 325 | 90.63 336 | 74.22 325 | 89.57 274 | 86.69 335 | 85.73 233 | 89.81 288 | 92.83 280 | 65.24 337 | 91.04 362 | 77.82 311 | 95.78 284 | 93.88 319 |
|
Anonymous20231206 | | | 88.77 256 | 88.29 254 | 90.20 272 | 96.31 188 | 78.81 273 | 89.56 275 | 93.49 273 | 74.26 326 | 92.38 239 | 95.58 186 | 82.21 248 | 95.43 331 | 72.07 343 | 98.75 143 | 96.34 249 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 123 | 93.56 140 | 96.14 54 | 95.96 216 | 92.96 45 | 89.48 276 | 97.46 116 | 85.14 241 | 96.23 94 | 95.42 196 | 93.19 85 | 98.08 226 | 90.37 138 | 98.76 141 | 97.38 212 |
|
SCA | | | 87.43 280 | 87.21 274 | 88.10 308 | 92.01 319 | 71.98 339 | 89.43 277 | 88.11 327 | 82.26 275 | 88.71 306 | 92.83 280 | 78.65 274 | 97.59 264 | 79.61 297 | 93.30 327 | 94.75 298 |
|
testgi | | | 90.38 218 | 91.34 194 | 87.50 315 | 97.49 120 | 71.54 340 | 89.43 277 | 95.16 236 | 88.38 187 | 94.54 169 | 94.68 229 | 92.88 97 | 93.09 355 | 71.60 347 | 97.85 226 | 97.88 171 |
|
JIA-IIPM | | | 85.08 302 | 83.04 311 | 91.19 242 | 87.56 360 | 86.14 170 | 89.40 279 | 84.44 357 | 88.98 173 | 82.20 354 | 97.95 43 | 56.82 362 | 96.15 315 | 76.55 321 | 83.45 364 | 91.30 349 |
|
原ACMM2 | | | | | | | | 89.34 280 | | | | | | | | | |
|
tpm | | | 84.38 306 | 84.08 305 | 85.30 332 | 90.47 339 | 63.43 371 | 89.34 280 | 85.63 346 | 77.24 313 | 87.62 320 | 95.03 213 | 61.00 356 | 97.30 280 | 79.26 301 | 91.09 350 | 95.16 287 |
|
MVS_111021_HR | | | 93.63 134 | 93.42 144 | 94.26 139 | 96.65 160 | 86.96 148 | 89.30 282 | 96.23 200 | 88.36 188 | 93.57 197 | 94.60 230 | 93.45 76 | 97.77 255 | 90.23 147 | 98.38 175 | 98.03 151 |
|
tpm cat1 | | | 80.61 332 | 79.46 334 | 84.07 340 | 88.78 356 | 65.06 367 | 89.26 283 | 88.23 324 | 62.27 366 | 81.90 358 | 89.66 334 | 62.70 350 | 95.29 335 | 71.72 345 | 80.60 369 | 91.86 347 |
|
CDS-MVSNet | | | 89.55 240 | 88.22 258 | 93.53 166 | 95.37 246 | 86.49 158 | 89.26 283 | 93.59 270 | 79.76 289 | 91.15 263 | 92.31 295 | 77.12 288 | 98.38 202 | 77.51 313 | 97.92 223 | 95.71 275 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Fast-Effi-MVS+ | | | 91.28 200 | 90.86 204 | 92.53 200 | 95.45 242 | 82.53 215 | 89.25 285 | 96.52 188 | 85.00 246 | 89.91 284 | 88.55 343 | 92.94 93 | 98.84 137 | 84.72 248 | 95.44 292 | 96.22 254 |
|
BH-RMVSNet | | | 90.47 214 | 90.44 215 | 90.56 261 | 95.21 250 | 78.65 276 | 89.15 286 | 93.94 268 | 88.21 189 | 92.74 225 | 94.22 242 | 86.38 215 | 97.88 242 | 78.67 305 | 95.39 294 | 95.14 289 |
|
thres200 | | | 85.85 297 | 85.18 298 | 87.88 312 | 94.44 273 | 72.52 336 | 89.08 287 | 86.21 338 | 88.57 184 | 91.44 257 | 88.40 344 | 64.22 340 | 98.00 234 | 68.35 357 | 95.88 283 | 93.12 331 |
|
USDC | | | 89.02 248 | 89.08 238 | 88.84 295 | 95.07 252 | 74.50 321 | 88.97 288 | 96.39 193 | 73.21 332 | 93.27 207 | 96.28 150 | 82.16 250 | 96.39 309 | 77.55 312 | 98.80 137 | 95.62 281 |
|
testdata1 | | | | | | | | 88.96 289 | | 88.44 186 | | | | | | | |
|
pmmvs5 | | | 87.87 269 | 87.14 276 | 90.07 274 | 93.26 295 | 76.97 299 | 88.89 290 | 92.18 296 | 73.71 330 | 88.36 311 | 93.89 256 | 76.86 294 | 96.73 299 | 80.32 285 | 96.81 262 | 96.51 240 |
|
