LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
PMVS |  | 87.21 14 | 94.97 88 | 95.33 79 | 93.91 152 | 98.97 15 | 97.16 2 | 95.54 77 | 95.85 215 | 96.47 21 | 93.40 203 | 97.46 67 | 95.31 33 | 95.47 330 | 86.18 231 | 98.78 139 | 89.11 357 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Effi-MVS+-dtu | | | 93.90 131 | 92.60 166 | 97.77 4 | 94.74 264 | 96.67 3 | 94.00 134 | 95.41 232 | 89.94 150 | 91.93 253 | 92.13 299 | 90.12 162 | 98.97 120 | 87.68 205 | 97.48 242 | 97.67 191 |
|
RPSCF | | | 95.58 66 | 94.89 94 | 97.62 8 | 97.58 116 | 96.30 4 | 95.97 60 | 97.53 113 | 92.42 80 | 93.41 201 | 97.78 50 | 91.21 138 | 97.77 256 | 91.06 123 | 97.06 253 | 98.80 82 |
|
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 5 | 98.61 3 | 98.81 8 | 97.41 10 | 97.28 49 | 98.46 25 | 94.62 58 | 98.84 138 | 94.64 17 | 99.53 35 | 98.99 55 |
|
mvs-test1 | | | 93.07 153 | 91.80 183 | 96.89 39 | 94.74 264 | 95.83 6 | 92.17 193 | 95.41 232 | 89.94 150 | 89.85 287 | 90.59 325 | 90.12 162 | 98.88 130 | 87.68 205 | 95.66 287 | 95.97 264 |
|
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 43 | 95.32 7 | 96.61 28 | 98.35 20 | 95.81 31 | 97.55 37 | 97.44 68 | 96.51 9 | 99.40 45 | 94.06 30 | 99.23 79 | 98.85 78 |
|
SR-MVS-dyc-post | | | 96.84 8 | 96.60 25 | 97.56 10 | 98.07 79 | 95.27 8 | 96.37 41 | 98.12 47 | 95.66 33 | 97.00 59 | 97.03 96 | 94.85 52 | 99.42 31 | 93.49 48 | 98.84 127 | 98.00 154 |
|
RE-MVS-def | | | | 96.66 20 | | 98.07 79 | 95.27 8 | 96.37 41 | 98.12 47 | 95.66 33 | 97.00 59 | 97.03 96 | 95.40 27 | | 93.49 48 | 98.84 127 | 98.00 154 |
|
test1172 | | | 96.79 15 | 96.52 27 | 97.60 9 | 98.03 85 | 94.87 10 | 96.07 56 | 98.06 60 | 95.76 32 | 96.89 64 | 96.85 108 | 94.85 52 | 99.42 31 | 93.35 63 | 98.81 135 | 98.53 114 |
|
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 81 | 94.69 11 | 96.13 53 | 98.07 57 | 95.17 37 | 96.82 68 | 96.73 120 | 95.09 44 | 99.43 30 | 92.99 79 | 98.71 144 | 98.50 116 |
|
FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 8 | 97.73 6 | 98.27 20 | | | | | | |
|
mPP-MVS | | | 96.46 32 | 96.05 51 | 97.69 5 | 98.62 32 | 94.65 13 | 96.45 36 | 97.74 97 | 92.59 78 | 95.47 129 | 96.68 123 | 94.50 61 | 99.42 31 | 93.10 74 | 99.26 75 | 98.99 55 |
|
CP-MVS | | | 96.44 35 | 96.08 49 | 97.54 11 | 98.29 64 | 94.62 14 | 96.80 22 | 98.08 54 | 92.67 77 | 95.08 151 | 96.39 143 | 94.77 54 | 99.42 31 | 93.17 71 | 99.44 45 | 98.58 112 |
|
EGC-MVSNET | | | 80.97 329 | 75.73 341 | 96.67 44 | 98.85 22 | 94.55 15 | 96.83 20 | 96.60 182 | 2.44 376 | 5.32 377 | 98.25 31 | 92.24 109 | 98.02 233 | 91.85 107 | 99.21 82 | 97.45 204 |
|
FPMVS | | | 84.50 306 | 83.28 310 | 88.16 308 | 96.32 188 | 94.49 16 | 85.76 334 | 85.47 349 | 83.09 265 | 85.20 335 | 94.26 241 | 63.79 345 | 86.58 370 | 63.72 366 | 91.88 347 | 83.40 365 |
|
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 23 | 97.13 28 | 98.38 59 | 94.31 17 | 96.79 23 | 98.32 21 | 96.69 17 | 96.86 66 | 97.56 60 | 95.48 25 | 98.77 156 | 90.11 152 | 99.44 45 | 98.31 129 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
XVG-OURS | | | 94.72 101 | 94.12 125 | 96.50 49 | 98.00 88 | 94.23 18 | 91.48 223 | 98.17 41 | 90.72 135 | 95.30 138 | 96.47 133 | 87.94 190 | 96.98 291 | 91.41 120 | 97.61 239 | 98.30 130 |
|
LS3D | | | 96.11 48 | 95.83 62 | 96.95 37 | 94.75 262 | 94.20 19 | 97.34 11 | 97.98 73 | 97.31 11 | 95.32 137 | 96.77 113 | 93.08 90 | 99.20 85 | 91.79 108 | 98.16 204 | 97.44 206 |
|
XVG-OURS-SEG-HR | | | 95.38 73 | 95.00 91 | 96.51 48 | 98.10 77 | 94.07 20 | 92.46 177 | 98.13 46 | 90.69 136 | 93.75 192 | 96.25 154 | 98.03 2 | 97.02 290 | 92.08 98 | 95.55 289 | 98.45 121 |
|
MP-MVS |  | | 96.14 47 | 95.68 67 | 97.51 13 | 98.81 25 | 94.06 21 | 96.10 54 | 97.78 96 | 92.73 74 | 93.48 200 | 96.72 121 | 94.23 66 | 99.42 31 | 91.99 101 | 99.29 68 | 99.05 50 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PM-MVS | | | 93.33 141 | 92.67 164 | 95.33 91 | 96.58 167 | 94.06 21 | 92.26 190 | 92.18 297 | 85.92 230 | 96.22 96 | 96.61 128 | 85.64 226 | 95.99 322 | 90.35 140 | 98.23 197 | 95.93 266 |
|
MSP-MVS | | | 95.34 75 | 94.63 108 | 97.48 14 | 98.67 29 | 94.05 23 | 96.41 40 | 98.18 37 | 91.26 123 | 95.12 147 | 95.15 205 | 86.60 215 | 99.50 19 | 93.43 59 | 96.81 263 | 98.89 72 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
zzz-MVS | | | 96.47 31 | 96.14 45 | 97.47 15 | 98.95 16 | 94.05 23 | 93.69 143 | 97.62 103 | 94.46 45 | 96.29 90 | 96.94 101 | 93.56 74 | 99.37 58 | 94.29 24 | 99.42 47 | 98.99 55 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 16 | 94.05 23 | 95.88 64 | 97.62 103 | 94.46 45 | 96.29 90 | 96.94 101 | 93.56 74 | 99.37 58 | 94.29 24 | 99.42 47 | 98.99 55 |
|
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 7 | 98.00 88 | 94.03 26 | 96.97 17 | 97.61 106 | 87.68 203 | 98.45 18 | 98.77 15 | 94.20 67 | 99.50 19 | 96.70 3 | 99.40 53 | 99.53 14 |
|
XVS | | | 96.49 29 | 96.18 42 | 97.44 17 | 98.56 38 | 93.99 27 | 96.50 33 | 97.95 79 | 94.58 41 | 94.38 174 | 96.49 132 | 94.56 59 | 99.39 50 | 93.57 44 | 99.05 103 | 98.93 65 |
|
X-MVStestdata | | | 90.70 209 | 88.45 251 | 97.44 17 | 98.56 38 | 93.99 27 | 96.50 33 | 97.95 79 | 94.58 41 | 94.38 174 | 26.89 374 | 94.56 59 | 99.39 50 | 93.57 44 | 99.05 103 | 98.93 65 |
|
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 22 | 99.12 8 | 93.92 29 | 97.16 12 | 98.17 41 | 93.11 72 | 96.48 80 | 97.36 75 | 96.92 6 | 99.34 64 | 94.31 23 | 99.38 55 | 98.92 69 |
|
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 19 | 98.61 34 | 93.88 30 | 96.95 18 | 98.18 37 | 92.26 87 | 96.33 86 | 96.84 111 | 95.10 43 | 99.40 45 | 93.47 53 | 99.33 60 | 99.02 52 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 70 | 93.87 31 | 98.42 6 | 98.19 36 | 96.95 14 | 95.46 131 | 99.23 4 | 93.45 76 | 99.57 13 | 95.34 12 | 99.89 2 | 99.63 9 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 25 | 93.86 32 | 99.07 2 | 98.98 5 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 180 | 96.85 2 | 99.77 10 | 99.31 27 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PGM-MVS | | | 96.32 41 | 95.94 55 | 97.43 19 | 98.59 37 | 93.84 33 | 95.33 83 | 98.30 24 | 91.40 120 | 95.76 117 | 96.87 107 | 95.26 35 | 99.45 25 | 92.77 82 | 99.21 82 | 99.00 53 |
|
APD-MVS_3200maxsize | | | 96.82 10 | 96.65 21 | 97.32 25 | 97.95 92 | 93.82 34 | 96.31 46 | 98.25 28 | 95.51 35 | 96.99 61 | 97.05 95 | 95.63 21 | 99.39 50 | 93.31 64 | 98.88 122 | 98.75 87 |
|
ACMMPR | | | 96.46 32 | 96.14 45 | 97.41 21 | 98.60 35 | 93.82 34 | 96.30 48 | 97.96 77 | 92.35 84 | 95.57 126 | 96.61 128 | 94.93 51 | 99.41 38 | 93.78 38 | 99.15 91 | 99.00 53 |
|
region2R | | | 96.41 37 | 96.09 48 | 97.38 23 | 98.62 32 | 93.81 36 | 96.32 45 | 97.96 77 | 92.26 87 | 95.28 140 | 96.57 130 | 95.02 47 | 99.41 38 | 93.63 42 | 99.11 96 | 98.94 64 |
|
N_pmnet | | | 88.90 254 | 87.25 274 | 93.83 156 | 94.40 276 | 93.81 36 | 84.73 341 | 87.09 334 | 79.36 297 | 93.26 209 | 92.43 294 | 79.29 271 | 91.68 361 | 77.50 315 | 97.22 250 | 96.00 263 |
|
HPM-MVS++ |  | | 95.02 86 | 94.39 115 | 96.91 38 | 97.88 94 | 93.58 38 | 94.09 131 | 96.99 155 | 91.05 128 | 92.40 239 | 95.22 204 | 91.03 145 | 99.25 79 | 92.11 96 | 98.69 147 | 97.90 170 |
|
HPM-MVS |  | | 96.81 12 | 96.62 23 | 97.36 24 | 98.89 19 | 93.53 39 | 97.51 9 | 98.44 13 | 92.35 84 | 95.95 108 | 96.41 138 | 96.71 8 | 99.42 31 | 93.99 33 | 99.36 56 | 99.13 40 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HFP-MVS | | | 96.39 39 | 96.17 44 | 97.04 31 | 98.51 47 | 93.37 40 | 96.30 48 | 97.98 73 | 92.35 84 | 95.63 123 | 96.47 133 | 95.37 28 | 99.27 77 | 93.78 38 | 99.14 92 | 98.48 118 |
|
#test# | | | 95.89 54 | 95.51 72 | 97.04 31 | 98.51 47 | 93.37 40 | 95.14 92 | 97.98 73 | 89.34 165 | 95.63 123 | 96.47 133 | 95.37 28 | 99.27 77 | 91.99 101 | 99.14 92 | 98.48 118 |
|
ITE_SJBPF | | | | | 95.95 60 | 97.34 129 | 93.36 42 | | 96.55 188 | 91.93 96 | 94.82 161 | 95.39 200 | 91.99 116 | 97.08 288 | 85.53 235 | 97.96 221 | 97.41 207 |
|
XVG-ACMP-BASELINE | | | 95.68 63 | 95.34 78 | 96.69 43 | 98.40 57 | 93.04 43 | 94.54 119 | 98.05 61 | 90.45 143 | 96.31 88 | 96.76 115 | 92.91 95 | 98.72 162 | 91.19 122 | 99.42 47 | 98.32 127 |
|
CPTT-MVS | | | 94.74 100 | 94.12 125 | 96.60 45 | 98.15 74 | 93.01 44 | 95.84 65 | 97.66 101 | 89.21 171 | 93.28 207 | 95.46 194 | 88.89 176 | 98.98 116 | 89.80 159 | 98.82 133 | 97.80 181 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 123 | 93.56 141 | 96.14 54 | 95.96 217 | 92.96 45 | 89.48 277 | 97.46 117 | 85.14 242 | 96.23 95 | 95.42 197 | 93.19 85 | 98.08 227 | 90.37 139 | 98.76 141 | 97.38 213 |
|
ACMM | | 88.83 9 | 96.30 43 | 96.07 50 | 96.97 35 | 98.39 58 | 92.95 46 | 94.74 106 | 98.03 66 | 90.82 133 | 97.15 52 | 96.85 108 | 96.25 15 | 99.00 115 | 93.10 74 | 99.33 60 | 98.95 63 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PatchMatch-RL | | | 89.18 246 | 88.02 264 | 92.64 193 | 95.90 222 | 92.87 47 | 88.67 299 | 91.06 310 | 80.34 285 | 90.03 283 | 91.67 307 | 83.34 236 | 94.42 344 | 76.35 323 | 94.84 306 | 90.64 354 |
|
ZNCC-MVS | | | 96.42 36 | 96.20 41 | 97.07 30 | 98.80 27 | 92.79 48 | 96.08 55 | 98.16 44 | 91.74 111 | 95.34 136 | 96.36 146 | 95.68 19 | 99.44 26 | 94.41 21 | 99.28 73 | 98.97 61 |
|
GST-MVS | | | 96.24 44 | 95.99 54 | 97.00 34 | 98.65 30 | 92.71 49 | 95.69 71 | 98.01 70 | 92.08 92 | 95.74 119 | 96.28 151 | 95.22 37 | 99.42 31 | 93.17 71 | 99.06 98 | 98.88 74 |
|
mvs_tets | | | 96.83 9 | 96.71 19 | 97.17 27 | 98.83 23 | 92.51 50 | 96.58 30 | 97.61 106 | 87.57 206 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 12 | 96.15 7 | 99.47 39 | 99.40 21 |
|
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 28 | 92.49 51 | 96.44 38 | 97.42 119 | 86.96 215 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 16 | 95.92 8 | 99.45 43 | 99.32 26 |
