tm-dncc | | | 91.49 3 | 89.01 2 | 93.15 5 | 92.89 8 | 91.90 21 | 85.54 2 | 92.48 2 | 94.65 1 |
|
DeepPCF-MVS | | 96.37 2 | 92.61 1 | 89.11 1 | 94.94 1 | 95.58 1 | 95.07 1 | 85.62 1 | 92.60 1 | 94.17 2 |
|
DeepC-MVS_fast | | 96.70 1 | 92.27 2 | 88.75 3 | 94.63 2 | 95.15 3 | 94.80 2 | 85.14 4 | 92.35 3 | 93.92 3 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS | | 95.98 3 | 91.43 4 | 87.48 5 | 94.06 4 | 94.52 5 | 94.15 5 | 83.69 7 | 91.26 4 | 93.50 4 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PCF-MVS | | 93.45 11 | 90.50 7 | 85.08 15 | 94.11 3 | 95.54 2 | 93.44 10 | 82.27 13 | 87.88 17 | 93.34 5 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ACMP | | 93.49 10 | 89.04 14 | 84.30 18 | 92.21 11 | 90.34 22 | 93.47 9 | 79.54 20 | 89.07 15 | 92.81 6 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
COLMAP(SR) | | | 90.17 8 | 85.79 13 | 93.08 6 | 92.63 11 | 93.87 6 | 82.51 12 | 89.07 15 | 92.74 7 |
|
PLC |  | 95.07 4 | 89.96 9 | 87.00 7 | 91.94 13 | 90.65 21 | 92.68 17 | 83.01 9 | 90.98 6 | 92.48 8 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
COLMAP(base) | | | 89.91 10 | 86.37 10 | 92.28 10 | 91.56 17 | 92.95 14 | 82.53 11 | 90.21 9 | 92.33 9 |
|
ACMM | | 93.85 9 | 89.42 13 | 85.42 14 | 92.10 12 | 91.09 19 | 92.98 13 | 81.16 16 | 89.68 12 | 92.23 10 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 92.99 14 | 89.84 11 | 85.96 12 | 92.43 9 | 92.28 13 | 92.84 16 | 81.89 14 | 90.03 10 | 92.17 11 |
|
GSE | | | 89.80 12 | 86.71 8 | 91.87 14 | 90.87 20 | 92.62 18 | 83.49 8 | 89.92 11 | 92.11 12 |
|
TAPA-MVS(SR) | | | 90.57 6 | 87.48 5 | 92.63 7 | 92.64 10 | 93.17 11 | 83.91 6 | 91.04 5 | 92.10 13 |
|
ACMH | | 92.88 16 | 88.89 16 | 84.55 16 | 91.78 15 | 91.37 18 | 92.41 19 | 79.88 18 | 89.21 13 | 91.56 14 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAPA-MVS | | 93.98 7 | 90.68 5 | 88.05 4 | 92.44 8 | 92.42 12 | 93.52 8 | 85.24 3 | 90.85 7 | 91.36 15 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
COLMAP_ROB |  | 93.27 12 | 88.32 18 | 84.41 17 | 90.93 19 | 89.38 24 | 92.11 20 | 79.72 19 | 89.10 14 | 91.28 16 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LTVRE_ROB | | 92.95 15 | 89.00 15 | 86.32 11 | 90.78 20 | 91.67 16 | 89.54 28 | 84.87 5 | 87.77 18 | 91.13 17 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
BP-MVSNet | | | 86.71 23 | 81.68 22 | 90.06 22 | 91.85 15 | 87.55 34 | 75.75 26 | 87.61 19 | 90.77 18 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