patch_mono-2 | | | 92.46 173 | 92.72 162 | 91.71 224 | 96.65 160 | 78.91 270 | 88.85 291 | 97.17 141 | 83.89 257 | 92.45 233 | 96.76 114 | 89.86 168 | 97.09 286 | 90.24 146 | 98.59 155 | 99.12 41 |
|
test222 | | | | | | 96.95 144 | 85.27 182 | 88.83 292 | 93.61 269 | 65.09 362 | 90.74 269 | 94.85 220 | 84.62 230 | | | 97.36 245 | 93.91 317 |
|
baseline2 | | | 83.38 310 | 81.54 319 | 88.90 293 | 91.38 328 | 72.84 334 | 88.78 293 | 81.22 365 | 78.97 300 | 79.82 364 | 87.56 347 | 61.73 353 | 97.80 251 | 74.30 332 | 90.05 353 | 96.05 261 |
|
diffmvs | | | 91.74 187 | 91.93 178 | 91.15 243 | 93.06 299 | 78.17 280 | 88.77 294 | 97.51 115 | 86.28 222 | 92.42 236 | 93.96 253 | 88.04 186 | 97.46 271 | 90.69 132 | 96.67 267 | 97.82 178 |
|
MDTV_nov1_ep13 | | | | 83.88 307 | | 89.42 351 | 61.52 372 | 88.74 295 | 87.41 331 | 73.99 328 | 84.96 337 | 94.01 251 | 65.25 336 | 95.53 325 | 78.02 307 | 93.16 329 | |
|
D2MVS | | | 89.93 235 | 89.60 233 | 90.92 250 | 94.03 283 | 78.40 277 | 88.69 296 | 94.85 243 | 78.96 301 | 93.08 214 | 95.09 208 | 74.57 300 | 96.94 291 | 88.19 192 | 98.96 117 | 97.41 206 |
|
TR-MVS | | | 87.70 272 | 87.17 275 | 89.27 289 | 94.11 280 | 79.26 263 | 88.69 296 | 91.86 304 | 81.94 277 | 90.69 270 | 89.79 330 | 82.82 242 | 97.42 274 | 72.65 341 | 91.98 344 | 91.14 350 |
|
PatchMatch-RL | | | 89.18 245 | 88.02 263 | 92.64 193 | 95.90 221 | 92.87 47 | 88.67 298 | 91.06 309 | 80.34 284 | 90.03 282 | 91.67 306 | 83.34 235 | 94.42 343 | 76.35 322 | 94.84 305 | 90.64 353 |
|
PAPR | | | 87.65 275 | 86.77 283 | 90.27 268 | 92.85 303 | 77.38 291 | 88.56 299 | 96.23 200 | 76.82 316 | 84.98 336 | 89.75 332 | 86.08 219 | 97.16 284 | 72.33 342 | 93.35 326 | 96.26 253 |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 379 | 88.45 300 | | 67.22 357 | 83.56 346 | | 66.80 326 | | 72.86 340 | | 94.06 312 |
|
jason | | | 89.17 246 | 88.32 252 | 91.70 225 | 95.73 229 | 80.07 243 | 88.10 301 | 93.22 276 | 71.98 338 | 90.09 279 | 92.79 282 | 78.53 277 | 98.56 187 | 87.43 208 | 97.06 252 | 96.46 245 |
jason: jason. |
BH-w/o | | | 87.21 285 | 87.02 279 | 87.79 313 | 94.77 260 | 77.27 293 | 87.90 302 | 93.21 278 | 81.74 278 | 89.99 283 | 88.39 345 | 83.47 234 | 96.93 293 | 71.29 348 | 92.43 340 | 89.15 355 |
|
MS-PatchMatch | | | 88.05 267 | 87.75 265 | 88.95 292 | 93.28 293 | 77.93 282 | 87.88 303 | 92.49 292 | 75.42 320 | 92.57 230 | 93.59 264 | 80.44 264 | 94.24 348 | 81.28 278 | 92.75 335 | 94.69 301 |
|
DELS-MVS | | | 92.05 183 | 92.16 171 | 91.72 223 | 94.44 273 | 80.13 242 | 87.62 304 | 97.25 136 | 87.34 208 | 92.22 246 | 93.18 274 | 89.54 171 | 98.73 160 | 89.67 162 | 98.20 201 | 96.30 251 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ADS-MVSNet2 | | | 84.01 308 | 82.20 316 | 89.41 285 | 89.04 354 | 76.37 306 | 87.57 305 | 90.98 310 | 72.71 336 | 84.46 339 | 92.45 290 | 68.08 319 | 96.48 306 | 70.58 353 | 83.97 362 | 95.38 284 |
|
ADS-MVSNet | | | 82.25 317 | 81.55 318 | 84.34 338 | 89.04 354 | 65.30 363 | 87.57 305 | 85.13 354 | 72.71 336 | 84.46 339 | 92.45 290 | 68.08 319 | 92.33 358 | 70.58 353 | 83.97 362 | 95.38 284 |
|
IterMVS-SCA-FT | | | 91.65 189 | 91.55 186 | 91.94 217 | 93.89 286 | 79.22 265 | 87.56 307 | 93.51 272 | 91.53 118 | 95.37 133 | 96.62 126 | 78.65 274 | 98.90 126 | 91.89 106 | 94.95 302 | 97.70 187 |