|
AllTest | | | 94.88 93 | 94.51 113 | 96.00 58 | 98.02 86 | 92.17 52 | 95.26 86 | 98.43 14 | 90.48 141 | 95.04 153 | 96.74 118 | 92.54 105 | 97.86 247 | 85.11 242 | 98.98 111 | 97.98 158 |
|
TestCases | | | | | 96.00 58 | 98.02 86 | 92.17 52 | | 98.43 14 | 90.48 141 | 95.04 153 | 96.74 118 | 92.54 105 | 97.86 247 | 85.11 242 | 98.98 111 | 97.98 158 |
|
LPG-MVS_test | | | 96.38 40 | 96.23 39 | 96.84 40 | 98.36 62 | 92.13 54 | 95.33 83 | 98.25 28 | 91.78 107 | 97.07 54 | 97.22 86 | 96.38 13 | 99.28 75 | 92.07 99 | 99.59 27 | 99.11 43 |
|
LGP-MVS_train | | | | | 96.84 40 | 98.36 62 | 92.13 54 | | 98.25 28 | 91.78 107 | 97.07 54 | 97.22 86 | 96.38 13 | 99.28 75 | 92.07 99 | 99.59 27 | 99.11 43 |
|
LF4IMVS | | | 92.72 165 | 92.02 176 | 94.84 111 | 95.65 235 | 91.99 56 | 92.92 160 | 96.60 182 | 85.08 246 | 92.44 235 | 93.62 263 | 86.80 211 | 96.35 313 | 86.81 217 | 98.25 194 | 96.18 257 |
|
SteuartSystems-ACMMP | | | 96.40 38 | 96.30 36 | 96.71 42 | 98.63 31 | 91.96 57 | 95.70 69 | 98.01 70 | 93.34 69 | 96.64 75 | 96.57 130 | 94.99 49 | 99.36 60 | 93.48 51 | 99.34 58 | 98.82 80 |
Skip Steuart: Steuart Systems R&D Blog. |
F-COLMAP | | | 92.28 179 | 91.06 202 | 95.95 60 | 97.52 119 | 91.90 58 | 93.53 147 | 97.18 141 | 83.98 256 | 88.70 308 | 94.04 249 | 88.41 181 | 98.55 190 | 80.17 290 | 95.99 280 | 97.39 211 |
|
OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 36 | 99.03 11 | 91.85 59 | 97.98 7 | 98.01 70 | 94.15 52 | 98.93 3 | 99.07 5 | 88.07 186 | 99.57 13 | 95.86 9 | 99.69 15 | 99.46 18 |
|
MAR-MVS | | | 90.32 223 | 88.87 246 | 94.66 119 | 94.82 258 | 91.85 59 | 94.22 126 | 94.75 249 | 80.91 281 | 87.52 323 | 88.07 347 | 86.63 214 | 97.87 246 | 76.67 320 | 96.21 276 | 94.25 310 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
test_djsdf | | | 96.62 23 | 96.49 28 | 97.01 33 | 98.55 41 | 91.77 61 | 97.15 13 | 97.37 121 | 88.98 174 | 98.26 22 | 98.86 10 | 93.35 81 | 99.60 8 | 96.41 4 | 99.45 43 | 99.66 6 |
|
ACMP | | 88.15 13 | 95.71 62 | 95.43 76 | 96.54 47 | 98.17 73 | 91.73 62 | 94.24 125 | 98.08 54 | 89.46 161 | 96.61 77 | 96.47 133 | 95.85 17 | 99.12 95 | 90.45 135 | 99.56 33 | 98.77 86 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PHI-MVS | | | 94.34 116 | 93.80 130 | 95.95 60 | 95.65 235 | 91.67 63 | 94.82 103 | 97.86 84 | 87.86 198 | 93.04 218 | 94.16 246 | 91.58 126 | 98.78 152 | 90.27 145 | 98.96 117 | 97.41 207 |
|
ACMMP_NAP | | | 96.21 45 | 96.12 47 | 96.49 50 | 98.90 18 | 91.42 64 | 94.57 114 | 98.03 66 | 90.42 144 | 96.37 83 | 97.35 78 | 95.68 19 | 99.25 79 | 94.44 20 | 99.34 58 | 98.80 82 |
|
OMC-MVS | | | 94.22 122 | 93.69 135 | 95.81 70 | 97.25 131 | 91.27 65 | 92.27 189 | 97.40 120 | 87.10 214 | 94.56 169 | 95.42 197 | 93.74 71 | 98.11 226 | 86.62 222 | 98.85 126 | 98.06 146 |
|
MP-MVS-pluss | | | 96.08 49 | 95.92 57 | 96.57 46 | 99.06 10 | 91.21 66 | 93.25 153 | 98.32 21 | 87.89 197 | 96.86 66 | 97.38 71 | 95.55 24 | 99.39 50 | 95.47 10 | 99.47 39 | 99.11 43 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SMA-MVS |  | | 95.77 59 | 95.54 71 | 96.47 51 | 98.27 66 | 91.19 67 | 95.09 93 | 97.79 95 | 86.48 219 | 97.42 46 | 97.51 65 | 94.47 63 | 99.29 73 | 93.55 46 | 99.29 68 | 98.93 65 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CS-MVS-test | | | 95.15 83 | 94.81 96 | 96.19 52 | 96.89 150 | 91.14 68 | 94.55 117 | 98.85 6 | 94.31 48 | 92.43 236 | 91.91 302 | 91.79 120 | 99.49 22 | 93.48 51 | 99.06 98 | 97.93 164 |
|
CS-MVS | | | 95.72 61 | 95.58 70 | 96.15 53 | 96.86 153 | 91.06 69 | 96.74 25 | 99.07 4 | 94.22 50 | 92.42 237 | 94.79 226 | 93.58 73 | 99.48 24 | 93.45 54 | 99.06 98 | 97.91 168 |
|
CNLPA | | | 91.72 189 | 91.20 198 | 93.26 174 | 96.17 200 | 91.02 70 | 91.14 230 | 95.55 228 | 90.16 148 | 90.87 267 | 93.56 266 | 86.31 217 | 94.40 345 | 79.92 296 | 97.12 252 | 94.37 307 |
|
OPM-MVS | | | 95.61 65 | 95.45 74 | 96.08 56 | 98.49 55 | 91.00 71 | 92.65 169 | 97.33 130 | 90.05 149 | 96.77 71 | 96.85 108 | 95.04 45 | 98.56 188 | 92.77 82 | 99.06 98 | 98.70 96 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MVS_111021_LR | | | 93.66 134 | 93.28 149 | 94.80 112 | 96.25 195 | 90.95 72 | 90.21 255 | 95.43 231 | 87.91 195 | 93.74 194 | 94.40 237 | 92.88 97 | 96.38 311 | 90.39 137 | 98.28 189 | 97.07 221 |
|
Gipuma |  | | 95.31 78 | 95.80 64 | 93.81 157 | 97.99 91 | 90.91 73 | 96.42 39 | 97.95 79 | 96.69 17 | 91.78 255 | 98.85 12 | 91.77 121 | 95.49 329 | 91.72 111 | 99.08 97 | 95.02 293 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
APD-MVS |  | | 95.00 87 | 94.69 103 | 95.93 63 | 97.38 127 | 90.88 74 | 94.59 111 | 97.81 91 | 89.22 170 | 95.46 131 | 96.17 159 | 93.42 79 | 99.34 64 | 89.30 168 | 98.87 125 | 97.56 198 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + GP. | | | 93.07 153 | 92.41 170 | 95.06 104 | 95.82 224 | 90.87 75 | 90.97 234 | 92.61 291 | 88.04 194 | 94.61 168 | 93.79 260 | 88.08 185 | 97.81 251 | 89.41 167 | 98.39 174 | 96.50 244 |
|
3Dnovator+ | | 92.74 2 | 95.86 57 | 95.77 65 | 96.13 55 | 96.81 157 | 90.79 76 | 96.30 48 | 97.82 90 | 96.13 25 | 94.74 165 | 97.23 85 | 91.33 132 | 99.16 88 | 93.25 68 | 98.30 188 | 98.46 120 |
|
hse-mvs2 | | | 92.24 181 | 91.20 198 | 95.38 88 | 96.16 201 | 90.65 77 | 92.52 172 | 92.01 304 | 89.23 168 | 93.95 186 | 92.99 278 | 76.88 293 | 98.69 170 | 91.02 124 | 96.03 278 | 96.81 233 |
|
h-mvs33 | | | 92.89 158 | 91.99 177 | 95.58 82 | 96.97 144 | 90.55 78 | 93.94 137 | 94.01 267 | 89.23 168 | 93.95 186 | 96.19 156 | 76.88 293 | 99.14 91 | 91.02 124 | 95.71 286 | 97.04 224 |
|
AUN-MVS | | | 90.05 233 | 88.30 254 | 95.32 94 | 96.09 207 | 90.52 79 | 92.42 180 | 92.05 303 | 82.08 277 | 88.45 311 | 92.86 280 | 65.76 334 | 98.69 170 | 88.91 180 | 96.07 277 | 96.75 237 |
|
testtj | | | 94.81 98 | 94.42 114 | 96.01 57 | 97.23 132 | 90.51 80 | 94.77 105 | 97.85 87 | 91.29 122 | 94.92 158 | 95.66 182 | 91.71 123 | 99.40 45 | 88.07 198 | 98.25 194 | 98.11 145 |
|
ZD-MVS | | | | | | 97.23 132 | 90.32 81 | | 97.54 111 | 84.40 254 | 94.78 163 | 95.79 174 | 92.76 100 | 99.39 50 | 88.72 186 | 98.40 171 | |
|
DeepC-MVS | | 91.39 4 | 95.43 71 | 95.33 79 | 95.71 78 | 97.67 110 | 90.17 82 | 93.86 139 | 98.02 68 | 87.35 208 | 96.22 96 | 97.99 42 | 94.48 62 | 99.05 105 | 92.73 85 | 99.68 18 | 97.93 164 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PLC |  | 85.34 15 | 90.40 217 | 88.92 243 | 94.85 110 | 96.53 174 | 90.02 83 | 91.58 221 | 96.48 191 | 80.16 287 | 86.14 331 | 92.18 297 | 85.73 223 | 98.25 215 | 76.87 319 | 94.61 312 | 96.30 252 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Regformer-2 | | | 94.86 94 | 94.55 110 | 95.77 74 | 92.83 305 | 89.98 84 | 91.87 210 | 96.40 193 | 94.38 47 | 96.19 100 | 95.04 212 | 92.47 108 | 99.04 108 | 93.49 48 | 98.31 186 | 98.28 131 |
|
ETH3D cwj APD-0.16 | | | 93.99 128 | 93.38 146 | 95.80 72 | 96.82 155 | 89.92 85 | 92.72 165 | 98.02 68 | 84.73 252 | 93.65 196 | 95.54 191 | 91.68 124 | 99.22 82 | 88.78 183 | 98.49 168 | 98.26 133 |
|
test_prior4 | | | | | | | 89.91 86 | 90.74 239 | | | | | | | | | |
|
NCCC | | | 94.08 126 | 93.54 142 | 95.70 79 | 96.49 176 | 89.90 87 | 92.39 182 | 96.91 162 | 90.64 138 | 92.33 245 | 94.60 231 | 90.58 155 | 98.96 121 | 90.21 149 | 97.70 234 | 98.23 134 |
|
DPE-MVS |  | | 95.89 54 | 95.88 58 | 95.92 65 | 97.93 93 | 89.83 88 | 93.46 149 | 98.30 24 | 92.37 82 | 97.75 30 | 96.95 100 | 95.14 39 | 99.51 18 | 91.74 110 | 99.28 73 | 98.41 124 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ETH3D-3000-0.1 | | | 94.86 94 | 94.55 110 | 95.81 70 | 97.61 113 | 89.72 89 | 94.05 132 | 98.37 18 | 88.09 193 | 95.06 152 | 95.85 169 | 92.58 103 | 99.10 99 | 90.33 142 | 98.99 110 | 98.62 107 |
|
TAPA-MVS | | 88.58 10 | 92.49 173 | 91.75 185 | 94.73 115 | 96.50 175 | 89.69 90 | 92.91 161 | 97.68 100 | 78.02 309 | 92.79 224 | 94.10 247 | 90.85 146 | 97.96 239 | 84.76 248 | 98.16 204 | 96.54 239 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SF-MVS | | | 95.88 56 | 95.88 58 | 95.87 69 | 98.12 75 | 89.65 91 | 95.58 75 | 98.56 12 | 91.84 103 | 96.36 84 | 96.68 123 | 94.37 64 | 99.32 70 | 92.41 93 | 99.05 103 | 98.64 103 |
|
MSC_two_6792asdad | | | | | 95.90 66 | 96.54 171 | 89.57 92 | | 96.87 166 | | | | | 99.41 38 | 94.06 30 | 99.30 65 | 98.72 93 |
|
No_MVS | | | | | 95.90 66 | 96.54 171 | 89.57 92 | | 96.87 166 | | | | | 99.41 38 | 94.06 30 | 99.30 65 | 98.72 93 |
|
TEST9 | | | | | | 96.45 178 | 89.46 94 | 90.60 243 | 96.92 160 | 79.09 300 | 90.49 273 | 94.39 238 | 91.31 133 | 98.88 130 | | | |
|
train_agg | | | 92.71 166 | 91.83 181 | 95.35 89 | 96.45 178 | 89.46 94 | 90.60 243 | 96.92 160 | 79.37 295 | 90.49 273 | 94.39 238 | 91.20 139 | 98.88 130 | 88.66 187 | 98.43 170 | 97.72 187 |
|
OPU-MVS | | | | | 95.15 101 | 96.84 154 | 89.43 96 | 95.21 87 | | | | 95.66 182 | 93.12 88 | 98.06 228 | 86.28 230 | 98.61 153 | 97.95 162 |
|
test_part2 | | | | | | 98.21 71 | 89.41 97 | | | | 96.72 72 | | | | | | |
|
Vis-MVSNet |  | | 95.50 68 | 95.48 73 | 95.56 84 | 98.11 76 | 89.40 98 | 95.35 81 | 98.22 33 | 92.36 83 | 94.11 178 | 98.07 37 | 92.02 114 | 99.44 26 | 93.38 62 | 97.67 236 | 97.85 176 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
APDe-MVS | | | 96.46 32 | 96.64 22 | 95.93 63 | 97.68 109 | 89.38 99 | 96.90 19 | 98.41 17 | 92.52 79 | 97.43 44 | 97.92 45 | 95.11 42 | 99.50 19 | 94.45 19 | 99.30 65 | 98.92 69 |
|
CNVR-MVS | | | 94.58 106 | 94.29 119 | 95.46 87 | 96.94 146 | 89.35 100 | 91.81 216 | 96.80 171 | 89.66 157 | 93.90 189 | 95.44 196 | 92.80 99 | 98.72 162 | 92.74 84 | 98.52 163 | 98.32 127 |
|
test_8 | | | | | | 96.37 180 | 89.14 101 | 90.51 246 | 96.89 163 | 79.37 295 | 90.42 275 | 94.36 240 | 91.20 139 | 98.82 140 | | | |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 16 | 95.47 86 | 98.54 43 | 89.06 102 | 95.65 72 | 98.61 11 | 96.10 26 | 98.16 23 | 97.52 63 | 96.90 7 | 98.62 179 | 90.30 143 | 99.60 25 | 98.72 93 |