A-TVSNet + Gipuma |  | | 86.96 22 | 82.91 20 | 89.65 24 | 88.10 27 | 91.71 23 | 80.23 17 | 85.60 23 | 89.15 19 |
|
HY-MVS | | 93.96 8 | 87.12 20 | 82.85 21 | 89.96 23 | 89.33 25 | 93.07 12 | 78.79 22 | 86.90 20 | 87.48 20 |
|
LPCS | | | 85.52 25 | 83.61 19 | 86.79 27 | 84.99 33 | 88.49 30 | 81.34 15 | 85.87 22 | 86.89 21 |
|
3Dnovator | | 94.51 5 | 87.43 19 | 80.90 24 | 91.78 15 | 94.76 4 | 94.22 3 | 78.96 21 | 82.85 24 | 86.35 22 |
|
3Dnovator+ | | 94.38 6 | 87.07 21 | 80.26 25 | 91.61 17 | 94.34 6 | 94.17 4 | 78.01 23 | 82.52 25 | 86.34 23 |
|
OpenMVS |  | 93.04 13 | 86.34 24 | 79.08 26 | 91.18 18 | 93.50 7 | 93.77 7 | 76.56 24 | 81.60 28 | 86.26 24 |
|
IB-MVS | | 91.98 17 | 88.88 17 | 86.61 9 | 90.39 21 | 92.23 14 | 92.94 15 | 82.93 10 | 90.30 8 | 86.00 25 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PVSNet_0 | | 88.72 19 | 82.59 27 | 75.14 31 | 87.55 26 | 88.79 26 | 88.38 31 | 73.35 30 | 76.93 34 | 85.48 26 |
|
tmmvs | | | 84.10 26 | 76.16 28 | 89.39 25 | 92.89 8 | 91.90 21 | 74.49 29 | 77.82 33 | 83.39 27 |
|
PVSNet | | 91.96 18 | 81.42 28 | 74.82 32 | 85.83 30 | 87.90 28 | 86.77 35 | 74.82 27 | 74.81 39 | 82.83 28 |
|
R-MVSNet | | | 81.26 29 | 77.44 27 | 83.81 33 | 82.82 35 | 86.25 36 | 74.52 28 | 80.36 30 | 82.37 29 |
|
PVSNet_LR | | | 80.13 34 | 73.03 34 | 84.86 32 | 84.39 34 | 88.14 32 | 66.94 39 | 79.13 31 | 82.06 30 |
|
CPR_FA | | | 74.23 37 | 72.06 36 | 75.68 44 | 74.30 49 | 70.69 56 | 68.60 36 | 75.52 36 | 82.05 31 |
|
CIDER | | | 80.48 30 | 72.14 35 | 86.05 28 | 87.66 29 | 89.77 26 | 71.75 31 | 72.53 44 | 80.72 32 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
OpenMVS_ROB |  | 86.42 20 | 80.25 33 | 71.88 38 | 85.82 31 | 87.52 30 | 89.56 27 | 70.53 32 | 73.24 42 | 80.39 33 |
|
Pnet_fast | | | 68.89 44 | 47.01 72 | 83.47 35 | 81.84 36 | 89.30 29 | 38.61 75 | 55.42 70 | 79.28 34 |
|
Pnet-new- | | | 70.55 41 | 53.66 61 | 81.81 36 | 81.27 37 | 85.23 38 | 51.15 55 | 56.17 69 | 78.92 35 |
|
test_1126 | | | 80.30 32 | 71.93 37 | 85.88 29 | 89.75 23 | 90.41 25 | 70.18 34 | 73.68 41 | 77.50 36 |
|
ANet-0.75 | | | 77.73 35 | 74.78 33 | 79.70 37 | 77.01 44 | 84.71 39 | 67.34 38 | 82.21 27 | 77.39 37 |
|
MVSNet_plusplus | | | 64.09 49 | 48.06 70 | 74.77 47 | 85.29 32 | 62.00 61 | 31.11 80 | 65.01 53 | 77.03 38 |
|
A1Net | | | 68.49 47 | 75.64 29 | 63.72 58 | 63.53 62 | 51.39 76 | 68.88 35 | 82.41 26 | 76.23 39 |
|
P-MVSNet | | | 77.69 36 | 81.61 23 | 75.07 46 | 71.91 51 | 77.33 49 | 76.51 25 | 86.71 21 | 75.98 40 |
|
mvs_zhu_1030 | | | 72.30 40 | 62.31 45 | 78.96 39 | 77.79 42 | 83.27 41 | 55.37 46 | 69.25 46 | 75.83 41 |