|
IterMVS | | | 90.18 225 | 90.16 219 | 90.21 271 | 93.15 297 | 75.98 309 | 87.56 307 | 92.97 280 | 86.43 220 | 94.09 178 | 96.40 138 | 78.32 278 | 97.43 273 | 87.87 201 | 94.69 309 | 97.23 217 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Test_1112_low_res | | | 87.50 279 | 86.58 285 | 90.25 269 | 96.80 157 | 77.75 286 | 87.53 309 | 96.25 198 | 69.73 349 | 86.47 328 | 93.61 263 | 75.67 298 | 97.88 242 | 79.95 291 | 93.20 328 | 95.11 290 |
|
c3_l | | | 91.32 199 | 91.42 191 | 91.00 248 | 92.29 311 | 76.79 301 | 87.52 310 | 96.42 191 | 85.76 232 | 94.72 166 | 93.89 256 | 82.73 243 | 98.16 222 | 90.93 128 | 98.55 157 | 98.04 148 |
|
UnsupCasMVSNet_bld | | | 88.50 260 | 88.03 262 | 89.90 278 | 95.52 240 | 78.88 271 | 87.39 311 | 94.02 265 | 79.32 297 | 93.06 215 | 94.02 250 | 80.72 263 | 94.27 346 | 75.16 328 | 93.08 332 | 96.54 238 |
|
lupinMVS | | | 88.34 263 | 87.31 271 | 91.45 231 | 94.74 263 | 80.06 244 | 87.23 312 | 92.27 295 | 71.10 342 | 88.83 299 | 91.15 312 | 77.02 289 | 98.53 190 | 86.67 220 | 96.75 265 | 95.76 273 |
|
pmmvs4 | | | 88.95 252 | 87.70 267 | 92.70 191 | 94.30 276 | 85.60 178 | 87.22 313 | 92.16 298 | 74.62 324 | 89.75 291 | 94.19 243 | 77.97 281 | 96.41 308 | 82.71 263 | 96.36 273 | 96.09 258 |
|
WTY-MVS | | | 86.93 292 | 86.50 290 | 88.24 306 | 94.96 253 | 74.64 317 | 87.19 314 | 92.07 301 | 78.29 306 | 88.32 312 | 91.59 308 | 78.06 280 | 94.27 346 | 74.88 329 | 93.15 330 | 95.80 271 |
|
ET-MVSNet_ETH3D | | | 86.15 295 | 84.27 304 | 91.79 220 | 93.04 300 | 81.28 229 | 87.17 315 | 86.14 339 | 79.57 292 | 83.65 344 | 88.66 341 | 57.10 360 | 98.18 220 | 87.74 203 | 95.40 293 | 95.90 268 |
|
MVS-HIRNet | | | 78.83 337 | 80.60 328 | 73.51 354 | 93.07 298 | 47.37 377 | 87.10 316 | 78.00 372 | 68.94 351 | 77.53 367 | 97.26 82 | 71.45 312 | 94.62 339 | 63.28 366 | 88.74 355 | 78.55 369 |
|
xiu_mvs_v2_base | | | 89.00 250 | 89.19 235 | 88.46 303 | 94.86 256 | 74.63 318 | 86.97 317 | 95.60 220 | 80.88 281 | 87.83 318 | 88.62 342 | 91.04 143 | 98.81 144 | 82.51 267 | 94.38 313 | 91.93 345 |
|
DPM-MVS | | | 89.35 243 | 88.40 251 | 92.18 211 | 96.13 205 | 84.20 194 | 86.96 318 | 96.15 206 | 75.40 321 | 87.36 323 | 91.55 309 | 83.30 236 | 98.01 233 | 82.17 271 | 96.62 268 | 94.32 308 |
|
eth_miper_zixun_eth | | | 90.72 207 | 90.61 211 | 91.05 244 | 92.04 318 | 76.84 300 | 86.91 319 | 96.67 178 | 85.21 239 | 94.41 171 | 93.92 254 | 79.53 269 | 98.26 213 | 89.76 160 | 97.02 254 | 98.06 145 |
|
dp | | | 79.28 335 | 78.62 337 | 81.24 347 | 85.97 369 | 56.45 375 | 86.91 319 | 85.26 352 | 72.97 334 | 81.45 360 | 89.17 340 | 56.01 364 | 95.45 330 | 73.19 338 | 76.68 370 | 91.82 348 |
|
sss | | | 87.23 284 | 86.82 281 | 88.46 303 | 93.96 284 | 77.94 281 | 86.84 321 | 92.78 285 | 77.59 309 | 87.61 321 | 91.83 303 | 78.75 273 | 91.92 359 | 77.84 309 | 94.20 318 | 95.52 283 |
|
miper_ehance_all_eth | | | 90.48 213 | 90.42 216 | 90.69 257 | 91.62 325 | 76.57 303 | 86.83 322 | 96.18 204 | 83.38 259 | 94.06 181 | 92.66 287 | 82.20 249 | 98.04 228 | 89.79 159 | 97.02 254 | 97.45 203 |
|