|
Regformer-4 | | | 94.90 91 | 94.67 106 | 95.59 81 | 92.78 307 | 89.02 103 | 92.39 182 | 95.91 212 | 94.50 43 | 96.41 81 | 95.56 189 | 92.10 113 | 99.01 113 | 94.23 26 | 98.14 206 | 98.74 90 |
|
MIMVSNet1 | | | 95.52 67 | 95.45 74 | 95.72 77 | 99.14 5 | 89.02 103 | 96.23 51 | 96.87 166 | 93.73 61 | 97.87 27 | 98.49 24 | 90.73 151 | 99.05 105 | 86.43 227 | 99.60 25 | 99.10 46 |
|
UniMVSNet (Re) | | | 95.32 76 | 95.15 86 | 95.80 72 | 97.79 99 | 88.91 105 | 92.91 161 | 98.07 57 | 93.46 67 | 96.31 88 | 95.97 166 | 90.14 161 | 99.34 64 | 92.11 96 | 99.64 23 | 99.16 37 |
|
agg_prior1 | | | 92.60 169 | 91.76 184 | 95.10 103 | 96.20 197 | 88.89 106 | 90.37 250 | 96.88 164 | 79.67 292 | 90.21 278 | 94.41 236 | 91.30 134 | 98.78 152 | 88.46 190 | 98.37 181 | 97.64 193 |
|
agg_prior | | | | | | 96.20 197 | 88.89 106 | | 96.88 164 | | 90.21 278 | | | 98.78 152 | | | |
|
SD-MVS | | | 95.19 82 | 95.73 66 | 93.55 163 | 96.62 165 | 88.88 108 | 94.67 108 | 98.05 61 | 91.26 123 | 97.25 51 | 96.40 139 | 95.42 26 | 94.36 346 | 92.72 86 | 99.19 85 | 97.40 210 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 94.96 89 | 94.75 100 | 95.57 83 | 98.86 21 | 88.69 109 | 96.37 41 | 96.81 170 | 85.23 239 | 94.75 164 | 97.12 91 | 91.85 119 | 99.40 45 | 93.45 54 | 98.33 183 | 98.62 107 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
plane_prior7 | | | | | | 97.71 105 | 88.68 110 | | | | | | | | | | |
|
wuyk23d | | | 87.83 271 | 90.79 208 | 78.96 352 | 90.46 341 | 88.63 111 | 92.72 165 | 90.67 314 | 91.65 115 | 98.68 11 | 97.64 57 | 96.06 16 | 77.53 373 | 59.84 368 | 99.41 52 | 70.73 371 |
|
DP-MVS | | | 95.62 64 | 95.84 61 | 94.97 106 | 97.16 137 | 88.62 112 | 94.54 119 | 97.64 102 | 96.94 15 | 96.58 78 | 97.32 81 | 93.07 91 | 98.72 162 | 90.45 135 | 98.84 127 | 97.57 196 |
|
UniMVSNet_NR-MVSNet | | | 95.35 74 | 95.21 84 | 95.76 75 | 97.69 108 | 88.59 113 | 92.26 190 | 97.84 88 | 94.91 38 | 96.80 69 | 95.78 177 | 90.42 156 | 99.41 38 | 91.60 115 | 99.58 31 | 99.29 28 |
|
DU-MVS | | | 95.28 79 | 95.12 88 | 95.75 76 | 97.75 101 | 88.59 113 | 92.58 170 | 97.81 91 | 93.99 54 | 96.80 69 | 95.90 167 | 90.10 165 | 99.41 38 | 91.60 115 | 99.58 31 | 99.26 29 |
|
nrg030 | | | 96.32 41 | 96.55 26 | 95.62 80 | 97.83 96 | 88.55 115 | 95.77 67 | 98.29 27 | 92.68 75 | 98.03 26 | 97.91 46 | 95.13 40 | 98.95 123 | 93.85 36 | 99.49 38 | 99.36 24 |
|
Regformer-1 | | | 94.55 107 | 94.33 118 | 95.19 99 | 92.83 305 | 88.54 116 | 91.87 210 | 95.84 216 | 93.99 54 | 95.95 108 | 95.04 212 | 92.00 115 | 98.79 148 | 93.14 73 | 98.31 186 | 98.23 134 |
|
PS-MVSNAJss | | | 96.01 51 | 96.04 52 | 95.89 68 | 98.82 24 | 88.51 117 | 95.57 76 | 97.88 83 | 88.72 180 | 98.81 6 | 98.86 10 | 90.77 147 | 99.60 8 | 95.43 11 | 99.53 35 | 99.57 13 |
|
CDPH-MVS | | | 92.67 167 | 91.83 181 | 95.18 100 | 96.94 146 | 88.46 118 | 90.70 241 | 97.07 150 | 77.38 311 | 92.34 244 | 95.08 210 | 92.67 102 | 98.88 130 | 85.74 233 | 98.57 157 | 98.20 138 |
|
plane_prior3 | | | | | | | 88.43 119 | | | 90.35 146 | 93.31 204 | | | | | | |
|
Fast-Effi-MVS+-dtu | | | 92.77 164 | 92.16 172 | 94.58 127 | 94.66 270 | 88.25 120 | 92.05 197 | 96.65 180 | 89.62 158 | 90.08 281 | 91.23 312 | 92.56 104 | 98.60 182 | 86.30 229 | 96.27 275 | 96.90 229 |
|
plane_prior6 | | | | | | 97.21 135 | 88.23 121 | | | | | | 86.93 207 | | | | |
|
RRT_MVS | | | 91.36 198 | 90.05 225 | 95.29 95 | 89.21 354 | 88.15 122 | 92.51 176 | 94.89 243 | 86.73 218 | 95.54 127 | 95.68 181 | 61.82 353 | 99.30 72 | 94.91 13 | 99.13 95 | 98.43 122 |
|
HQP_MVS | | | 94.26 120 | 93.93 127 | 95.23 98 | 97.71 105 | 88.12 123 | 94.56 115 | 97.81 91 | 91.74 111 | 93.31 204 | 95.59 184 | 86.93 207 | 98.95 123 | 89.26 172 | 98.51 165 | 98.60 110 |
|
plane_prior | | | | | | | 88.12 123 | 93.01 157 | | 88.98 174 | | | | | | 98.06 214 | |
|
xxxxxxxxxxxxxcwj | | | 95.03 85 | 94.93 92 | 95.33 91 | 97.46 124 | 88.05 125 | 92.04 198 | 98.42 16 | 87.63 204 | 96.36 84 | 96.68 123 | 94.37 64 | 99.32 70 | 92.41 93 | 99.05 103 | 98.64 103 |
|
save fliter | | | | | | 97.46 124 | 88.05 125 | 92.04 198 | 97.08 149 | 87.63 204 | | | | | | | |
|
UGNet | | | 93.08 151 | 92.50 168 | 94.79 113 | 93.87 288 | 87.99 127 | 95.07 95 | 94.26 261 | 90.64 138 | 87.33 325 | 97.67 55 | 86.89 210 | 98.49 194 | 88.10 196 | 98.71 144 | 97.91 168 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DeepC-MVS_fast | | 89.96 7 | 93.73 133 | 93.44 144 | 94.60 124 | 96.14 203 | 87.90 128 | 93.36 152 | 97.14 144 | 85.53 236 | 93.90 189 | 95.45 195 | 91.30 134 | 98.59 184 | 89.51 165 | 98.62 152 | 97.31 216 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CSCG | | | 94.69 102 | 94.75 100 | 94.52 128 | 97.55 118 | 87.87 129 | 95.01 98 | 97.57 109 | 92.68 75 | 96.20 98 | 93.44 268 | 91.92 118 | 98.78 152 | 89.11 176 | 99.24 78 | 96.92 228 |
|
pmmvs-eth3d | | | 91.54 193 | 90.73 210 | 93.99 145 | 95.76 229 | 87.86 130 | 90.83 237 | 93.98 268 | 78.23 308 | 94.02 185 | 96.22 155 | 82.62 247 | 96.83 297 | 86.57 223 | 98.33 183 | 97.29 217 |
|
pmmvs6 | | | 96.80 13 | 97.36 9 | 95.15 101 | 99.12 8 | 87.82 131 | 96.68 26 | 97.86 84 | 96.10 26 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 217 | 91.38 121 | 99.69 15 | 99.42 19 |
|
TranMVSNet+NR-MVSNet | | | 96.07 50 | 96.26 38 | 95.50 85 | 98.26 67 | 87.69 132 | 93.75 141 | 97.86 84 | 95.96 30 | 97.48 42 | 97.14 90 | 95.33 32 | 99.44 26 | 90.79 129 | 99.76 11 | 99.38 22 |
|
DROMVSNet | | | 95.44 70 | 95.62 69 | 94.89 108 | 96.93 148 | 87.69 132 | 96.48 35 | 99.14 3 | 93.93 57 | 92.77 225 | 94.52 234 | 93.95 70 | 99.49 22 | 93.62 43 | 99.22 81 | 97.51 201 |
|
alignmvs | | | 93.26 145 | 92.85 156 | 94.50 129 | 95.70 231 | 87.45 134 | 93.45 150 | 95.76 217 | 91.58 116 | 95.25 143 | 92.42 295 | 81.96 254 | 98.72 162 | 91.61 114 | 97.87 226 | 97.33 215 |
|
1121 | | | 90.26 225 | 89.23 235 | 93.34 170 | 97.15 139 | 87.40 135 | 91.94 204 | 94.39 257 | 67.88 356 | 91.02 266 | 94.91 218 | 86.91 209 | 98.59 184 | 81.17 282 | 97.71 233 | 94.02 316 |
|
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 89 | 99.51 2 | 87.38 136 | 97.70 8 | 97.54 111 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 100 | 90.73 130 | 99.73 14 | 99.59 12 |
|
新几何1 | | | | | 93.17 176 | 97.16 137 | 87.29 137 | | 94.43 256 | 67.95 355 | 91.29 260 | 94.94 217 | 86.97 206 | 98.23 216 | 81.06 284 | 97.75 229 | 93.98 317 |
|
test_prior3 | | | 93.29 142 | 92.85 156 | 94.61 120 | 95.95 218 | 87.23 138 | 90.21 255 | 97.36 126 | 89.33 166 | 90.77 268 | 94.81 222 | 90.41 157 | 98.68 172 | 88.21 191 | 98.55 158 | 97.93 164 |
|
test_prior | | | | | 94.61 120 | 95.95 218 | 87.23 138 | | 97.36 126 | | | | | 98.68 172 | | | 97.93 164 |
|
NR-MVSNet | | | 95.28 79 | 95.28 82 | 95.26 96 | 97.75 101 | 87.21 140 | 95.08 94 | 97.37 121 | 93.92 59 | 97.65 32 | 95.90 167 | 90.10 165 | 99.33 69 | 90.11 152 | 99.66 21 | 99.26 29 |
|
test_one_0601 | | | | | | 98.26 67 | 87.14 141 | | 98.18 37 | 94.25 49 | 96.99 61 | 97.36 75 | 95.13 40 | | | | |
|
NP-MVS | | | | | | 96.82 155 | 87.10 142 | | | | | 93.40 269 | | | | | |
|
MVS_0304 | | | 90.96 204 | 90.15 223 | 93.37 169 | 93.17 297 | 87.06 143 | 93.62 146 | 92.43 295 | 89.60 159 | 82.25 354 | 95.50 192 | 82.56 248 | 97.83 250 | 84.41 252 | 97.83 228 | 95.22 287 |
|
3Dnovator | | 92.54 3 | 94.80 99 | 94.90 93 | 94.47 132 | 95.47 242 | 87.06 143 | 96.63 27 | 97.28 136 | 91.82 106 | 94.34 176 | 97.41 69 | 90.60 154 | 98.65 177 | 92.47 91 | 98.11 210 | 97.70 188 |
|
canonicalmvs | | | 94.59 105 | 94.69 103 | 94.30 138 | 95.60 239 | 87.03 145 | 95.59 73 | 98.24 31 | 91.56 117 | 95.21 146 | 92.04 301 | 94.95 50 | 98.66 175 | 91.45 119 | 97.57 240 | 97.20 220 |
|
SED-MVS | | | 96.00 52 | 96.41 32 | 94.76 114 | 98.51 47 | 86.97 146 | 95.21 87 | 98.10 50 | 91.95 94 | 97.63 33 | 97.25 83 | 96.48 11 | 99.35 61 | 93.29 65 | 99.29 68 | 97.95 162 |
|
test_241102_ONE | | | | | | 98.51 47 | 86.97 146 | | 98.10 50 | 91.85 100 | 97.63 33 | 97.03 96 | 96.48 11 | 98.95 123 | | | |
|
MVS_111021_HR | | | 93.63 135 | 93.42 145 | 94.26 139 | 96.65 161 | 86.96 148 | 89.30 283 | 96.23 201 | 88.36 189 | 93.57 198 | 94.60 231 | 93.45 76 | 97.77 256 | 90.23 148 | 98.38 176 | 98.03 152 |
|
DP-MVS Recon | | | 92.31 178 | 91.88 180 | 93.60 161 | 97.18 136 | 86.87 149 | 91.10 232 | 97.37 121 | 84.92 249 | 92.08 250 | 94.08 248 | 88.59 178 | 98.20 218 | 83.50 257 | 98.14 206 | 95.73 275 |
|
v7n | | | 96.82 10 | 97.31 10 | 95.33 91 | 98.54 43 | 86.81 150 | 96.83 20 | 98.07 57 | 96.59 20 | 98.46 17 | 98.43 27 | 92.91 95 | 99.52 17 | 96.25 6 | 99.76 11 | 99.65 8 |
|
test12 | | | | | 94.43 135 | 95.95 218 | 86.75 151 | | 96.24 200 | | 89.76 291 | | 89.79 170 | 98.79 148 | | 97.95 222 | 97.75 186 |
|
test_0728_SECOND | | | | | 94.88 109 | 98.55 41 | 86.72 152 | 95.20 89 | 98.22 33 | | | | | 99.38 56 | 93.44 57 | 99.31 63 | 98.53 114 |
|
DVP-MVS |  | | 95.82 58 | 96.18 42 | 94.72 116 | 98.51 47 | 86.69 153 | 95.20 89 | 97.00 153 | 91.85 100 | 97.40 47 | 97.35 78 | 95.58 22 | 99.34 64 | 93.44 57 | 99.31 63 | 98.13 143 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 98.51 47 | 86.69 153 | 95.34 82 | 98.18 37 | 91.85 100 | 97.63 33 | 97.37 72 | 95.58 22 | | | | |
|
DVP-MVS++ | | | 95.93 53 | 96.34 34 | 94.70 117 | 96.54 171 | 86.66 155 | 98.45 4 | 98.22 33 | 93.26 70 | 97.54 38 | 97.36 75 | 93.12 88 | 99.38 56 | 93.88 34 | 98.68 148 | 98.04 149 |
|
IU-MVS | | | | | | 98.51 47 | 86.66 155 | | 96.83 169 | 72.74 336 | 95.83 115 | | | | 93.00 78 | 99.29 68 | 98.64 103 |
|
EG-PatchMatch MVS | | | 94.54 109 | 94.67 106 | 94.14 142 | 97.87 95 | 86.50 157 | 92.00 201 | 96.74 176 | 88.16 192 | 96.93 63 | 97.61 58 | 93.04 92 | 97.90 241 | 91.60 115 | 98.12 209 | 98.03 152 |