|
MVSNet_++ | | | 59.91 59 | 45.04 74 | 69.82 52 | 74.28 50 | 60.08 63 | 14.97 84 | 75.11 38 | 75.10 42 |
|
AttMVS | | | 72.35 39 | 68.13 41 | 75.16 45 | 70.98 55 | 80.63 44 | 68.09 37 | 68.16 47 | 73.87 43 |
|
test_mvsss | | | 69.43 43 | 58.19 52 | 76.92 42 | 77.20 43 | 80.08 45 | 43.23 66 | 73.16 43 | 73.47 44 |
|
test_1205 | | | 80.31 31 | 75.46 30 | 83.55 34 | 86.48 31 | 90.90 24 | 70.38 33 | 80.54 29 | 73.26 45 |
|
ANet | | | 74.07 38 | 68.26 40 | 77.94 41 | 77.01 44 | 84.71 39 | 64.75 40 | 71.76 45 | 72.09 46 |
|
unsupervisedMVS_cas | | | 68.86 45 | 58.51 51 | 75.77 43 | 74.54 48 | 80.76 43 | 51.51 53 | 65.51 50 | 72.00 47 |
|
CasMVSNet(SR_A) | | | 69.66 42 | 55.07 57 | 79.38 38 | 80.08 39 | 87.62 33 | 46.56 61 | 63.58 59 | 70.44 48 |
|
CasMVSNet(base) | | | 68.63 46 | 53.70 60 | 78.58 40 | 79.92 40 | 85.96 37 | 44.83 63 | 62.57 61 | 69.87 49 |
|
Snet | | | 60.77 57 | 47.18 71 | 69.82 52 | 77.90 41 | 61.73 62 | 39.61 74 | 54.76 71 | 69.82 50 |
|
MVSNet | | | 63.58 53 | 56.25 54 | 68.47 55 | 66.00 59 | 71.12 53 | 48.36 58 | 64.13 54 | 68.29 51 |
|
MVS_test_1 | | | 68.30 48 | 59.98 48 | 73.84 48 | 80.46 38 | 73.07 52 | 44.68 64 | 75.28 37 | 67.99 52 |
|
MVSCRF | | | 63.13 54 | 52.16 64 | 70.45 51 | 70.18 56 | 75.83 51 | 51.17 54 | 53.16 74 | 65.33 53 |
|
test_1124 | | | 58.90 63 | 44.17 76 | 68.72 54 | 62.60 68 | 78.44 46 | 38.12 76 | 50.22 75 | 65.10 54 |
|
test3 | | | 57.95 64 | 60.13 47 | 56.50 71 | 54.75 75 | 51.79 73 | 53.99 47 | 66.26 48 | 62.98 55 |
|
SGNet | | | 57.44 66 | 58.95 49 | 56.44 72 | 55.09 72 | 52.01 71 | 52.63 49 | 65.27 51 | 62.22 56 |
|
Pnet-blend++ | | | 64.02 50 | 52.13 65 | 71.95 49 | 75.81 46 | 78.00 47 | 40.66 71 | 63.61 57 | 62.05 57 |
|
Pnet-blend | | | 64.02 50 | 52.13 65 | 71.95 49 | 75.81 46 | 78.00 47 | 40.66 71 | 63.61 57 | 62.05 57 |
|
TVSNet | | | 56.87 68 | 57.97 53 | 56.13 73 | 55.48 71 | 50.99 77 | 49.98 56 | 65.96 49 | 61.93 59 |
|
PSD-MVSNet | | | 57.63 65 | 58.95 49 | 56.74 70 | 56.38 69 | 52.03 70 | 52.75 48 | 65.16 52 | 61.82 60 |
|
Pnet-eth | | | 60.43 58 | 65.87 43 | 56.80 69 | 63.59 61 | 45.39 80 | 55.58 45 | 76.16 35 | 61.43 61 |
|
unMVSv1 | | | 63.91 52 | 62.59 44 | 64.80 57 | 66.39 58 | 68.00 59 | 61.62 41 | 63.55 60 | 60.01 62 |
|
MVSNet + Gipuma | | | 57.07 67 | 53.08 62 | 59.73 64 | 62.91 65 | 57.42 67 | 48.41 57 | 57.74 65 | 58.88 63 |
|
F/T MVSNet+Gipuma | | | 55.78 70 | 49.83 69 | 59.76 63 | 63.10 63 | 57.51 66 | 46.34 62 | 53.31 73 | 58.66 64 |
|