CLD-MVS | | | 91.82 186 | 91.41 192 | 93.04 177 | 96.37 179 | 83.65 202 | 86.82 323 | 97.29 133 | 84.65 252 | 92.27 245 | 89.67 333 | 92.20 111 | 97.85 248 | 83.95 253 | 99.47 39 | 97.62 193 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
cl____ | | | 90.65 210 | 90.56 213 | 90.91 252 | 91.85 320 | 76.98 298 | 86.75 324 | 95.36 234 | 85.53 235 | 94.06 181 | 94.89 218 | 77.36 287 | 97.98 237 | 90.27 144 | 98.98 111 | 97.76 183 |
|
DIV-MVS_self_test | | | 90.65 210 | 90.56 213 | 90.91 252 | 91.85 320 | 76.99 297 | 86.75 324 | 95.36 234 | 85.52 237 | 94.06 181 | 94.89 218 | 77.37 286 | 97.99 236 | 90.28 143 | 98.97 115 | 97.76 183 |
|
PS-MVSNAJ | | | 88.86 254 | 88.99 241 | 88.48 302 | 94.88 254 | 74.71 316 | 86.69 326 | 95.60 220 | 80.88 281 | 87.83 318 | 87.37 350 | 90.77 146 | 98.82 139 | 82.52 266 | 94.37 314 | 91.93 345 |
|
PVSNet_Blended | | | 88.74 257 | 88.16 261 | 90.46 264 | 94.81 258 | 78.80 274 | 86.64 327 | 96.93 157 | 74.67 323 | 88.68 308 | 89.18 339 | 86.27 217 | 98.15 223 | 80.27 286 | 96.00 278 | 94.44 305 |
|
MSDG | | | 90.82 204 | 90.67 210 | 91.26 237 | 94.16 278 | 83.08 210 | 86.63 328 | 96.19 203 | 90.60 140 | 91.94 251 | 91.89 302 | 89.16 174 | 95.75 323 | 80.96 284 | 94.51 312 | 94.95 294 |
|
cl22 | | | 89.02 248 | 88.50 249 | 90.59 260 | 89.76 345 | 76.45 304 | 86.62 329 | 94.03 263 | 82.98 267 | 92.65 227 | 92.49 288 | 72.05 310 | 97.53 266 | 88.93 177 | 97.02 254 | 97.78 181 |
|
CL-MVSNet_self_test | | | 90.04 233 | 89.90 227 | 90.47 262 | 95.24 249 | 77.81 285 | 86.60 330 | 92.62 289 | 85.64 234 | 93.25 210 | 93.92 254 | 83.84 233 | 96.06 319 | 79.93 293 | 98.03 216 | 97.53 199 |
|
PCF-MVS | | 84.52 17 | 89.12 247 | 87.71 266 | 93.34 170 | 96.06 208 | 85.84 175 | 86.58 331 | 97.31 130 | 68.46 353 | 93.61 196 | 93.89 256 | 87.51 195 | 98.52 191 | 67.85 358 | 98.11 209 | 95.66 278 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Patchmatch-RL test | | | 88.81 255 | 88.52 248 | 89.69 282 | 95.33 248 | 79.94 248 | 86.22 332 | 92.71 286 | 78.46 305 | 95.80 115 | 94.18 244 | 66.25 331 | 95.33 334 | 89.22 173 | 98.53 161 | 93.78 320 |
|
FPMVS | | | 84.50 305 | 83.28 309 | 88.16 307 | 96.32 187 | 94.49 16 | 85.76 333 | 85.47 348 | 83.09 264 | 85.20 334 | 94.26 240 | 63.79 344 | 86.58 369 | 63.72 365 | 91.88 346 | 83.40 364 |
|
IB-MVS | | 77.21 19 | 83.11 311 | 81.05 322 | 89.29 288 | 91.15 330 | 75.85 310 | 85.66 334 | 86.00 342 | 79.70 290 | 82.02 357 | 86.61 353 | 48.26 372 | 98.39 200 | 77.84 309 | 92.22 341 | 93.63 324 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDA-MVSNet-bldmvs | | | 91.04 201 | 90.88 203 | 91.55 229 | 94.68 268 | 80.16 239 | 85.49 335 | 92.14 299 | 90.41 145 | 94.93 156 | 95.79 173 | 85.10 226 | 96.93 293 | 85.15 238 | 94.19 319 | 97.57 195 |
|
new-patchmatchnet | | | 88.97 251 | 90.79 207 | 83.50 342 | 94.28 277 | 55.83 376 | 85.34 336 | 93.56 271 | 86.18 224 | 95.47 128 | 95.73 178 | 83.10 238 | 96.51 305 | 85.40 235 | 98.06 213 | 98.16 138 |
|
miper_enhance_ethall | | | 88.42 261 | 87.87 264 | 90.07 274 | 88.67 358 | 75.52 313 | 85.10 337 | 95.59 224 | 75.68 317 | 92.49 231 | 89.45 336 | 78.96 271 | 97.88 242 | 87.86 202 | 97.02 254 | 96.81 232 |
|