|
MVP-Stereo | | | 90.07 232 | 88.92 243 | 93.54 165 | 96.31 189 | 86.49 158 | 90.93 235 | 95.59 225 | 79.80 288 | 91.48 257 | 95.59 184 | 80.79 263 | 97.39 278 | 78.57 307 | 91.19 349 | 96.76 236 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CDS-MVSNet | | | 89.55 241 | 88.22 259 | 93.53 166 | 95.37 247 | 86.49 158 | 89.26 284 | 93.59 271 | 79.76 290 | 91.15 264 | 92.31 296 | 77.12 289 | 98.38 203 | 77.51 314 | 97.92 224 | 95.71 276 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IS-MVSNet | | | 94.49 110 | 94.35 117 | 94.92 107 | 98.25 69 | 86.46 160 | 97.13 15 | 94.31 259 | 96.24 24 | 96.28 93 | 96.36 146 | 82.88 241 | 99.35 61 | 88.19 193 | 99.52 37 | 98.96 62 |
|
WR-MVS_H | | | 96.60 25 | 97.05 14 | 95.24 97 | 99.02 12 | 86.44 161 | 96.78 24 | 98.08 54 | 97.42 9 | 98.48 16 | 97.86 49 | 91.76 122 | 99.63 6 | 94.23 26 | 99.84 3 | 99.66 6 |
|
PMMVS | | | 83.00 314 | 81.11 322 | 88.66 300 | 83.81 376 | 86.44 161 | 82.24 357 | 85.65 346 | 61.75 368 | 82.07 356 | 85.64 360 | 79.75 268 | 91.59 362 | 75.99 325 | 93.09 332 | 87.94 361 |
|
TAMVS | | | 90.16 227 | 89.05 240 | 93.49 168 | 96.49 176 | 86.37 163 | 90.34 252 | 92.55 292 | 80.84 284 | 92.99 219 | 94.57 233 | 81.94 255 | 98.20 218 | 73.51 336 | 98.21 200 | 95.90 269 |
|
AdaColmap |  | | 91.63 191 | 91.36 194 | 92.47 203 | 95.56 240 | 86.36 164 | 92.24 192 | 96.27 198 | 88.88 178 | 89.90 286 | 92.69 286 | 91.65 125 | 98.32 208 | 77.38 316 | 97.64 237 | 92.72 340 |
|
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 105 | 97.46 124 | 86.35 165 | 97.11 16 | 98.24 31 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 87 | 99.15 89 | 93.18 70 | 99.74 13 | 99.50 16 |
|
ETV-MVS | | | 92.99 155 | 92.74 160 | 93.72 158 | 95.86 223 | 86.30 166 | 92.33 186 | 97.84 88 | 91.70 114 | 92.81 223 | 86.17 358 | 92.22 110 | 99.19 86 | 88.03 199 | 97.73 230 | 95.66 279 |
|
Regformer-3 | | | 94.28 118 | 94.23 124 | 94.46 133 | 92.78 307 | 86.28 167 | 92.39 182 | 94.70 251 | 93.69 65 | 95.97 106 | 95.56 189 | 91.34 131 | 98.48 198 | 93.45 54 | 98.14 206 | 98.62 107 |
|
API-MVS | | | 91.52 194 | 91.61 186 | 91.26 237 | 94.16 279 | 86.26 168 | 94.66 109 | 94.82 246 | 91.17 126 | 92.13 249 | 91.08 315 | 90.03 168 | 97.06 289 | 79.09 304 | 97.35 247 | 90.45 355 |
|
EPNet | | | 89.80 240 | 88.25 256 | 94.45 134 | 83.91 375 | 86.18 169 | 93.87 138 | 87.07 335 | 91.16 127 | 80.64 363 | 94.72 228 | 78.83 273 | 98.89 129 | 85.17 237 | 98.89 120 | 98.28 131 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
JIA-IIPM | | | 85.08 303 | 83.04 312 | 91.19 242 | 87.56 361 | 86.14 170 | 89.40 280 | 84.44 358 | 88.98 174 | 82.20 355 | 97.95 43 | 56.82 363 | 96.15 316 | 76.55 322 | 83.45 365 | 91.30 350 |
|
VDD-MVS | | | 94.37 113 | 94.37 116 | 94.40 136 | 97.49 121 | 86.07 171 | 93.97 136 | 93.28 276 | 94.49 44 | 96.24 94 | 97.78 50 | 87.99 189 | 98.79 148 | 88.92 179 | 99.14 92 | 98.34 126 |
|
EI-MVSNet-Vis-set | | | 94.36 114 | 94.28 120 | 94.61 120 | 92.55 309 | 85.98 172 | 92.44 178 | 94.69 252 | 93.70 62 | 96.12 103 | 95.81 173 | 91.24 136 | 98.86 135 | 93.76 41 | 98.22 199 | 98.98 60 |
|
Anonymous20240529 | | | 95.50 68 | 95.83 62 | 94.50 129 | 97.33 130 | 85.93 173 | 95.19 91 | 96.77 174 | 96.64 19 | 97.61 36 | 98.05 38 | 93.23 84 | 98.79 148 | 88.60 188 | 99.04 108 | 98.78 84 |
|
EI-MVSNet-UG-set | | | 94.35 115 | 94.27 122 | 94.59 125 | 92.46 310 | 85.87 174 | 92.42 180 | 94.69 252 | 93.67 66 | 96.13 102 | 95.84 172 | 91.20 139 | 98.86 135 | 93.78 38 | 98.23 197 | 99.03 51 |
|
PCF-MVS | | 84.52 17 | 89.12 248 | 87.71 267 | 93.34 170 | 96.06 209 | 85.84 175 | 86.58 332 | 97.31 131 | 68.46 354 | 93.61 197 | 93.89 257 | 87.51 196 | 98.52 192 | 67.85 359 | 98.11 210 | 95.66 279 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_0402 | | | 95.73 60 | 96.22 40 | 94.26 139 | 98.19 72 | 85.77 176 | 93.24 154 | 97.24 138 | 96.88 16 | 97.69 31 | 97.77 52 | 94.12 68 | 99.13 93 | 91.54 118 | 99.29 68 | 97.88 172 |
|
MCST-MVS | | | 92.91 157 | 92.51 167 | 94.10 143 | 97.52 119 | 85.72 177 | 91.36 227 | 97.13 146 | 80.33 286 | 92.91 222 | 94.24 242 | 91.23 137 | 98.72 162 | 89.99 156 | 97.93 223 | 97.86 174 |
|
pmmvs4 | | | 88.95 253 | 87.70 268 | 92.70 191 | 94.30 277 | 85.60 178 | 87.22 314 | 92.16 299 | 74.62 325 | 89.75 292 | 94.19 244 | 77.97 282 | 96.41 309 | 82.71 264 | 96.36 274 | 96.09 259 |
|
EPP-MVSNet | | | 93.91 130 | 93.68 136 | 94.59 125 | 98.08 78 | 85.55 179 | 97.44 10 | 94.03 264 | 94.22 50 | 94.94 156 | 96.19 156 | 82.07 252 | 99.57 13 | 87.28 212 | 98.89 120 | 98.65 99 |
|
CMPMVS |  | 68.83 22 | 87.28 284 | 85.67 297 | 92.09 214 | 88.77 358 | 85.42 180 | 90.31 253 | 94.38 258 | 70.02 349 | 88.00 317 | 93.30 271 | 73.78 305 | 94.03 350 | 75.96 326 | 96.54 270 | 96.83 232 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 144 | 98.56 38 | 85.33 181 | 96.33 44 | 98.30 24 | 94.66 40 | 98.72 8 | 98.30 30 | 97.51 5 | 98.00 235 | 94.87 14 | 99.59 27 | 98.86 75 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test222 | | | | | | 96.95 145 | 85.27 182 | 88.83 293 | 93.61 270 | 65.09 363 | 90.74 270 | 94.85 221 | 84.62 231 | | | 97.36 246 | 93.91 318 |
|
GeoE | | | 94.55 107 | 94.68 105 | 94.15 141 | 97.23 132 | 85.11 183 | 94.14 129 | 97.34 129 | 88.71 181 | 95.26 141 | 95.50 192 | 94.65 57 | 99.12 95 | 90.94 127 | 98.40 171 | 98.23 134 |
|
pm-mvs1 | | | 95.43 71 | 95.94 55 | 93.93 150 | 98.38 59 | 85.08 184 | 95.46 80 | 97.12 147 | 91.84 103 | 97.28 49 | 98.46 25 | 95.30 34 | 97.71 261 | 90.17 150 | 99.42 47 | 98.99 55 |
|
HQP5-MVS | | | | | | | 84.89 185 | | | | | | | | | | |
|
HQP-MVS | | | 92.09 183 | 91.49 191 | 93.88 154 | 96.36 182 | 84.89 185 | 91.37 224 | 97.31 131 | 87.16 211 | 88.81 302 | 93.40 269 | 84.76 229 | 98.60 182 | 86.55 224 | 97.73 230 | 98.14 141 |
|
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 118 | 99.13 6 | 84.68 187 | 96.51 32 | 97.94 82 | 98.14 3 | 98.67 12 | 98.32 29 | 95.04 45 | 99.69 2 | 93.27 67 | 99.82 8 | 99.62 10 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 120 | 99.16 4 | 84.50 188 | 96.54 31 | 98.05 61 | 98.06 4 | 98.64 13 | 98.25 31 | 95.01 48 | 99.65 3 | 92.95 80 | 99.83 6 | 99.68 4 |
|
ETH3 D test6400 | | | 91.91 186 | 91.25 197 | 93.89 153 | 96.59 166 | 84.41 189 | 92.10 195 | 97.72 99 | 78.52 305 | 91.82 254 | 93.78 261 | 88.70 177 | 99.13 93 | 83.61 256 | 98.39 174 | 98.14 141 |
|
GBi-Net | | | 93.21 148 | 92.96 153 | 93.97 147 | 95.40 244 | 84.29 190 | 95.99 57 | 96.56 185 | 88.63 182 | 95.10 148 | 98.53 21 | 81.31 259 | 98.98 116 | 86.74 218 | 98.38 176 | 98.65 99 |
|
test1 | | | 93.21 148 | 92.96 153 | 93.97 147 | 95.40 244 | 84.29 190 | 95.99 57 | 96.56 185 | 88.63 182 | 95.10 148 | 98.53 21 | 81.31 259 | 98.98 116 | 86.74 218 | 98.38 176 | 98.65 99 |
|
FMVSNet1 | | | 94.84 96 | 95.13 87 | 93.97 147 | 97.60 114 | 84.29 190 | 95.99 57 | 96.56 185 | 92.38 81 | 97.03 58 | 98.53 21 | 90.12 162 | 98.98 116 | 88.78 183 | 99.16 90 | 98.65 99 |
|
原ACMM1 | | | | | 92.87 186 | 96.91 149 | 84.22 193 | | 97.01 152 | 76.84 316 | 89.64 293 | 94.46 235 | 88.00 188 | 98.70 168 | 81.53 277 | 98.01 219 | 95.70 277 |
|
DPM-MVS | | | 89.35 244 | 88.40 252 | 92.18 211 | 96.13 206 | 84.20 194 | 86.96 319 | 96.15 207 | 75.40 322 | 87.36 324 | 91.55 310 | 83.30 237 | 98.01 234 | 82.17 272 | 96.62 269 | 94.32 309 |
|
旧先验1 | | | | | | 96.20 197 | 84.17 195 | | 94.82 246 | | | 95.57 188 | 89.57 171 | | | 97.89 225 | 96.32 251 |
|
OpenMVS |  | 89.45 8 | 92.27 180 | 92.13 174 | 92.68 192 | 94.53 273 | 84.10 196 | 95.70 69 | 97.03 151 | 82.44 274 | 91.14 265 | 96.42 137 | 88.47 180 | 98.38 203 | 85.95 232 | 97.47 243 | 95.55 283 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 131 | 99.13 6 | 84.09 197 | 96.61 28 | 97.97 76 | 97.91 5 | 98.64 13 | 98.13 34 | 95.24 36 | 99.65 3 | 93.39 61 | 99.84 3 | 99.72 2 |
|
EIA-MVS | | | 92.35 177 | 92.03 175 | 93.30 173 | 95.81 226 | 83.97 198 | 92.80 164 | 98.17 41 | 87.71 201 | 89.79 290 | 87.56 348 | 91.17 142 | 99.18 87 | 87.97 200 | 97.27 248 | 96.77 235 |
|
PVSNet_Blended_VisFu | | | 91.63 191 | 91.20 198 | 92.94 183 | 97.73 104 | 83.95 199 | 92.14 194 | 97.46 117 | 78.85 304 | 92.35 242 | 94.98 215 | 84.16 233 | 99.08 100 | 86.36 228 | 96.77 265 | 95.79 273 |
|
CP-MVSNet | | | 96.19 46 | 96.80 17 | 94.38 137 | 98.99 14 | 83.82 200 | 96.31 46 | 97.53 113 | 97.60 7 | 98.34 19 | 97.52 63 | 91.98 117 | 99.63 6 | 93.08 76 | 99.81 9 | 99.70 3 |
|
lessismore_v0 | | | | | 93.87 155 | 98.05 81 | 83.77 201 | | 80.32 369 | | 97.13 53 | 97.91 46 | 77.49 284 | 99.11 97 | 92.62 88 | 98.08 213 | 98.74 90 |
|
CLD-MVS | | | 91.82 187 | 91.41 193 | 93.04 177 | 96.37 180 | 83.65 202 | 86.82 324 | 97.29 134 | 84.65 253 | 92.27 246 | 89.67 334 | 92.20 111 | 97.85 249 | 83.95 254 | 99.47 39 | 97.62 194 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 92.38 176 | 91.99 177 | 93.52 167 | 93.82 290 | 83.46 203 | 91.14 230 | 97.00 153 | 89.81 154 | 86.47 329 | 94.04 249 | 87.90 191 | 99.21 83 | 89.50 166 | 98.27 190 | 97.90 170 |
|
QAPM | | | 92.88 159 | 92.77 158 | 93.22 175 | 95.82 224 | 83.31 204 | 96.45 36 | 97.35 128 | 83.91 257 | 93.75 192 | 96.77 113 | 89.25 174 | 98.88 130 | 84.56 250 | 97.02 255 | 97.49 202 |
|
Effi-MVS+ | | | 92.79 162 | 92.74 160 | 92.94 183 | 95.10 252 | 83.30 205 | 94.00 134 | 97.53 113 | 91.36 121 | 89.35 296 | 90.65 324 | 94.01 69 | 98.66 175 | 87.40 210 | 95.30 297 | 96.88 231 |
|
Anonymous202405211 | | | 92.58 170 | 92.50 168 | 92.83 188 | 96.55 170 | 83.22 206 | 92.43 179 | 91.64 307 | 94.10 53 | 95.59 125 | 96.64 126 | 81.88 256 | 97.50 269 | 85.12 241 | 98.52 163 | 97.77 183 |
|
