DeepPCF-MVS | | 98.18 3 | 96.68 2 | 95.10 3 | 97.74 1 | 98.30 1 | 97.78 5 | 92.41 4 | 97.79 3 | 97.12 3 |
|
DeepC-MVS_fast | | 98.69 1 | 96.77 1 | 95.30 2 | 97.74 1 | 98.24 2 | 97.85 3 | 92.74 3 | 97.86 2 | 97.13 2 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS | | 98.35 2 | 96.09 4 | 94.20 12 | 97.34 3 | 97.94 4 | 97.39 11 | 90.85 15 | 97.56 4 | 96.71 5 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PCF-MVS | | 97.08 14 | 95.68 7 | 93.36 16 | 97.23 4 | 98.16 3 | 96.93 15 | 91.43 12 | 95.29 22 | 96.61 6 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
COLMAP(SR) | | | 96.07 5 | 94.39 9 | 97.19 5 | 96.86 8 | 97.92 2 | 91.54 11 | 97.24 9 | 96.79 4 |
|
tm-dncc | | | 96.59 3 | 95.98 1 | 97.00 6 | 96.82 9 | 96.51 21 | 94.07 1 | 97.88 1 | 97.68 1 |
|
ACMH+ | | 97.24 10 | 95.61 9 | 93.77 15 | 96.83 7 | 96.69 12 | 97.71 7 | 90.70 16 | 96.85 13 | 96.09 11 |
|
ACMH | | 97.28 8 | 95.29 13 | 93.25 17 | 96.65 8 | 96.32 13 | 97.93 1 | 89.82 19 | 96.68 16 | 95.69 14 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 97.20 11 | 95.11 14 | 93.01 21 | 96.52 9 | 95.68 18 | 97.26 13 | 89.74 20 | 96.27 18 | 96.61 6 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
TAPA-MVS(SR) | | | 95.82 6 | 94.80 4 | 96.49 10 | 96.19 14 | 97.58 10 | 92.04 5 | 97.56 4 | 95.71 13 |
|
ACMM | | 97.58 5 | 95.68 7 | 94.49 7 | 96.48 11 | 96.12 15 | 97.20 14 | 92.04 5 | 96.94 12 | 96.10 10 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP(base) | | | 95.42 11 | 94.03 14 | 96.35 12 | 95.96 16 | 96.92 16 | 91.10 14 | 96.97 10 | 96.16 9 |
|
TAPA-MVS | | 97.07 15 | 95.48 10 | 94.55 5 | 96.10 13 | 95.68 18 | 97.30 12 | 91.73 9 | 97.37 7 | 95.32 16 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC | | 97.94 4 | 95.35 12 | 94.28 11 | 96.06 14 | 95.26 22 | 96.59 18 | 91.61 10 | 96.96 11 | 96.34 8 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LTVRE_ROB | | 97.16 12 | 95.10 15 | 94.13 13 | 95.75 15 | 95.69 17 | 95.73 24 | 92.87 2 | 95.39 21 | 95.83 12 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
BP-MVSNet | | | 94.57 18 | 93.20 18 | 95.49 16 | 96.77 11 | 94.34 33 | 89.67 21 | 96.74 14 | 95.35 15 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
3Dnovator | | 97.25 9 | 92.47 22 | 87.97 30 | 95.47 17 | 97.93 5 | 97.85 3 | 86.02 26 | 89.92 32 | 90.64 24 |
|
GSE | | | 95.00 16 | 94.33 10 | 95.45 18 | 94.81 23 | 96.53 20 | 91.98 7 | 96.68 16 | 95.02 18 |
|
COLMAP_ROB | | 97.56 6 | 94.43 19 | 93.09 19 | 95.33 19 | 94.55 24 | 96.37 23 | 89.45 22 | 96.72 15 | 95.07 17 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
A-TVSNet + Gipuma | | | 94.96 17 | 94.54 6 | 95.24 20 | 95.31 21 | 96.58 19 | 91.82 8 | 97.27 8 | 93.83 19 |
|
3Dnovator+ | | 97.12 13 | 92.17 23 | 87.57 31 | 95.24 20 | 97.49 6 | 97.68 8 | 85.24 29 | 89.91 33 | 90.54 25 |
|