HyFIR lowres test | | | 87.19 287 | 85.51 297 | 92.24 206 | 97.12 140 | 80.51 237 | 85.03 338 | 96.06 207 | 66.11 359 | 91.66 255 | 92.98 278 | 70.12 316 | 99.14 90 | 75.29 327 | 95.23 298 | 97.07 220 |
|
pmmvs3 | | | 80.83 329 | 78.96 336 | 86.45 322 | 87.23 364 | 77.48 290 | 84.87 339 | 82.31 362 | 63.83 364 | 85.03 335 | 89.50 335 | 49.66 370 | 93.10 354 | 73.12 339 | 95.10 300 | 88.78 359 |
|
test0.0.03 1 | | | 82.48 316 | 81.47 320 | 85.48 329 | 89.70 346 | 73.57 328 | 84.73 340 | 81.64 364 | 83.07 265 | 88.13 315 | 86.61 353 | 62.86 348 | 89.10 368 | 66.24 362 | 90.29 352 | 93.77 321 |
|
N_pmnet | | | 88.90 253 | 87.25 273 | 93.83 156 | 94.40 275 | 93.81 36 | 84.73 340 | 87.09 333 | 79.36 296 | 93.26 208 | 92.43 293 | 79.29 270 | 91.68 360 | 77.50 314 | 97.22 249 | 96.00 262 |
|
GA-MVS | | | 87.70 272 | 86.82 281 | 90.31 266 | 93.27 294 | 77.22 294 | 84.72 342 | 92.79 284 | 85.11 244 | 89.82 287 | 90.07 325 | 66.80 326 | 97.76 257 | 84.56 249 | 94.27 317 | 95.96 264 |
|
ppachtmachnet_test | | | 88.61 259 | 88.64 247 | 88.50 301 | 91.76 322 | 70.99 344 | 84.59 343 | 92.98 279 | 79.30 298 | 92.38 239 | 93.53 266 | 79.57 268 | 97.45 272 | 86.50 225 | 97.17 250 | 97.07 220 |
|
CHOSEN 1792x2688 | | | 87.19 287 | 85.92 295 | 91.00 248 | 97.13 139 | 79.41 260 | 84.51 344 | 95.60 220 | 64.14 363 | 90.07 281 | 94.81 221 | 78.26 279 | 97.14 285 | 73.34 336 | 95.38 295 | 96.46 245 |
|
thisisatest0515 | | | 84.72 304 | 82.99 312 | 89.90 278 | 92.96 302 | 75.33 315 | 84.36 345 | 83.42 360 | 77.37 311 | 88.27 313 | 86.65 352 | 53.94 366 | 98.72 161 | 82.56 265 | 97.40 244 | 95.67 277 |
|
cascas | | | 87.02 291 | 86.28 292 | 89.25 290 | 91.56 327 | 76.45 304 | 84.33 346 | 96.78 171 | 71.01 343 | 86.89 327 | 85.91 358 | 81.35 257 | 96.94 291 | 83.09 260 | 95.60 287 | 94.35 307 |
|
bset_n11_16_dypcd | | | 89.99 234 | 89.15 237 | 92.53 200 | 94.75 261 | 81.34 228 | 84.19 347 | 87.56 330 | 85.13 242 | 93.77 190 | 92.46 289 | 72.82 306 | 99.01 112 | 92.46 92 | 99.21 82 | 97.23 217 |
|
new_pmnet | | | 81.22 325 | 81.01 324 | 81.86 346 | 90.92 334 | 70.15 347 | 84.03 348 | 80.25 369 | 70.83 344 | 85.97 331 | 89.78 331 | 67.93 322 | 84.65 370 | 67.44 359 | 91.90 345 | 90.78 352 |
|
PAPM | | | 81.91 322 | 80.11 332 | 87.31 317 | 93.87 287 | 72.32 338 | 84.02 349 | 93.22 276 | 69.47 350 | 76.13 369 | 89.84 327 | 72.15 309 | 97.23 282 | 53.27 371 | 89.02 354 | 92.37 342 |
|
our_test_3 | | | 87.55 277 | 87.59 268 | 87.44 316 | 91.76 322 | 70.48 345 | 83.83 350 | 90.55 314 | 79.79 288 | 92.06 250 | 92.17 297 | 78.63 276 | 95.63 324 | 84.77 246 | 94.73 307 | 96.22 254 |
|
miper_lstm_enhance | | | 89.90 236 | 89.80 228 | 90.19 273 | 91.37 329 | 77.50 289 | 83.82 351 | 95.00 238 | 84.84 249 | 93.05 216 | 94.96 215 | 76.53 296 | 95.20 337 | 89.96 156 | 98.67 150 | 97.86 173 |
|
test-LLR | | | 83.58 309 | 83.17 310 | 84.79 335 | 89.68 347 | 66.86 358 | 83.08 352 | 84.52 355 | 83.07 265 | 82.85 350 | 84.78 361 | 62.86 348 | 93.49 352 | 82.85 261 | 94.86 303 | 94.03 313 |
|
TESTMET0.1,1 | | | 79.09 336 | 78.04 338 | 82.25 345 | 87.52 361 | 64.03 370 | 83.08 352 | 80.62 367 | 70.28 347 | 80.16 363 | 83.22 364 | 44.13 376 | 90.56 363 | 79.95 291 | 93.36 325 | 92.15 343 |
|