SixPastTwentyTwo | | | 94.91 90 | 95.21 84 | 93.98 146 | 98.52 46 | 83.19 207 | 95.93 61 | 94.84 245 | 94.86 39 | 98.49 15 | 98.74 16 | 81.45 257 | 99.60 8 | 94.69 16 | 99.39 54 | 99.15 38 |
|
VPA-MVSNet | | | 95.14 84 | 95.67 68 | 93.58 162 | 97.76 100 | 83.15 208 | 94.58 113 | 97.58 108 | 93.39 68 | 97.05 57 | 98.04 39 | 93.25 83 | 98.51 193 | 89.75 162 | 99.59 27 | 99.08 47 |
|
LCM-MVSNet-Re | | | 94.20 123 | 94.58 109 | 93.04 177 | 95.91 221 | 83.13 209 | 93.79 140 | 99.19 2 | 92.00 93 | 98.84 5 | 98.04 39 | 93.64 72 | 99.02 111 | 81.28 279 | 98.54 161 | 96.96 227 |
|
MSDG | | | 90.82 205 | 90.67 211 | 91.26 237 | 94.16 279 | 83.08 210 | 86.63 329 | 96.19 204 | 90.60 140 | 91.94 252 | 91.89 303 | 89.16 175 | 95.75 324 | 80.96 285 | 94.51 313 | 94.95 295 |
|
ambc | | | | | 92.98 179 | 96.88 151 | 83.01 211 | 95.92 62 | 96.38 195 | | 96.41 81 | 97.48 66 | 88.26 182 | 97.80 252 | 89.96 157 | 98.93 119 | 98.12 144 |
|
test_part1 | | | 94.39 112 | 94.55 110 | 93.92 151 | 96.14 203 | 82.86 212 | 95.54 77 | 98.09 53 | 95.36 36 | 98.27 20 | 98.36 28 | 75.91 298 | 99.44 26 | 93.41 60 | 99.84 3 | 99.47 17 |
|
MSLP-MVS++ | | | 93.25 147 | 93.88 128 | 91.37 233 | 96.34 186 | 82.81 213 | 93.11 155 | 97.74 97 | 89.37 164 | 94.08 180 | 95.29 203 | 90.40 159 | 96.35 313 | 90.35 140 | 98.25 194 | 94.96 294 |
|
K. test v3 | | | 93.37 140 | 93.27 150 | 93.66 159 | 98.05 81 | 82.62 214 | 94.35 122 | 86.62 337 | 96.05 28 | 97.51 41 | 98.85 12 | 76.59 296 | 99.65 3 | 93.21 69 | 98.20 202 | 98.73 92 |
|
Fast-Effi-MVS+ | | | 91.28 201 | 90.86 205 | 92.53 200 | 95.45 243 | 82.53 215 | 89.25 286 | 96.52 189 | 85.00 247 | 89.91 285 | 88.55 344 | 92.94 93 | 98.84 138 | 84.72 249 | 95.44 293 | 96.22 255 |
|
VDDNet | | | 94.03 127 | 94.27 122 | 93.31 172 | 98.87 20 | 82.36 216 | 95.51 79 | 91.78 306 | 97.19 12 | 96.32 87 | 98.60 18 | 84.24 232 | 98.75 157 | 87.09 215 | 98.83 132 | 98.81 81 |
|
114514_t | | | 90.51 213 | 89.80 229 | 92.63 195 | 98.00 88 | 82.24 217 | 93.40 151 | 97.29 134 | 65.84 361 | 89.40 295 | 94.80 225 | 86.99 205 | 98.75 157 | 83.88 255 | 98.61 153 | 96.89 230 |
|
testdata | | | | | 91.03 245 | 96.87 152 | 82.01 218 | | 94.28 260 | 71.55 340 | 92.46 233 | 95.42 197 | 85.65 225 | 97.38 280 | 82.64 265 | 97.27 248 | 93.70 324 |
|
FMVSNet2 | | | 92.78 163 | 92.73 162 | 92.95 182 | 95.40 244 | 81.98 219 | 94.18 127 | 95.53 229 | 88.63 182 | 96.05 105 | 97.37 72 | 81.31 259 | 98.81 145 | 87.38 211 | 98.67 150 | 98.06 146 |
|
TransMVSNet (Re) | | | 95.27 81 | 96.04 52 | 92.97 180 | 98.37 61 | 81.92 220 | 95.07 95 | 96.76 175 | 93.97 56 | 97.77 29 | 98.57 19 | 95.72 18 | 97.90 241 | 88.89 181 | 99.23 79 | 99.08 47 |
|
FC-MVSNet-test | | | 95.32 76 | 95.88 58 | 93.62 160 | 98.49 55 | 81.77 221 | 95.90 63 | 98.32 21 | 93.93 57 | 97.53 40 | 97.56 60 | 88.48 179 | 99.40 45 | 92.91 81 | 99.83 6 | 99.68 4 |
|
FIs | | | 94.90 91 | 95.35 77 | 93.55 163 | 98.28 65 | 81.76 222 | 95.33 83 | 98.14 45 | 93.05 73 | 97.07 54 | 97.18 88 | 87.65 193 | 99.29 73 | 91.72 111 | 99.69 15 | 99.61 11 |
|
ab-mvs | | | 92.40 175 | 92.62 165 | 91.74 222 | 97.02 142 | 81.65 223 | 95.84 65 | 95.50 230 | 86.95 216 | 92.95 221 | 97.56 60 | 90.70 152 | 97.50 269 | 79.63 297 | 97.43 244 | 96.06 261 |
|
xiu_mvs_v1_base_debu | | | 91.47 195 | 91.52 188 | 91.33 234 | 95.69 232 | 81.56 224 | 89.92 266 | 96.05 209 | 83.22 262 | 91.26 261 | 90.74 319 | 91.55 127 | 98.82 140 | 89.29 169 | 95.91 281 | 93.62 326 |
|
xiu_mvs_v1_base | | | 91.47 195 | 91.52 188 | 91.33 234 | 95.69 232 | 81.56 224 | 89.92 266 | 96.05 209 | 83.22 262 | 91.26 261 | 90.74 319 | 91.55 127 | 98.82 140 | 89.29 169 | 95.91 281 | 93.62 326 |
|
xiu_mvs_v1_base_debi | | | 91.47 195 | 91.52 188 | 91.33 234 | 95.69 232 | 81.56 224 | 89.92 266 | 96.05 209 | 83.22 262 | 91.26 261 | 90.74 319 | 91.55 127 | 98.82 140 | 89.29 169 | 95.91 281 | 93.62 326 |
|
casdiffmvs | | | 94.32 117 | 94.80 98 | 92.85 187 | 96.05 210 | 81.44 227 | 92.35 185 | 98.05 61 | 91.53 118 | 95.75 118 | 96.80 112 | 93.35 81 | 98.49 194 | 91.01 126 | 98.32 185 | 98.64 103 |
|
bset_n11_16_dypcd | | | 89.99 235 | 89.15 238 | 92.53 200 | 94.75 262 | 81.34 228 | 84.19 348 | 87.56 331 | 85.13 243 | 93.77 191 | 92.46 290 | 72.82 307 | 99.01 113 | 92.46 92 | 99.21 82 | 97.23 218 |
|
ET-MVSNet_ETH3D | | | 86.15 296 | 84.27 305 | 91.79 220 | 93.04 301 | 81.28 229 | 87.17 316 | 86.14 340 | 79.57 293 | 83.65 345 | 88.66 342 | 57.10 361 | 98.18 221 | 87.74 204 | 95.40 294 | 95.90 269 |
|
V42 | | | 93.43 139 | 93.58 139 | 92.97 180 | 95.34 248 | 81.22 230 | 92.67 168 | 96.49 190 | 87.25 210 | 96.20 98 | 96.37 145 | 87.32 199 | 98.85 137 | 92.39 95 | 98.21 200 | 98.85 78 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 243 | 89.05 240 | 90.92 250 | 94.58 272 | 81.21 231 | 91.10 232 | 93.41 275 | 77.03 315 | 93.41 201 | 93.99 253 | 83.23 238 | 97.80 252 | 79.93 294 | 94.80 307 | 93.74 323 |
|
PAPM_NR | | | 91.03 203 | 90.81 207 | 91.68 226 | 96.73 159 | 81.10 232 | 93.72 142 | 96.35 196 | 88.19 191 | 88.77 306 | 92.12 300 | 85.09 228 | 97.25 282 | 82.40 269 | 93.90 321 | 96.68 238 |
|
baseline | | | 94.26 120 | 94.80 98 | 92.64 193 | 96.08 208 | 80.99 233 | 93.69 143 | 98.04 65 | 90.80 134 | 94.89 159 | 96.32 148 | 93.19 85 | 98.48 198 | 91.68 113 | 98.51 165 | 98.43 122 |
|
1112_ss | | | 88.42 262 | 87.41 271 | 91.45 231 | 96.69 160 | 80.99 233 | 89.72 272 | 96.72 177 | 73.37 332 | 87.00 327 | 90.69 322 | 77.38 286 | 98.20 218 | 81.38 278 | 93.72 324 | 95.15 289 |
|
tfpnnormal | | | 94.27 119 | 94.87 95 | 92.48 202 | 97.71 105 | 80.88 235 | 94.55 117 | 95.41 232 | 93.70 62 | 96.67 74 | 97.72 53 | 91.40 130 | 98.18 221 | 87.45 208 | 99.18 87 | 98.36 125 |
|
Baseline_NR-MVSNet | | | 94.47 111 | 95.09 89 | 92.60 197 | 98.50 54 | 80.82 236 | 92.08 196 | 96.68 178 | 93.82 60 | 96.29 90 | 98.56 20 | 90.10 165 | 97.75 259 | 90.10 154 | 99.66 21 | 99.24 31 |
|
HyFIR lowres test | | | 87.19 288 | 85.51 298 | 92.24 206 | 97.12 141 | 80.51 237 | 85.03 339 | 96.06 208 | 66.11 360 | 91.66 256 | 92.98 279 | 70.12 317 | 99.14 91 | 75.29 328 | 95.23 299 | 97.07 221 |
|
UnsupCasMVSNet_eth | | | 90.33 222 | 90.34 218 | 90.28 268 | 94.64 271 | 80.24 238 | 89.69 273 | 95.88 213 | 85.77 232 | 93.94 188 | 95.69 180 | 81.99 253 | 92.98 357 | 84.21 253 | 91.30 348 | 97.62 194 |
|
MDA-MVSNet-bldmvs | | | 91.04 202 | 90.88 204 | 91.55 229 | 94.68 269 | 80.16 239 | 85.49 336 | 92.14 300 | 90.41 145 | 94.93 157 | 95.79 174 | 85.10 227 | 96.93 294 | 85.15 239 | 94.19 320 | 97.57 196 |
|
v10 | | | 94.68 103 | 95.27 83 | 92.90 185 | 96.57 168 | 80.15 240 | 94.65 110 | 97.57 109 | 90.68 137 | 97.43 44 | 98.00 41 | 88.18 183 | 99.15 89 | 94.84 15 | 99.55 34 | 99.41 20 |
|
VNet | | | 92.67 167 | 92.96 153 | 91.79 220 | 96.27 192 | 80.15 240 | 91.95 202 | 94.98 240 | 92.19 90 | 94.52 171 | 96.07 161 | 87.43 197 | 97.39 278 | 84.83 246 | 98.38 176 | 97.83 177 |
|
DELS-MVS | | | 92.05 184 | 92.16 172 | 91.72 223 | 94.44 274 | 80.13 242 | 87.62 305 | 97.25 137 | 87.34 209 | 92.22 247 | 93.18 275 | 89.54 172 | 98.73 161 | 89.67 163 | 98.20 202 | 96.30 252 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
jason | | | 89.17 247 | 88.32 253 | 91.70 225 | 95.73 230 | 80.07 243 | 88.10 302 | 93.22 277 | 71.98 339 | 90.09 280 | 92.79 283 | 78.53 278 | 98.56 188 | 87.43 209 | 97.06 253 | 96.46 246 |
jason: jason. |
MVSFormer | | | 92.18 182 | 92.23 171 | 92.04 216 | 94.74 264 | 80.06 244 | 97.15 13 | 97.37 121 | 88.98 174 | 88.83 300 | 92.79 283 | 77.02 290 | 99.60 8 | 96.41 4 | 96.75 266 | 96.46 246 |
|
lupinMVS | | | 88.34 264 | 87.31 272 | 91.45 231 | 94.74 264 | 80.06 244 | 87.23 313 | 92.27 296 | 71.10 343 | 88.83 300 | 91.15 313 | 77.02 290 | 98.53 191 | 86.67 221 | 96.75 266 | 95.76 274 |
|
WR-MVS | | | 93.49 137 | 93.72 133 | 92.80 189 | 97.57 117 | 80.03 246 | 90.14 259 | 95.68 219 | 93.70 62 | 96.62 76 | 95.39 200 | 87.21 201 | 99.04 108 | 87.50 207 | 99.64 23 | 99.33 25 |
|
CANet_DTU | | | 89.85 238 | 89.17 237 | 91.87 218 | 92.20 315 | 80.02 247 | 90.79 238 | 95.87 214 | 86.02 228 | 82.53 353 | 91.77 305 | 80.01 267 | 98.57 187 | 85.66 234 | 97.70 234 | 97.01 225 |
|
Patchmatch-RL test | | | 88.81 256 | 88.52 249 | 89.69 283 | 95.33 249 | 79.94 248 | 86.22 333 | 92.71 287 | 78.46 306 | 95.80 116 | 94.18 245 | 66.25 332 | 95.33 335 | 89.22 174 | 98.53 162 | 93.78 321 |
|
FMVSNet3 | | | 90.78 207 | 90.32 219 | 92.16 212 | 93.03 302 | 79.92 249 | 92.54 171 | 94.95 241 | 86.17 226 | 95.10 148 | 96.01 164 | 69.97 318 | 98.75 157 | 86.74 218 | 98.38 176 | 97.82 179 |
|
XXY-MVS | | | 92.58 170 | 93.16 152 | 90.84 254 | 97.75 101 | 79.84 250 | 91.87 210 | 96.22 203 | 85.94 229 | 95.53 128 | 97.68 54 | 92.69 101 | 94.48 342 | 83.21 260 | 97.51 241 | 98.21 137 |
|
test_yl | | | 90.11 229 | 89.73 232 | 91.26 237 | 94.09 282 | 79.82 251 | 90.44 247 | 92.65 288 | 90.90 129 | 93.19 213 | 93.30 271 | 73.90 303 | 98.03 230 | 82.23 270 | 96.87 261 | 95.93 266 |
|
DCV-MVSNet | | | 90.11 229 | 89.73 232 | 91.26 237 | 94.09 282 | 79.82 251 | 90.44 247 | 92.65 288 | 90.90 129 | 93.19 213 | 93.30 271 | 73.90 303 | 98.03 230 | 82.23 270 | 96.87 261 | 95.93 266 |
|
FMVSNet5 | | | 87.82 272 | 86.56 287 | 91.62 227 | 92.31 311 | 79.81 253 | 93.49 148 | 94.81 248 | 83.26 261 | 91.36 259 | 96.93 103 | 52.77 370 | 97.49 271 | 76.07 324 | 98.03 217 | 97.55 199 |
|
v8 | | | 94.65 104 | 95.29 81 | 92.74 190 | 96.65 161 | 79.77 254 | 94.59 111 | 97.17 142 | 91.86 99 | 97.47 43 | 97.93 44 | 88.16 184 | 99.08 100 | 94.32 22 | 99.47 39 | 99.38 22 |
|
tttt0517 | | | 89.81 239 | 88.90 245 | 92.55 199 | 97.00 143 | 79.73 255 | 95.03 97 | 83.65 360 | 89.88 153 | 95.30 138 | 94.79 226 | 53.64 368 | 99.39 50 | 91.99 101 | 98.79 138 | 98.54 113 |
|
v1192 | | | 93.49 137 | 93.78 131 | 92.62 196 | 96.16 201 | 79.62 256 | 91.83 215 | 97.22 140 | 86.07 227 | 96.10 104 | 96.38 144 | 87.22 200 | 99.02 111 | 94.14 29 | 98.88 122 | 99.22 32 |