OpenMVS | | 96.50 16 | 91.77 25 | 86.65 34 | 95.19 22 | 97.38 7 | 97.66 9 | 84.60 32 | 88.69 38 | 90.53 26 |
|
IB-MVS | | 95.67 18 | 94.34 20 | 94.41 8 | 94.29 23 | 95.45 20 | 97.77 6 | 91.37 13 | 97.44 6 | 89.67 28 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HY-MVS | | 97.30 7 | 93.59 21 | 93.02 20 | 93.97 24 | 92.85 29 | 96.87 17 | 90.03 18 | 96.00 19 | 92.19 21 |
|
tmmvs | | | 90.82 27 | 86.27 35 | 93.86 25 | 96.82 9 | 96.51 21 | 83.91 35 | 88.63 39 | 88.24 31 |
|
PVSNet_0 | | 94.43 19 | 90.46 28 | 85.77 36 | 93.59 26 | 93.82 26 | 95.33 27 | 84.62 31 | 86.92 41 | 91.61 22 |
|
PVSNet | | 96.02 17 | 89.22 33 | 84.53 40 | 92.35 27 | 93.29 28 | 94.60 31 | 85.85 27 | 83.20 45 | 89.17 29 |
|
CIDER | | | 88.55 34 | 83.13 42 | 92.16 28 | 93.95 25 | 95.61 26 | 83.79 36 | 82.47 48 | 86.92 33 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
R-MVSNet | | | 90.93 26 | 89.80 24 | 91.68 29 | 90.81 34 | 94.15 34 | 87.67 23 | 91.93 28 | 90.07 27 |
|
LPCS | | | 92.07 24 | 92.93 22 | 91.49 30 | 90.32 35 | 93.29 35 | 90.66 17 | 95.20 23 | 90.87 23 |
|
OpenMVS_ROB | | 92.34 20 | 87.46 36 | 81.75 43 | 91.27 31 | 92.55 31 | 95.21 29 | 81.21 41 | 82.29 50 | 86.05 35 |
|
PVSNet_LR | | | 89.56 30 | 87.11 32 | 91.19 32 | 90.87 33 | 94.45 32 | 83.35 37 | 90.86 31 | 88.25 30 |
|
test_1126 | | | 89.66 29 | 88.06 29 | 90.73 33 | 93.40 27 | 95.29 28 | 84.99 30 | 91.13 30 | 83.50 39 |
|
Pnet_fast | | | 80.38 47 | 65.52 72 | 90.29 34 | 90.03 37 | 94.91 30 | 60.54 72 | 70.51 75 | 85.93 36 |
|
CPR_FA | | | 89.35 32 | 88.37 28 | 90.00 35 | 89.38 38 | 87.69 46 | 87.29 25 | 89.46 36 | 92.93 20 |
|
test_1205 | | | 89.53 31 | 89.08 27 | 89.83 36 | 92.63 30 | 95.71 25 | 85.34 28 | 92.82 27 | 81.15 47 |
|
test_mvsss | | | 85.35 37 | 79.90 44 | 88.98 37 | 90.30 36 | 89.87 42 | 68.09 58 | 91.71 29 | 86.77 34 |
|
ANet-0.75 | | | 87.89 35 | 89.58 25 | 86.76 38 | 84.37 52 | 90.29 39 | 84.51 33 | 94.65 24 | 85.61 37 |
|
Pnet-new- | | | 79.46 49 | 69.54 65 | 86.08 39 | 84.76 46 | 90.31 38 | 65.13 62 | 73.95 70 | 83.16 41 |
|
unsupervisedMVS_cas | | | 83.12 42 | 78.75 45 | 86.04 40 | 85.85 42 | 89.90 41 | 75.64 46 | 81.86 52 | 82.36 42 |
|
CasMVSNet(SR_A) | | | 79.00 50 | 69.56 64 | 85.29 41 | 85.95 41 | 92.82 36 | 62.08 69 | 77.05 61 | 77.11 52 |
|
ANet | | | 85.16 39 | 85.20 38 | 85.14 42 | 84.37 52 | 90.29 39 | 82.00 39 | 88.39 40 | 80.78 49 |
|
mvs_zhu_1030 | | | 82.18 44 | 78.09 50 | 84.91 43 | 82.35 57 | 88.99 43 | 71.71 54 | 84.46 44 | 83.39 40 |
|
CasMVSNet(base) | | | 78.10 55 | 68.51 68 | 84.50 44 | 85.47 43 | 91.56 37 | 59.79 75 | 77.22 60 | 76.47 53 |
|
unMVSv1 | | | 83.89 40 | 84.37 41 | 83.58 45 | 84.00 56 | 85.63 49 | 83.17 38 | 85.56 42 | 81.11 48 |
|
MVSNet_plusplus | | | 76.50 59 | 66.38 70 | 83.25 46 | 91.25 32 | 73.79 66 | 53.62 81 | 79.14 57 | 84.70 38 |
|