test-mter | | | 81.21 326 | 80.01 333 | 84.79 335 | 89.68 347 | 66.86 358 | 83.08 352 | 84.52 355 | 73.85 329 | 82.85 350 | 84.78 361 | 43.66 377 | 93.49 352 | 82.85 261 | 94.86 303 | 94.03 313 |
|
test123 | | | 9.49 343 | 12.01 346 | 1.91 358 | 2.87 381 | 1.30 382 | 82.38 355 | 1.34 383 | 1.36 376 | 2.84 377 | 6.56 375 | 2.45 381 | 0.97 377 | 2.73 375 | 5.56 375 | 3.47 373 |
|
PMMVS | | | 83.00 313 | 81.11 321 | 88.66 299 | 83.81 375 | 86.44 161 | 82.24 356 | 85.65 345 | 61.75 367 | 82.07 355 | 85.64 359 | 79.75 267 | 91.59 361 | 75.99 324 | 93.09 331 | 87.94 360 |
|
KD-MVS_2432*1600 | | | 82.17 319 | 80.75 326 | 86.42 323 | 82.04 376 | 70.09 348 | 81.75 357 | 90.80 311 | 82.56 269 | 90.37 275 | 89.30 337 | 42.90 378 | 96.11 317 | 74.47 330 | 92.55 338 | 93.06 332 |
|
miper_refine_blended | | | 82.17 319 | 80.75 326 | 86.42 323 | 82.04 376 | 70.09 348 | 81.75 357 | 90.80 311 | 82.56 269 | 90.37 275 | 89.30 337 | 42.90 378 | 96.11 317 | 74.47 330 | 92.55 338 | 93.06 332 |
|
YYNet1 | | | 88.17 265 | 88.24 256 | 87.93 310 | 92.21 313 | 73.62 327 | 80.75 359 | 88.77 319 | 82.51 272 | 94.99 154 | 95.11 207 | 82.70 244 | 93.70 350 | 83.33 257 | 93.83 321 | 96.48 244 |
|
MDA-MVSNet_test_wron | | | 88.16 266 | 88.23 257 | 87.93 310 | 92.22 312 | 73.71 326 | 80.71 360 | 88.84 318 | 82.52 271 | 94.88 159 | 95.14 205 | 82.70 244 | 93.61 351 | 83.28 258 | 93.80 322 | 96.46 245 |
|
testmvs | | | 9.02 344 | 11.42 347 | 1.81 359 | 2.77 382 | 1.13 383 | 79.44 361 | 1.90 382 | 1.18 377 | 2.65 378 | 6.80 374 | 1.95 382 | 0.87 378 | 2.62 376 | 3.45 376 | 3.44 374 |
|
PVSNet | | 76.22 20 | 82.89 314 | 82.37 314 | 84.48 337 | 93.96 284 | 64.38 369 | 78.60 362 | 88.61 320 | 71.50 340 | 84.43 341 | 86.36 356 | 74.27 301 | 94.60 340 | 69.87 355 | 93.69 324 | 94.46 304 |
|
PVSNet_0 | | 70.34 21 | 74.58 338 | 72.96 341 | 79.47 350 | 90.63 336 | 66.24 362 | 73.26 363 | 83.40 361 | 63.67 365 | 78.02 366 | 78.35 369 | 72.53 307 | 89.59 366 | 56.68 369 | 60.05 373 | 82.57 367 |
|
E-PMN | | | 80.72 331 | 80.86 325 | 80.29 349 | 85.11 371 | 68.77 353 | 72.96 364 | 81.97 363 | 87.76 199 | 83.25 349 | 83.01 365 | 62.22 351 | 89.17 367 | 77.15 317 | 94.31 316 | 82.93 365 |
|
CHOSEN 280x420 | | | 80.04 334 | 77.97 339 | 86.23 326 | 90.13 342 | 74.53 320 | 72.87 365 | 89.59 317 | 66.38 358 | 76.29 368 | 85.32 360 | 56.96 361 | 95.36 332 | 69.49 356 | 94.72 308 | 88.79 358 |
|
EMVS | | | 80.35 333 | 80.28 331 | 80.54 348 | 84.73 373 | 69.07 352 | 72.54 366 | 80.73 366 | 87.80 198 | 81.66 359 | 81.73 366 | 62.89 347 | 89.84 365 | 75.79 326 | 94.65 310 | 82.71 366 |
|
PMMVS2 | | | 81.31 324 | 83.44 308 | 74.92 353 | 90.52 338 | 46.49 378 | 69.19 367 | 85.23 353 | 84.30 254 | 87.95 317 | 94.71 228 | 76.95 291 | 84.36 371 | 64.07 364 | 98.09 211 | 93.89 318 |
|
tmp_tt | | | 37.97 341 | 44.33 344 | 18.88 357 | 11.80 380 | 21.54 380 | 63.51 368 | 45.66 381 | 4.23 374 | 51.34 374 | 50.48 372 | 59.08 358 | 22.11 376 | 44.50 373 | 68.35 372 | 13.00 372 |
|
MVE |  | 59.87 23 | 73.86 339 | 72.65 342 | 77.47 352 | 87.00 367 | 74.35 322 | 61.37 369 | 60.93 377 | 67.27 356 | 69.69 372 | 86.49 355 | 81.24 261 | 72.33 373 | 56.45 370 | 83.45 364 | 85.74 362 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 50.44 340 | 48.94 343 | 54.93 355 | 39.68 379 | 12.38 381 | 28.59 370 | 90.09 315 | 6.82 373 | 41.10 375 | 78.41 368 | 54.41 365 | 70.69 374 | 50.12 372 | 51.26 374 | 81.72 368 |