|
v1144 | | | 93.50 136 | 93.81 129 | 92.57 198 | 96.28 191 | 79.61 257 | 91.86 214 | 96.96 156 | 86.95 216 | 95.91 112 | 96.32 148 | 87.65 193 | 98.96 121 | 93.51 47 | 98.88 122 | 99.13 40 |
|
BH-untuned | | | 90.68 210 | 90.90 203 | 90.05 277 | 95.98 216 | 79.57 258 | 90.04 262 | 94.94 242 | 87.91 195 | 94.07 181 | 93.00 277 | 87.76 192 | 97.78 255 | 79.19 303 | 95.17 300 | 92.80 338 |
|
KD-MVS_self_test | | | 94.10 125 | 94.73 102 | 92.19 208 | 97.66 111 | 79.49 259 | 94.86 102 | 97.12 147 | 89.59 160 | 96.87 65 | 97.65 56 | 90.40 159 | 98.34 207 | 89.08 177 | 99.35 57 | 98.75 87 |
|
CHOSEN 1792x2688 | | | 87.19 288 | 85.92 296 | 91.00 248 | 97.13 140 | 79.41 260 | 84.51 345 | 95.60 221 | 64.14 364 | 90.07 282 | 94.81 222 | 78.26 280 | 97.14 286 | 73.34 337 | 95.38 296 | 96.46 246 |
|
thisisatest0530 | | | 88.69 259 | 87.52 270 | 92.20 207 | 96.33 187 | 79.36 261 | 92.81 163 | 84.01 359 | 86.44 220 | 93.67 195 | 92.68 287 | 53.62 369 | 99.25 79 | 89.65 164 | 98.45 169 | 98.00 154 |
|
LFMVS | | | 91.33 199 | 91.16 201 | 91.82 219 | 96.27 192 | 79.36 261 | 95.01 98 | 85.61 348 | 96.04 29 | 94.82 161 | 97.06 94 | 72.03 312 | 98.46 200 | 84.96 245 | 98.70 146 | 97.65 192 |
|
TR-MVS | | | 87.70 273 | 87.17 276 | 89.27 290 | 94.11 281 | 79.26 263 | 88.69 297 | 91.86 305 | 81.94 278 | 90.69 271 | 89.79 331 | 82.82 243 | 97.42 275 | 72.65 342 | 91.98 345 | 91.14 351 |
|
test20.03 | | | 90.80 206 | 90.85 206 | 90.63 260 | 95.63 237 | 79.24 264 | 89.81 271 | 92.87 282 | 89.90 152 | 94.39 173 | 96.40 139 | 85.77 222 | 95.27 337 | 73.86 335 | 99.05 103 | 97.39 211 |
|
IterMVS-SCA-FT | | | 91.65 190 | 91.55 187 | 91.94 217 | 93.89 287 | 79.22 265 | 87.56 308 | 93.51 273 | 91.53 118 | 95.37 134 | 96.62 127 | 78.65 275 | 98.90 127 | 91.89 106 | 94.95 303 | 97.70 188 |
|
EI-MVSNet | | | 92.99 155 | 93.26 151 | 92.19 208 | 92.12 317 | 79.21 266 | 92.32 187 | 94.67 254 | 91.77 109 | 95.24 144 | 95.85 169 | 87.14 203 | 98.49 194 | 91.99 101 | 98.26 191 | 98.86 75 |
|
IterMVS-LS | | | 93.78 132 | 94.28 120 | 92.27 205 | 96.27 192 | 79.21 266 | 91.87 210 | 96.78 172 | 91.77 109 | 96.57 79 | 97.07 93 | 87.15 202 | 98.74 160 | 91.99 101 | 99.03 109 | 98.86 75 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CR-MVSNet | | | 87.89 269 | 87.12 278 | 90.22 271 | 91.01 333 | 78.93 268 | 92.52 172 | 92.81 283 | 73.08 334 | 89.10 297 | 96.93 103 | 67.11 324 | 97.64 264 | 88.80 182 | 92.70 337 | 94.08 311 |
|
RPMNet | | | 90.31 224 | 90.14 224 | 90.81 256 | 91.01 333 | 78.93 268 | 92.52 172 | 98.12 47 | 91.91 97 | 89.10 297 | 96.89 106 | 68.84 319 | 99.41 38 | 90.17 150 | 92.70 337 | 94.08 311 |
|
patch_mono-2 | | | 92.46 174 | 92.72 163 | 91.71 224 | 96.65 161 | 78.91 270 | 88.85 292 | 97.17 142 | 83.89 258 | 92.45 234 | 96.76 115 | 89.86 169 | 97.09 287 | 90.24 147 | 98.59 155 | 99.12 42 |
|
UnsupCasMVSNet_bld | | | 88.50 261 | 88.03 263 | 89.90 279 | 95.52 241 | 78.88 271 | 87.39 312 | 94.02 266 | 79.32 298 | 93.06 216 | 94.02 251 | 80.72 264 | 94.27 347 | 75.16 329 | 93.08 333 | 96.54 239 |
|
v2v482 | | | 93.29 142 | 93.63 137 | 92.29 204 | 96.35 185 | 78.82 272 | 91.77 218 | 96.28 197 | 88.45 186 | 95.70 122 | 96.26 153 | 86.02 221 | 98.90 127 | 93.02 77 | 98.81 135 | 99.14 39 |
|
Anonymous20231206 | | | 88.77 257 | 88.29 255 | 90.20 273 | 96.31 189 | 78.81 273 | 89.56 276 | 93.49 274 | 74.26 327 | 92.38 240 | 95.58 187 | 82.21 249 | 95.43 332 | 72.07 344 | 98.75 143 | 96.34 250 |
|
PVSNet_BlendedMVS | | | 90.35 221 | 89.96 226 | 91.54 230 | 94.81 259 | 78.80 274 | 90.14 259 | 96.93 158 | 79.43 294 | 88.68 309 | 95.06 211 | 86.27 218 | 98.15 224 | 80.27 287 | 98.04 216 | 97.68 190 |
|
PVSNet_Blended | | | 88.74 258 | 88.16 262 | 90.46 265 | 94.81 259 | 78.80 274 | 86.64 328 | 96.93 158 | 74.67 324 | 88.68 309 | 89.18 340 | 86.27 218 | 98.15 224 | 80.27 287 | 96.00 279 | 94.44 306 |
|
BH-RMVSNet | | | 90.47 215 | 90.44 216 | 90.56 262 | 95.21 251 | 78.65 276 | 89.15 287 | 93.94 269 | 88.21 190 | 92.74 226 | 94.22 243 | 86.38 216 | 97.88 243 | 78.67 306 | 95.39 295 | 95.14 290 |
|
D2MVS | | | 89.93 236 | 89.60 234 | 90.92 250 | 94.03 284 | 78.40 277 | 88.69 297 | 94.85 244 | 78.96 302 | 93.08 215 | 95.09 209 | 74.57 301 | 96.94 292 | 88.19 193 | 98.96 117 | 97.41 207 |
|
v1921920 | | | 93.26 145 | 93.61 138 | 92.19 208 | 96.04 214 | 78.31 278 | 91.88 209 | 97.24 138 | 85.17 241 | 96.19 100 | 96.19 156 | 86.76 212 | 99.05 105 | 94.18 28 | 98.84 127 | 99.22 32 |
|
v144192 | | | 93.20 150 | 93.54 142 | 92.16 212 | 96.05 210 | 78.26 279 | 91.95 202 | 97.14 144 | 84.98 248 | 95.96 107 | 96.11 160 | 87.08 204 | 99.04 108 | 93.79 37 | 98.84 127 | 99.17 36 |
|
diffmvs | | | 91.74 188 | 91.93 179 | 91.15 243 | 93.06 300 | 78.17 280 | 88.77 295 | 97.51 116 | 86.28 223 | 92.42 237 | 93.96 254 | 88.04 187 | 97.46 272 | 90.69 132 | 96.67 268 | 97.82 179 |
|
sss | | | 87.23 285 | 86.82 282 | 88.46 304 | 93.96 285 | 77.94 281 | 86.84 322 | 92.78 286 | 77.59 310 | 87.61 322 | 91.83 304 | 78.75 274 | 91.92 360 | 77.84 310 | 94.20 319 | 95.52 284 |
|
MS-PatchMatch | | | 88.05 268 | 87.75 266 | 88.95 293 | 93.28 294 | 77.93 282 | 87.88 304 | 92.49 293 | 75.42 321 | 92.57 231 | 93.59 265 | 80.44 265 | 94.24 349 | 81.28 279 | 92.75 336 | 94.69 302 |
|
HY-MVS | | 82.50 18 | 86.81 294 | 85.93 295 | 89.47 284 | 93.63 291 | 77.93 282 | 94.02 133 | 91.58 308 | 75.68 318 | 83.64 346 | 93.64 262 | 77.40 285 | 97.42 275 | 71.70 347 | 92.07 344 | 93.05 335 |
|
v1240 | | | 93.29 142 | 93.71 134 | 92.06 215 | 96.01 215 | 77.89 284 | 91.81 216 | 97.37 121 | 85.12 244 | 96.69 73 | 96.40 139 | 86.67 213 | 99.07 104 | 94.51 18 | 98.76 141 | 99.22 32 |
|
CL-MVSNet_self_test | | | 90.04 234 | 89.90 228 | 90.47 263 | 95.24 250 | 77.81 285 | 86.60 331 | 92.62 290 | 85.64 235 | 93.25 211 | 93.92 255 | 83.84 234 | 96.06 320 | 79.93 294 | 98.03 217 | 97.53 200 |
|
Test_1112_low_res | | | 87.50 280 | 86.58 286 | 90.25 270 | 96.80 158 | 77.75 286 | 87.53 310 | 96.25 199 | 69.73 350 | 86.47 329 | 93.61 264 | 75.67 299 | 97.88 243 | 79.95 292 | 93.20 329 | 95.11 291 |
|
v148 | | | 92.87 160 | 93.29 147 | 91.62 227 | 96.25 195 | 77.72 287 | 91.28 228 | 95.05 238 | 89.69 156 | 95.93 111 | 96.04 162 | 87.34 198 | 98.38 203 | 90.05 155 | 97.99 220 | 98.78 84 |
|
MVS | | | 84.98 304 | 84.30 304 | 87.01 319 | 91.03 332 | 77.69 288 | 91.94 204 | 94.16 262 | 59.36 369 | 84.23 343 | 87.50 350 | 85.66 224 | 96.80 298 | 71.79 345 | 93.05 334 | 86.54 362 |
|
miper_lstm_enhance | | | 89.90 237 | 89.80 229 | 90.19 274 | 91.37 330 | 77.50 289 | 83.82 352 | 95.00 239 | 84.84 250 | 93.05 217 | 94.96 216 | 76.53 297 | 95.20 338 | 89.96 157 | 98.67 150 | 97.86 174 |
|
pmmvs3 | | | 80.83 330 | 78.96 337 | 86.45 323 | 87.23 365 | 77.48 290 | 84.87 340 | 82.31 363 | 63.83 365 | 85.03 336 | 89.50 336 | 49.66 371 | 93.10 355 | 73.12 340 | 95.10 301 | 88.78 360 |
|
PAPR | | | 87.65 276 | 86.77 284 | 90.27 269 | 92.85 304 | 77.38 291 | 88.56 300 | 96.23 201 | 76.82 317 | 84.98 337 | 89.75 333 | 86.08 220 | 97.16 285 | 72.33 343 | 93.35 327 | 96.26 254 |
|
Vis-MVSNet (Re-imp) | | | 90.42 216 | 90.16 220 | 91.20 241 | 97.66 111 | 77.32 292 | 94.33 123 | 87.66 330 | 91.20 125 | 92.99 219 | 95.13 207 | 75.40 300 | 98.28 210 | 77.86 309 | 99.19 85 | 97.99 157 |
|
BH-w/o | | | 87.21 286 | 87.02 280 | 87.79 314 | 94.77 261 | 77.27 293 | 87.90 303 | 93.21 279 | 81.74 279 | 89.99 284 | 88.39 346 | 83.47 235 | 96.93 294 | 71.29 349 | 92.43 341 | 89.15 356 |
|
GA-MVS | | | 87.70 273 | 86.82 282 | 90.31 267 | 93.27 295 | 77.22 294 | 84.72 343 | 92.79 285 | 85.11 245 | 89.82 288 | 90.07 326 | 66.80 327 | 97.76 258 | 84.56 250 | 94.27 318 | 95.96 265 |
|
TinyColmap | | | 92.00 185 | 92.76 159 | 89.71 282 | 95.62 238 | 77.02 295 | 90.72 240 | 96.17 206 | 87.70 202 | 95.26 141 | 96.29 150 | 92.54 105 | 96.45 308 | 81.77 274 | 98.77 140 | 95.66 279 |
|
Patchmtry | | | 90.11 229 | 89.92 227 | 90.66 259 | 90.35 342 | 77.00 296 | 92.96 159 | 92.81 283 | 90.25 147 | 94.74 165 | 96.93 103 | 67.11 324 | 97.52 268 | 85.17 237 | 98.98 111 | 97.46 203 |
|
DIV-MVS_self_test | | | 90.65 211 | 90.56 214 | 90.91 252 | 91.85 321 | 76.99 297 | 86.75 325 | 95.36 235 | 85.52 238 | 94.06 182 | 94.89 219 | 77.37 287 | 97.99 237 | 90.28 144 | 98.97 115 | 97.76 184 |
|
cl____ | | | 90.65 211 | 90.56 214 | 90.91 252 | 91.85 321 | 76.98 298 | 86.75 325 | 95.36 235 | 85.53 236 | 94.06 182 | 94.89 219 | 77.36 288 | 97.98 238 | 90.27 145 | 98.98 111 | 97.76 184 |
|
pmmvs5 | | | 87.87 270 | 87.14 277 | 90.07 275 | 93.26 296 | 76.97 299 | 88.89 291 | 92.18 297 | 73.71 331 | 88.36 312 | 93.89 257 | 76.86 295 | 96.73 300 | 80.32 286 | 96.81 263 | 96.51 241 |
|
eth_miper_zixun_eth | | | 90.72 208 | 90.61 212 | 91.05 244 | 92.04 319 | 76.84 300 | 86.91 320 | 96.67 179 | 85.21 240 | 94.41 172 | 93.92 255 | 79.53 270 | 98.26 214 | 89.76 161 | 97.02 255 | 98.06 146 |
|
c3_l | | | 91.32 200 | 91.42 192 | 91.00 248 | 92.29 312 | 76.79 301 | 87.52 311 | 96.42 192 | 85.76 233 | 94.72 167 | 93.89 257 | 82.73 244 | 98.16 223 | 90.93 128 | 98.55 158 | 98.04 149 |
|
MVSTER | | | 89.32 245 | 88.75 247 | 91.03 245 | 90.10 344 | 76.62 302 | 90.85 236 | 94.67 254 | 82.27 275 | 95.24 144 | 95.79 174 | 61.09 356 | 98.49 194 | 90.49 134 | 98.26 191 | 97.97 161 |
|
miper_ehance_all_eth | | | 90.48 214 | 90.42 217 | 90.69 258 | 91.62 326 | 76.57 303 | 86.83 323 | 96.18 205 | 83.38 260 | 94.06 182 | 92.66 288 | 82.20 250 | 98.04 229 | 89.79 160 | 97.02 255 | 97.45 204 |
|
cl22 | | | 89.02 249 | 88.50 250 | 90.59 261 | 89.76 346 | 76.45 304 | 86.62 330 | 94.03 264 | 82.98 268 | 92.65 228 | 92.49 289 | 72.05 311 | 97.53 267 | 88.93 178 | 97.02 255 | 97.78 182 |