firsttry | | | 54.62 73 | 52.74 63 | 55.88 74 | 54.90 73 | 55.69 68 | 48.02 59 | 57.46 66 | 57.06 65 |
|
MVE |  | 62.14 22 | 59.41 62 | 60.38 46 | 58.77 65 | 50.39 78 | 69.00 58 | 56.98 44 | 63.78 56 | 56.91 66 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
metmvs_fine | | | 60.95 56 | 66.50 42 | 57.25 68 | 64.00 60 | 51.92 72 | 59.04 43 | 73.97 40 | 55.84 67 |
|
vp_mvsnet | | | 55.09 71 | 38.17 79 | 66.36 56 | 62.91 65 | 81.28 42 | 29.09 83 | 47.26 76 | 54.90 68 |
|
test_1120 |  | | 40.25 81 | 35.81 81 | 43.21 81 | 30.29 84 | 50.38 78 | 29.89 82 | 41.72 81 | 48.95 69 |
|
hgnet | | | 59.89 60 | 54.16 58 | 63.70 59 | 71.39 52 | 70.87 54 | 52.09 51 | 56.24 67 | 48.85 70 |
|
DPSNet | | | 59.89 60 | 54.16 58 | 63.70 59 | 71.39 52 | 70.87 54 | 52.09 51 | 56.24 67 | 48.85 70 |
|
CasMVSNet(SR_B) | | | 56.87 68 | 55.95 55 | 57.48 67 | 56.06 70 | 67.85 60 | 47.86 60 | 64.05 55 | 48.53 72 |
|
RMVSNet | | | 62.69 55 | 69.01 39 | 58.48 66 | 69.15 57 | 58.56 65 | 59.72 42 | 78.30 32 | 47.75 73 |
|
unMVSmet | | | 48.01 77 | 40.73 78 | 52.86 75 | 53.90 76 | 58.72 64 | 36.72 78 | 44.74 79 | 45.96 74 |
|
SVVNet | | | 47.76 78 | 49.94 67 | 46.31 79 | 48.51 79 | 45.06 81 | 41.53 69 | 58.34 62 | 45.36 75 |
|
ternet | | | 47.76 78 | 49.94 67 | 46.31 79 | 48.51 79 | 45.06 81 | 41.53 69 | 58.34 62 | 45.36 75 |
|
example | | | 55.06 72 | 44.75 75 | 61.93 61 | 71.21 54 | 69.85 57 | 42.82 68 | 46.68 77 | 44.73 77 |
|
CCVNet | | | 49.22 76 | 46.91 73 | 50.75 76 | 53.16 77 | 55.57 69 | 40.21 73 | 53.61 72 | 43.53 78 |
|
QQQNet | | | 52.14 74 | 55.46 56 | 49.93 77 | 54.81 74 | 51.46 75 | 52.58 50 | 58.34 62 | 43.53 78 |
|
PMVS |  | 61.03 23 | 49.24 75 | 32.69 82 | 60.27 62 | 62.70 67 | 76.26 50 | 42.99 67 | 22.38 82 | 41.86 80 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
confMetMVS | | | 44.56 80 | 41.82 77 | 46.39 78 | 46.63 81 | 51.78 74 | 37.38 77 | 46.25 78 | 40.77 81 |
|
Cas-MVS_preliminary | | | 38.91 82 | 36.73 80 | 40.37 82 | 37.57 82 | 48.76 79 | 30.59 81 | 42.87 80 | 34.76 82 |
|
test_robustmvs | | | | | 23.92 83 | 37.28 83 | 22.69 84 | 32.97 79 | | 11.78 83 |
|
FADENet | | | 4.02 84 | 4.30 83 | 3.83 85 | 6.03 86 | 3.71 85 | 5.02 85 | 3.58 83 | 1.74 84 |
|
dnet | | | 0.00 85 | 0.00 85 | 0.00 86 | 0.00 87 | 0.00 86 | 0.00 87 | 0.00 84 | 0.00 85 |
|
CMPMVS |  | 66.06 21 | 9.32 83 | 0.44 84 | 15.23 84 | 6.17 85 | 39.51 83 | 0.89 86 | 0.00 84 | 0.00 85 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_MVS | | | | | | | | 43.40 65 | | |
|
UnsupFinetunedMVSNet | | | | | | 63.10 63 | | | | |
|