|
test_blank | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uanet_test | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
cdsmvs_eth3d_5k | | | 23.35 342 | 31.13 345 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 95.58 226 | 0.00 378 | 0.00 379 | 91.15 312 | 93.43 78 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
pcd_1.5k_mvsjas | | | 7.56 345 | 10.09 348 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 90.77 146 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
sosnet-low-res | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
sosnet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uncertanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
Regformer | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
ab-mvs-re | | | 7.56 345 | 10.08 349 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 90.69 321 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
MSC_two_6792asdad | | | | | 95.90 66 | 96.54 170 | 89.57 92 | | 96.87 165 | | | | | 99.41 38 | 94.06 30 | 99.30 65 | 98.72 92 |
|
PC_three_1452 | | | | | | | | | | 75.31 322 | 95.87 113 | 95.75 177 | 92.93 94 | 96.34 314 | 87.18 212 | 98.68 148 | 98.04 148 |
|
No_MVS | | | | | 95.90 66 | 96.54 170 | 89.57 92 | | 96.87 165 | | | | | 99.41 38 | 94.06 30 | 99.30 65 | 98.72 92 |
|
test_one_0601 | | | | | | 98.26 67 | 87.14 141 | | 98.18 36 | 94.25 49 | 96.99 60 | 97.36 75 | 95.13 40 | | | | |
|
eth-test2 | | | | | | 0.00 383 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 383 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 97.23 131 | 90.32 81 | | 97.54 110 | 84.40 253 | 94.78 162 | 95.79 173 | 92.76 100 | 99.39 50 | 88.72 185 | 98.40 170 | |
|
IU-MVS | | | | | | 98.51 47 | 86.66 155 | | 96.83 168 | 72.74 335 | 95.83 114 | | | | 93.00 78 | 99.29 68 | 98.64 102 |
|
test_241102_TWO | | | | | | | | | 98.10 49 | 91.95 94 | 97.54 37 | 97.25 83 | 95.37 28 | 99.35 61 | 93.29 65 | 99.25 76 | 98.49 116 |
|
test_241102_ONE | | | | | | 98.51 47 | 86.97 146 | | 98.10 49 | 91.85 100 | 97.63 32 | 97.03 96 | 96.48 11 | 98.95 122 | | | |
|
test_0728_THIRD | | | | | | | | | | 93.26 70 | 97.40 46 | 97.35 78 | 94.69 55 | 99.34 64 | 93.88 34 | 99.42 47 | 98.89 71 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 298 |
|
test_part2 | | | | | | 98.21 71 | 89.41 97 | | | | 96.72 71 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 329 | | | | 94.75 298 |
|
sam_mvs | | | | | | | | | | | | | 66.41 330 | | | | |
|
MTGPA |  | | | | | | | | 97.62 102 | | | | | | | | |
|
test_post | | | | | | | | | | | | 6.07 376 | 65.74 334 | 95.84 322 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 305 | 66.22 332 | 97.59 264 | | | |
|
gm-plane-assit | | | | | | 87.08 366 | 59.33 373 | | | 71.22 341 | | 83.58 363 | | 97.20 283 | 73.95 333 | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 194 | 98.40 170 | 97.83 176 |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 215 | 98.36 181 | 97.98 157 |
|