|
cascas | | | 87.02 292 | 86.28 293 | 89.25 291 | 91.56 328 | 76.45 304 | 84.33 347 | 96.78 172 | 71.01 344 | 86.89 328 | 85.91 359 | 81.35 258 | 96.94 292 | 83.09 261 | 95.60 288 | 94.35 308 |
|
ADS-MVSNet2 | | | 84.01 309 | 82.20 317 | 89.41 286 | 89.04 355 | 76.37 306 | 87.57 306 | 90.98 311 | 72.71 337 | 84.46 340 | 92.45 291 | 68.08 320 | 96.48 307 | 70.58 354 | 83.97 363 | 95.38 285 |
|
EU-MVSNet | | | 87.39 282 | 86.71 285 | 89.44 285 | 93.40 293 | 76.11 307 | 94.93 101 | 90.00 317 | 57.17 370 | 95.71 121 | 97.37 72 | 64.77 340 | 97.68 263 | 92.67 87 | 94.37 315 | 94.52 304 |
|
MIMVSNet | | | 87.13 290 | 86.54 288 | 88.89 295 | 96.05 210 | 76.11 307 | 94.39 121 | 88.51 322 | 81.37 280 | 88.27 314 | 96.75 117 | 72.38 309 | 95.52 327 | 65.71 364 | 95.47 292 | 95.03 292 |
|
IterMVS | | | 90.18 226 | 90.16 220 | 90.21 272 | 93.15 298 | 75.98 309 | 87.56 308 | 92.97 281 | 86.43 221 | 94.09 179 | 96.40 139 | 78.32 279 | 97.43 274 | 87.87 202 | 94.69 310 | 97.23 218 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_Test | | | 92.57 172 | 93.29 147 | 90.40 266 | 93.53 292 | 75.85 310 | 92.52 172 | 96.96 156 | 88.73 179 | 92.35 242 | 96.70 122 | 90.77 147 | 98.37 206 | 92.53 90 | 95.49 291 | 96.99 226 |
|
IB-MVS | | 77.21 19 | 83.11 312 | 81.05 323 | 89.29 289 | 91.15 331 | 75.85 310 | 85.66 335 | 86.00 343 | 79.70 291 | 82.02 358 | 86.61 354 | 48.26 373 | 98.39 201 | 77.84 310 | 92.22 342 | 93.63 325 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
VPNet | | | 93.08 151 | 93.76 132 | 91.03 245 | 98.60 35 | 75.83 312 | 91.51 222 | 95.62 220 | 91.84 103 | 95.74 119 | 97.10 92 | 89.31 173 | 98.32 208 | 85.07 244 | 99.06 98 | 98.93 65 |
|
miper_enhance_ethall | | | 88.42 262 | 87.87 265 | 90.07 275 | 88.67 359 | 75.52 313 | 85.10 338 | 95.59 225 | 75.68 318 | 92.49 232 | 89.45 337 | 78.96 272 | 97.88 243 | 87.86 203 | 97.02 255 | 96.81 233 |
|
Anonymous20240521 | | | 92.86 161 | 93.57 140 | 90.74 257 | 96.57 168 | 75.50 314 | 94.15 128 | 95.60 221 | 89.38 163 | 95.90 113 | 97.90 48 | 80.39 266 | 97.96 239 | 92.60 89 | 99.68 18 | 98.75 87 |
|
thisisatest0515 | | | 84.72 305 | 82.99 313 | 89.90 279 | 92.96 303 | 75.33 315 | 84.36 346 | 83.42 361 | 77.37 312 | 88.27 314 | 86.65 353 | 53.94 367 | 98.72 162 | 82.56 266 | 97.40 245 | 95.67 278 |
|
PS-MVSNAJ | | | 88.86 255 | 88.99 242 | 88.48 303 | 94.88 255 | 74.71 316 | 86.69 327 | 95.60 221 | 80.88 282 | 87.83 319 | 87.37 351 | 90.77 147 | 98.82 140 | 82.52 267 | 94.37 315 | 91.93 346 |
|
WTY-MVS | | | 86.93 293 | 86.50 291 | 88.24 307 | 94.96 254 | 74.64 317 | 87.19 315 | 92.07 302 | 78.29 307 | 88.32 313 | 91.59 309 | 78.06 281 | 94.27 347 | 74.88 330 | 93.15 331 | 95.80 272 |
|
xiu_mvs_v2_base | | | 89.00 251 | 89.19 236 | 88.46 304 | 94.86 257 | 74.63 318 | 86.97 318 | 95.60 221 | 80.88 282 | 87.83 319 | 88.62 343 | 91.04 144 | 98.81 145 | 82.51 268 | 94.38 314 | 91.93 346 |
|
1314 | | | 86.46 295 | 86.33 292 | 86.87 321 | 91.65 325 | 74.54 319 | 91.94 204 | 94.10 263 | 74.28 326 | 84.78 339 | 87.33 352 | 83.03 240 | 95.00 339 | 78.72 305 | 91.16 350 | 91.06 352 |
|
CHOSEN 280x420 | | | 80.04 335 | 77.97 340 | 86.23 327 | 90.13 343 | 74.53 320 | 72.87 366 | 89.59 318 | 66.38 359 | 76.29 369 | 85.32 361 | 56.96 362 | 95.36 333 | 69.49 357 | 94.72 309 | 88.79 359 |
|
USDC | | | 89.02 249 | 89.08 239 | 88.84 296 | 95.07 253 | 74.50 321 | 88.97 289 | 96.39 194 | 73.21 333 | 93.27 208 | 96.28 151 | 82.16 251 | 96.39 310 | 77.55 313 | 98.80 137 | 95.62 282 |
|
MVE |  | 59.87 23 | 73.86 340 | 72.65 343 | 77.47 353 | 87.00 368 | 74.35 322 | 61.37 370 | 60.93 378 | 67.27 357 | 69.69 373 | 86.49 356 | 81.24 262 | 72.33 374 | 56.45 371 | 83.45 365 | 85.74 363 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EPNet_dtu | | | 85.63 299 | 84.37 303 | 89.40 287 | 86.30 369 | 74.33 323 | 91.64 220 | 88.26 324 | 84.84 250 | 72.96 372 | 89.85 327 | 71.27 314 | 97.69 262 | 76.60 321 | 97.62 238 | 96.18 257 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline1 | | | 87.62 277 | 87.31 272 | 88.54 301 | 94.71 268 | 74.27 324 | 93.10 156 | 88.20 326 | 86.20 224 | 92.18 248 | 93.04 276 | 73.21 306 | 95.52 327 | 79.32 301 | 85.82 361 | 95.83 271 |
|
Patchmatch-test | | | 86.10 297 | 86.01 294 | 86.38 326 | 90.63 337 | 74.22 325 | 89.57 275 | 86.69 336 | 85.73 234 | 89.81 289 | 92.83 281 | 65.24 338 | 91.04 363 | 77.82 312 | 95.78 285 | 93.88 320 |
|
dcpmvs_2 | | | 93.96 129 | 95.01 90 | 90.82 255 | 97.60 114 | 74.04 326 | 93.68 145 | 98.85 6 | 89.80 155 | 97.82 28 | 97.01 99 | 91.14 143 | 99.21 83 | 90.56 133 | 98.59 155 | 99.19 35 |
|
MDA-MVSNet_test_wron | | | 88.16 267 | 88.23 258 | 87.93 311 | 92.22 313 | 73.71 327 | 80.71 361 | 88.84 319 | 82.52 272 | 94.88 160 | 95.14 206 | 82.70 245 | 93.61 352 | 83.28 259 | 93.80 323 | 96.46 246 |
|
YYNet1 | | | 88.17 266 | 88.24 257 | 87.93 311 | 92.21 314 | 73.62 328 | 80.75 360 | 88.77 320 | 82.51 273 | 94.99 155 | 95.11 208 | 82.70 245 | 93.70 351 | 83.33 258 | 93.83 322 | 96.48 245 |
|
test0.0.03 1 | | | 82.48 317 | 81.47 321 | 85.48 330 | 89.70 347 | 73.57 329 | 84.73 341 | 81.64 365 | 83.07 266 | 88.13 316 | 86.61 354 | 62.86 349 | 89.10 369 | 66.24 363 | 90.29 353 | 93.77 322 |
|
thres600view7 | | | 87.66 275 | 87.10 279 | 89.36 288 | 96.05 210 | 73.17 330 | 92.72 165 | 85.31 351 | 91.89 98 | 93.29 206 | 90.97 316 | 63.42 346 | 98.39 201 | 73.23 338 | 96.99 260 | 96.51 241 |
|
ANet_high | | | 94.83 97 | 96.28 37 | 90.47 263 | 96.65 161 | 73.16 331 | 94.33 123 | 98.74 10 | 96.39 23 | 98.09 25 | 98.93 8 | 93.37 80 | 98.70 168 | 90.38 138 | 99.68 18 | 99.53 14 |
|
thres100view900 | | | 87.35 283 | 86.89 281 | 88.72 298 | 96.14 203 | 73.09 332 | 93.00 158 | 85.31 351 | 92.13 91 | 93.26 209 | 90.96 317 | 63.42 346 | 98.28 210 | 71.27 350 | 96.54 270 | 94.79 297 |
|
tfpn200view9 | | | 87.05 291 | 86.52 289 | 88.67 299 | 95.77 227 | 72.94 333 | 91.89 207 | 86.00 343 | 90.84 131 | 92.61 229 | 89.80 329 | 63.93 343 | 98.28 210 | 71.27 350 | 96.54 270 | 94.79 297 |
|
thres400 | | | 87.20 287 | 86.52 289 | 89.24 292 | 95.77 227 | 72.94 333 | 91.89 207 | 86.00 343 | 90.84 131 | 92.61 229 | 89.80 329 | 63.93 343 | 98.28 210 | 71.27 350 | 96.54 270 | 96.51 241 |
|
baseline2 | | | 83.38 311 | 81.54 320 | 88.90 294 | 91.38 329 | 72.84 335 | 88.78 294 | 81.22 366 | 78.97 301 | 79.82 365 | 87.56 348 | 61.73 354 | 97.80 252 | 74.30 333 | 90.05 354 | 96.05 262 |
|
ECVR-MVS |  | | 90.12 228 | 90.16 220 | 90.00 278 | 97.81 97 | 72.68 336 | 95.76 68 | 78.54 372 | 89.04 172 | 95.36 135 | 98.10 35 | 70.51 316 | 98.64 178 | 87.10 214 | 99.18 87 | 98.67 97 |
|
thres200 | | | 85.85 298 | 85.18 299 | 87.88 313 | 94.44 274 | 72.52 337 | 89.08 288 | 86.21 339 | 88.57 185 | 91.44 258 | 88.40 345 | 64.22 341 | 98.00 235 | 68.35 358 | 95.88 284 | 93.12 332 |
|
MG-MVS | | | 89.54 242 | 89.80 229 | 88.76 297 | 94.88 255 | 72.47 338 | 89.60 274 | 92.44 294 | 85.82 231 | 89.48 294 | 95.98 165 | 82.85 242 | 97.74 260 | 81.87 273 | 95.27 298 | 96.08 260 |
|
PAPM | | | 81.91 323 | 80.11 333 | 87.31 318 | 93.87 288 | 72.32 339 | 84.02 350 | 93.22 277 | 69.47 351 | 76.13 370 | 89.84 328 | 72.15 310 | 97.23 283 | 53.27 372 | 89.02 355 | 92.37 343 |
|
SCA | | | 87.43 281 | 87.21 275 | 88.10 309 | 92.01 320 | 71.98 340 | 89.43 278 | 88.11 328 | 82.26 276 | 88.71 307 | 92.83 281 | 78.65 275 | 97.59 265 | 79.61 298 | 93.30 328 | 94.75 299 |
|
testgi | | | 90.38 219 | 91.34 195 | 87.50 316 | 97.49 121 | 71.54 341 | 89.43 278 | 95.16 237 | 88.38 188 | 94.54 170 | 94.68 230 | 92.88 97 | 93.09 356 | 71.60 348 | 97.85 227 | 97.88 172 |
|
test1111 | | | 90.39 218 | 90.61 212 | 89.74 281 | 98.04 84 | 71.50 342 | 95.59 73 | 79.72 371 | 89.41 162 | 95.94 110 | 98.14 33 | 70.79 315 | 98.81 145 | 88.52 189 | 99.32 62 | 98.90 71 |
|
gg-mvs-nofinetune | | | 82.10 322 | 81.02 324 | 85.34 332 | 87.46 364 | 71.04 343 | 94.74 106 | 67.56 376 | 96.44 22 | 79.43 366 | 98.99 6 | 45.24 375 | 96.15 316 | 67.18 361 | 92.17 343 | 88.85 358 |
|
GG-mvs-BLEND | | | | | 83.24 344 | 85.06 373 | 71.03 344 | 94.99 100 | 65.55 377 | | 74.09 371 | 75.51 371 | 44.57 376 | 94.46 343 | 59.57 369 | 87.54 359 | 84.24 364 |
|
ppachtmachnet_test | | | 88.61 260 | 88.64 248 | 88.50 302 | 91.76 323 | 70.99 345 | 84.59 344 | 92.98 280 | 79.30 299 | 92.38 240 | 93.53 267 | 79.57 269 | 97.45 273 | 86.50 226 | 97.17 251 | 97.07 221 |
|
our_test_3 | | | 87.55 278 | 87.59 269 | 87.44 317 | 91.76 323 | 70.48 346 | 83.83 351 | 90.55 315 | 79.79 289 | 92.06 251 | 92.17 298 | 78.63 277 | 95.63 325 | 84.77 247 | 94.73 308 | 96.22 255 |
|
CVMVSNet | | | 85.16 302 | 84.72 300 | 86.48 322 | 92.12 317 | 70.19 347 | 92.32 187 | 88.17 327 | 56.15 371 | 90.64 272 | 95.85 169 | 67.97 322 | 96.69 301 | 88.78 183 | 90.52 352 | 92.56 341 |
|
new_pmnet | | | 81.22 326 | 81.01 325 | 81.86 347 | 90.92 335 | 70.15 348 | 84.03 349 | 80.25 370 | 70.83 345 | 85.97 332 | 89.78 332 | 67.93 323 | 84.65 371 | 67.44 360 | 91.90 346 | 90.78 353 |
|
KD-MVS_2432*1600 | | | 82.17 320 | 80.75 327 | 86.42 324 | 82.04 377 | 70.09 349 | 81.75 358 | 90.80 312 | 82.56 270 | 90.37 276 | 89.30 338 | 42.90 379 | 96.11 318 | 74.47 331 | 92.55 339 | 93.06 333 |
|
miper_refine_blended | | | 82.17 320 | 80.75 327 | 86.42 324 | 82.04 377 | 70.09 349 | 81.75 358 | 90.80 312 | 82.56 270 | 90.37 276 | 89.30 338 | 42.90 379 | 96.11 318 | 74.47 331 | 92.55 339 | 93.06 333 |
|
DSMNet-mixed | | | 82.21 319 | 81.56 318 | 84.16 340 | 89.57 350 | 70.00 351 | 90.65 242 | 77.66 374 | 54.99 372 | 83.30 349 | 97.57 59 | 77.89 283 | 90.50 365 | 66.86 362 | 95.54 290 | 91.97 345 |
|
PatchmatchNet |  | | 85.22 301 | 84.64 301 | 86.98 320 | 89.51 351 | 69.83 352 | 90.52 245 | 87.34 333 | 78.87 303 | 87.22 326 | 92.74 285 | 66.91 326 | 96.53 304 | 81.77 274 | 86.88 360 | 94.58 303 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EMVS | | | 80.35 334 | 80.28 332 | 80.54 349 | 84.73 374 | 69.07 353 | 72.54 367 | 80.73 367 | 87.80 199 | 81.66 360 | 81.73 367 | 62.89 348 | 89.84 366 | 75.79 327 | 94.65 311 | 82.71 367 |
|
E-PMN | | | 80.72 332 | 80.86 326 | 80.29 350 | 85.11 372 | 68.77 354 | 72.96 365 | 81.97 364 | 87.76 200 | 83.25 350 | 83.01 366 | 62.22 352 | 89.17 368 | 77.15 318 | 94.31 317 | 82.93 366 |
|
mvs_anonymous | | | 90.37 220 | 91.30 196 | 87.58 315 | 92.17 316 | 68.00 355 | 89.84 270 | 94.73 250 | 83.82 259 | 93.22 212 | 97.40 70 | 87.54 195 | 97.40 277 | 87.94 201 | 95.05 302 | 97.34 214 |
|
CostFormer | | | 83.09 313 | 82.21 316 | 85.73 328 | 89.27 353 | 67.01 356 | 90.35 251 | 86.47 338 | 70.42 347 | 83.52 348 | 93.23 274 | 61.18 355 | 96.85 296 | 77.21 317 | 88.26 358 | 93.34 331 |
|
PatchT | | | 87.51 279 | 88.17 260 | 85.55 329 | 90.64 336 | 66.91 357 | 92.02 200 | 86.09 341 | 92.20 89 | 89.05 299 | 97.16 89 | 64.15 342 | 96.37 312 | 89.21 175 | 92.98 335 | 93.37 330 |
|
DWT-MVSNet_test | | | 80.74 331 | 79.18 336 | 85.43 331 | 87.51 363 | 66.87 358 | 89.87 269 | 86.01 342 | 74.20 328 | 80.86 362 | 80.62 368 | 48.84 372 | 96.68 303 | 81.54 276 | 83.14 367 | 92.75 339 |
|
test-LLR | | | 83.58 310 | 83.17 311 | 84.79 336 | 89.68 348 | 66.86 359 | 83.08 353 | 84.52 356 | 83.07 266 | 82.85 351 | 84.78 362 | 62.86 349 | 93.49 353 | 82.85 262 | 94.86 304 | 94.03 314 |
|
test-mter | | | 81.21 327 | 80.01 334 | 84.79 336 | 89.68 348 | 66.86 359 | 83.08 353 | 84.52 356 | 73.85 330 | 82.85 351 | 84.78 362 | 43.66 378 | 93.49 353 | 82.85 262 | 94.86 304 | 94.03 314 |
|
RRT_test8_iter05 | | | 88.21 265 | 88.17 260 | 88.33 306 | 91.62 326 | 66.82 361 | 91.73 219 | 96.60 182 | 86.34 222 | 94.14 177 | 95.38 202 | 47.72 374 | 99.11 97 | 91.78 109 | 98.26 191 | 99.06 49 |
|
test2506 | | | 85.42 300 | 84.57 302 | 87.96 310 | 97.81 97 | 66.53 362 | 96.14 52 | 56.35 379 | 89.04 172 | 93.55 199 | 98.10 35 | 42.88 381 | 98.68 172 | 88.09 197 | 99.18 87 | 98.67 97 |
|
PVSNet_0 | | 70.34 21 | 74.58 339 | 72.96 342 | 79.47 351 | 90.63 337 | 66.24 363 | 73.26 364 | 83.40 362 | 63.67 366 | 78.02 367 | 78.35 370 | 72.53 308 | 89.59 367 | 56.68 370 | 60.05 374 | 82.57 368 |
|
ADS-MVSNet | | | 82.25 318 | 81.55 319 | 84.34 339 | 89.04 355 | 65.30 364 | 87.57 306 | 85.13 355 | 72.71 337 | 84.46 340 | 92.45 291 | 68.08 320 | 92.33 359 | 70.58 354 | 83.97 363 | 95.38 285 |
|
tpmvs | | | 84.22 308 | 83.97 307 | 84.94 334 | 87.09 366 | 65.18 365 | 91.21 229 | 88.35 323 | 82.87 269 | 85.21 334 | 90.96 317 | 65.24 338 | 96.75 299 | 79.60 300 | 85.25 362 | 92.90 337 |
|
tpm2 | | | 81.46 324 | 80.35 331 | 84.80 335 | 89.90 345 | 65.14 366 | 90.44 247 | 85.36 350 | 65.82 362 | 82.05 357 | 92.44 293 | 57.94 360 | 96.69 301 | 70.71 353 | 88.49 357 | 92.56 341 |
|
EPMVS | | | 81.17 328 | 80.37 330 | 83.58 342 | 85.58 371 | 65.08 367 | 90.31 253 | 71.34 375 | 77.31 313 | 85.80 333 | 91.30 311 | 59.38 358 | 92.70 358 | 79.99 291 | 82.34 368 | 92.96 336 |
|
tpm cat1 | | | 80.61 333 | 79.46 335 | 84.07 341 | 88.78 357 | 65.06 368 | 89.26 284 | 88.23 325 | 62.27 367 | 81.90 359 | 89.66 335 | 62.70 351 | 95.29 336 | 71.72 346 | 80.60 370 | 91.86 348 |
|
DeepMVS_CX |  | | | | 53.83 357 | 70.38 379 | 64.56 369 | | 48.52 381 | 33.01 373 | 65.50 374 | 74.21 372 | 56.19 364 | 46.64 376 | 38.45 375 | 70.07 372 | 50.30 372 |
|
PVSNet | | 76.22 20 | 82.89 315 | 82.37 315 | 84.48 338 | 93.96 285 | 64.38 370 | 78.60 363 | 88.61 321 | 71.50 341 | 84.43 342 | 86.36 357 | 74.27 302 | 94.60 341 | 69.87 356 | 93.69 325 | 94.46 305 |
|
TESTMET0.1,1 | | | 79.09 337 | 78.04 339 | 82.25 346 | 87.52 362 | 64.03 371 | 83.08 353 | 80.62 368 | 70.28 348 | 80.16 364 | 83.22 365 | 44.13 377 | 90.56 364 | 79.95 292 | 93.36 326 | 92.15 344 |
|
tpm | | | 84.38 307 | 84.08 306 | 85.30 333 | 90.47 340 | 63.43 372 | 89.34 281 | 85.63 347 | 77.24 314 | 87.62 321 | 95.03 214 | 61.00 357 | 97.30 281 | 79.26 302 | 91.09 351 | 95.16 288 |
|
MDTV_nov1_ep13 | | | | 83.88 308 | | 89.42 352 | 61.52 373 | 88.74 296 | 87.41 332 | 73.99 329 | 84.96 338 | 94.01 252 | 65.25 337 | 95.53 326 | 78.02 308 | 93.16 330 | |
|
gm-plane-assit | | | | | | 87.08 367 | 59.33 374 | | | 71.22 342 | | 83.58 364 | | 97.20 284 | 73.95 334 | | |
|
tpmrst | | | 82.85 316 | 82.93 314 | 82.64 345 | 87.65 360 | 58.99 375 | 90.14 259 | 87.90 329 | 75.54 320 | 83.93 344 | 91.63 308 | 66.79 329 | 95.36 333 | 81.21 281 | 81.54 369 | 93.57 329 |
|
dp | | | 79.28 336 | 78.62 338 | 81.24 348 | 85.97 370 | 56.45 376 | 86.91 320 | 85.26 353 | 72.97 335 | 81.45 361 | 89.17 341 | 56.01 365 | 95.45 331 | 73.19 339 | 76.68 371 | 91.82 349 |
|
new-patchmatchnet | | | 88.97 252 | 90.79 208 | 83.50 343 | 94.28 278 | 55.83 377 | 85.34 337 | 93.56 272 | 86.18 225 | 95.47 129 | 95.73 179 | 83.10 239 | 96.51 306 | 85.40 236 | 98.06 214 | 98.16 139 |
|
MVS-HIRNet | | | 78.83 338 | 80.60 329 | 73.51 355 | 93.07 299 | 47.37 378 | 87.10 317 | 78.00 373 | 68.94 352 | 77.53 368 | 97.26 82 | 71.45 313 | 94.62 340 | 63.28 367 | 88.74 356 | 78.55 370 |
|
PMMVS2 | | | 81.31 325 | 83.44 309 | 74.92 354 | 90.52 339 | 46.49 379 | 69.19 368 | 85.23 354 | 84.30 255 | 87.95 318 | 94.71 229 | 76.95 292 | 84.36 372 | 64.07 365 | 98.09 212 | 93.89 319 |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 380 | 88.45 301 | | 67.22 358 | 83.56 347 | | 66.80 327 | | 72.86 341 | | 94.06 313 |
|
tmp_tt | | | 37.97 342 | 44.33 345 | 18.88 358 | 11.80 381 | 21.54 381 | 63.51 369 | 45.66 382 | 4.23 375 | 51.34 375 | 50.48 373 | 59.08 359 | 22.11 377 | 44.50 374 | 68.35 373 | 13.00 373 |
|
test_method | | | 50.44 341 | 48.94 344 | 54.93 356 | 39.68 380 | 12.38 382 | 28.59 371 | 90.09 316 | 6.82 374 | 41.10 376 | 78.41 369 | 54.41 366 | 70.69 375 | 50.12 373 | 51.26 375 | 81.72 369 |
|
test123 | | | 9.49 344 | 12.01 347 | 1.91 359 | 2.87 382 | 1.30 383 | 82.38 356 | 1.34 384 | 1.36 377 | 2.84 378 | 6.56 376 | 2.45 382 | 0.97 378 | 2.73 376 | 5.56 376 | 3.47 374 |
|
testmvs | | | 9.02 345 | 11.42 348 | 1.81 360 | 2.77 383 | 1.13 384 | 79.44 362 | 1.90 383 | 1.18 378 | 2.65 379 | 6.80 375 | 1.95 383 | 0.87 379 | 2.62 377 | 3.45 377 | 3.44 375 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 23.35 343 | 31.13 346 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 95.58 227 | 0.00 379 | 0.00 380 | 91.15 313 | 93.43 78 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 7.56 346 | 10.09 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 90.77 147 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 7.56 346 | 10.08 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 90.69 322 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
PC_three_1452 | | | | | | | | | | 75.31 323 | 95.87 114 | 95.75 178 | 92.93 94 | 96.34 315 | 87.18 213 | 98.68 148 | 98.04 149 |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 98.10 50 | 91.95 94 | 97.54 38 | 97.25 83 | 95.37 28 | 99.35 61 | 93.29 65 | 99.25 76 | 98.49 117 |
|
9.14 | | | | 94.81 96 | | 97.49 121 | | 94.11 130 | 98.37 18 | 87.56 207 | 95.38 133 | 96.03 163 | 94.66 56 | 99.08 100 | 90.70 131 | 98.97 115 | |
|
test_0728_THIRD | | | | | | | | | | 93.26 70 | 97.40 47 | 97.35 78 | 94.69 55 | 99.34 64 | 93.88 34 | 99.42 47 | 98.89 72 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 299 |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 330 | | | | 94.75 299 |
|
sam_mvs | | | | | | | | | | | | | 66.41 331 | | | | |
|
MTGPA |  | | | | | | | | 97.62 103 | | | | | | | | |
|
test_post1 | | | | | | | | 90.21 255 | | | | 5.85 378 | 65.36 336 | 96.00 321 | 79.61 298 | | |
|
test_post | | | | | | | | | | | | 6.07 377 | 65.74 335 | 95.84 323 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 306 | 66.22 333 | 97.59 265 | | | |
|
MTMP | | | | | | | | 94.82 103 | 54.62 380 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 195 | 98.40 171 | 97.83 177 |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 216 | 98.36 182 | 97.98 158 |
|
test_prior2 | | | | | | | | 90.21 255 | | 89.33 166 | 90.77 268 | 94.81 222 | 90.41 157 | | 88.21 191 | 98.55 158 | |
|
旧先验2 | | | | | | | | 90.00 264 | | 68.65 353 | 92.71 227 | | | 96.52 305 | 85.15 239 | | |
|
新几何2 | | | | | | | | 90.02 263 | | | | | | | | | |
|
无先验 | | | | | | | | 89.94 265 | 95.75 218 | 70.81 346 | | | | 98.59 184 | 81.17 282 | | 94.81 296 |
|
原ACMM2 | | | | | | | | 89.34 281 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.03 230 | 80.24 289 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 112 | | | | |
|
testdata1 | | | | | | | | 88.96 290 | | 88.44 187 | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.81 91 | | | | | 98.95 123 | 89.26 172 | 98.51 165 | 98.60 110 |
|
plane_prior4 | | | | | | | | | | | | 95.59 184 | | | | | |
|
plane_prior2 | | | | | | | | 94.56 115 | | 91.74 111 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 127 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 301 | | | | | | | | |
|
test11 | | | | | | | | | 96.65 180 | | | | | | | | |
|
door | | | | | | | | | 91.26 309 | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 182 | | 91.37 224 | | 87.16 211 | 88.81 302 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 182 | | 91.37 224 | | 87.16 211 | 88.81 302 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 224 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 302 | | | 98.61 180 | | | 98.15 140 |
|
HQP3-MVS | | | | | | | | | 97.31 131 | | | | | | | 97.73 230 | |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 229 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 133 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 76 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 153 | | | | |
|