agg_prior | | | | | | 96.20 196 | 88.89 106 | | 96.88 163 | | 90.21 277 | | | 98.78 151 | | | |
|
TestCases | | | | | 96.00 58 | 98.02 86 | 92.17 52 | | 98.43 13 | 90.48 141 | 95.04 152 | 96.74 117 | 92.54 105 | 97.86 246 | 85.11 241 | 98.98 111 | 97.98 157 |
|
test_prior | | | | | 94.61 120 | 95.95 217 | 87.23 138 | | 97.36 125 | | | | | 98.68 171 | | | 97.93 163 |
|
新几何1 | | | | | 93.17 176 | 97.16 136 | 87.29 137 | | 94.43 255 | 67.95 354 | 91.29 259 | 94.94 216 | 86.97 205 | 98.23 215 | 81.06 283 | 97.75 228 | 93.98 316 |
|
旧先验1 | | | | | | 96.20 196 | 84.17 195 | | 94.82 245 | | | 95.57 187 | 89.57 170 | | | 97.89 224 | 96.32 250 |
|
原ACMM1 | | | | | 92.87 186 | 96.91 148 | 84.22 193 | | 97.01 151 | 76.84 315 | 89.64 292 | 94.46 234 | 88.00 187 | 98.70 167 | 81.53 276 | 98.01 218 | 95.70 276 |
|
testdata2 | | | | | | | | | | | | | | 98.03 229 | 80.24 288 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 112 | | | | |
|
testdata | | | | | 91.03 245 | 96.87 151 | 82.01 218 | | 94.28 259 | 71.55 339 | 92.46 232 | 95.42 196 | 85.65 224 | 97.38 279 | 82.64 264 | 97.27 247 | 93.70 323 |
|
test12 | | | | | 94.43 135 | 95.95 217 | 86.75 151 | | 96.24 199 | | 89.76 290 | | 89.79 169 | 98.79 147 | | 97.95 221 | 97.75 185 |
|
plane_prior7 | | | | | | 97.71 105 | 88.68 110 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.21 134 | 88.23 121 | | | | | | 86.93 206 | | | | |
|
plane_prior5 | | | | | | | | | 97.81 90 | | | | | 98.95 122 | 89.26 171 | 98.51 164 | 98.60 109 |
|
plane_prior4 | | | | | | | | | | | | 95.59 183 | | | | | |
|
plane_prior3 | | | | | | | 88.43 119 | | | 90.35 146 | 93.31 203 | | | | | | |
|
plane_prior1 | | | | | | 97.38 126 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 384 | | | | | | | | |
|
nn | | | | | | | | | 0.00 384 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 300 | | | | | | | | |
|
lessismore_v0 | | | | | 93.87 155 | 98.05 81 | 83.77 201 | | 80.32 368 | | 97.13 52 | 97.91 46 | 77.49 283 | 99.11 96 | 92.62 88 | 98.08 212 | 98.74 89 |
|
LGP-MVS_train | | | | | 96.84 40 | 98.36 62 | 92.13 54 | | 98.25 27 | 91.78 107 | 97.07 53 | 97.22 86 | 96.38 13 | 99.28 75 | 92.07 99 | 99.59 27 | 99.11 42 |
|
test11 | | | | | | | | | 96.65 179 | | | | | | | | |
|
door | | | | | | | | | 91.26 308 | | | | | | | | |
|
HQP5-MVS | | | | | | | 84.89 185 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 223 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 301 | | | 98.61 179 | | | 98.15 139 |
|
HQP3-MVS | | | | | | | | | 97.31 130 | | | | | | | 97.73 229 | |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 228 | | | | |
|
NP-MVS | | | | | | 96.82 154 | 87.10 142 | | | | | 93.40 268 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 133 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 76 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 152 | | | | |
|
ITE_SJBPF | | | | | 95.95 60 | 97.34 128 | 93.36 42 | | 96.55 187 | 91.93 96 | 94.82 160 | 95.39 199 | 91.99 116 | 97.08 287 | 85.53 234 | 97.96 220 | 97.41 206 |
|
DeepMVS_CX |  | | | | 53.83 356 | 70.38 378 | 64.56 368 | | 48.52 380 | 33.01 372 | 65.50 373 | 74.21 371 | 56.19 363 | 46.64 375 | 38.45 374 | 70.07 371 | 50.30 371 |
|