MVS_test_1 | | | 80.50 46 | 77.21 52 | 82.70 47 | 86.63 40 | 82.92 55 | 64.61 63 | 89.81 34 | 78.53 51 |
|
metmvs_fine | | | 83.50 41 | 84.90 39 | 82.56 48 | 84.72 47 | 81.80 59 | 81.09 42 | 88.72 37 | 81.17 46 |
|
AttMVS | | | 80.32 48 | 78.27 48 | 81.68 49 | 78.98 59 | 86.16 48 | 79.76 44 | 76.79 65 | 79.89 50 |
|
P-MVSNet | | | 85.35 37 | 91.57 23 | 81.21 50 | 78.76 60 | 82.87 56 | 87.56 24 | 95.58 20 | 82.00 44 |
|
Pnet-blend++ | | | 78.13 53 | 73.62 59 | 81.13 51 | 84.46 50 | 88.20 44 | 66.50 59 | 80.74 54 | 70.74 69 |
|
Snet | | | 74.39 61 | 64.28 74 | 81.13 51 | 88.04 39 | 73.18 69 | 60.15 73 | 68.41 76 | 82.18 43 |
|
Pnet-blend | | | 78.13 53 | 73.62 59 | 81.13 51 | 84.46 50 | 88.20 44 | 66.50 59 | 80.74 54 | 70.74 69 |
|
hgnet | | | 78.82 51 | 76.20 54 | 80.57 54 | 84.50 48 | 82.32 57 | 75.56 47 | 76.84 62 | 74.88 59 |
|
DPSNet | | | 78.82 51 | 76.20 54 | 80.57 54 | 84.50 48 | 82.32 57 | 75.56 47 | 76.84 62 | 74.88 59 |
|
example | | | 74.48 60 | 65.59 71 | 80.41 56 | 84.10 55 | 83.16 54 | 62.82 68 | 68.36 77 | 73.98 63 |
|
MVSNet_++ | | | 71.81 69 | 59.04 80 | 80.33 57 | 84.86 45 | 74.23 65 | 33.06 84 | 85.02 43 | 81.88 45 |
|
MVSCRF | | | 77.21 57 | 74.57 57 | 78.98 58 | 79.29 58 | 83.87 53 | 75.01 49 | 74.12 69 | 73.78 64 |
|
A1Net | | | 82.90 43 | 89.39 26 | 78.57 59 | 85.19 44 | 63.18 74 | 84.36 34 | 94.42 25 | 87.34 32 |
|
test_1124 | | | 71.63 70 | 63.97 75 | 76.73 60 | 69.39 76 | 85.55 50 | 56.73 76 | 71.21 72 | 75.26 57 |
|
RMVSNet | | | 80.62 45 | 86.71 33 | 76.57 61 | 84.14 54 | 78.09 61 | 80.22 43 | 93.20 26 | 67.48 71 |
|
vp_mvsnet | | | 69.76 73 | 60.05 79 | 76.24 62 | 76.16 62 | 87.57 47 | 48.96 83 | 71.14 73 | 64.99 73 |
|
MVSNet | | | 73.65 62 | 70.01 63 | 76.07 63 | 76.39 61 | 77.59 62 | 61.93 70 | 78.09 59 | 74.23 62 |
|
MVE | | 76.82 21 | 76.63 58 | 77.52 51 | 76.03 64 | 70.40 74 | 85.49 51 | 75.68 45 | 79.36 56 | 72.20 66 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
MVSNet + Gipuma | | | 72.61 66 | 71.20 61 | 73.54 65 | 75.39 64 | 73.46 68 | 65.60 61 | 76.81 64 | 71.78 67 |
|
F/T MVSNet+Gipuma | | | 69.80 72 | 64.46 73 | 73.36 66 | 75.05 65 | 73.57 67 | 60.74 71 | 68.18 78 | 71.46 68 |
|
Pnet-eth | | | 77.75 56 | 85.52 37 | 72.57 67 | 75.57 63 | 65.89 72 | 81.44 40 | 89.61 35 | 76.26 54 |
|
unMVSmet | | | 66.94 75 | 60.67 78 | 71.11 68 | 71.91 70 | 79.70 60 | 54.62 78 | 66.73 79 | 61.74 74 |
|
firsttry | | | 72.49 67 | 75.56 56 | 70.44 69 | 68.80 77 | 70.25 70 | 69.31 56 | 81.82 53 | 72.28 65 |
|
PSD-MVSNet | | | 73.38 63 | 78.51 46 | 69.96 70 | 72.98 68 | 62.49 76 | 74.33 50 | 82.69 47 | 74.41 61 |
|
SGNet | | | 73.32 64 | 78.38 47 | 69.94 71 | 72.09 69 | 62.62 75 | 73.95 51 | 82.81 46 | 75.11 58 |
|
test3 | | | 73.10 65 | 78.15 49 | 69.73 72 | 71.16 71 | 62.14 78 | 73.89 52 | 82.42 49 | 75.89 56 |
|
TVSNet | | | 72.34 68 | 76.78 53 | 69.38 73 | 70.64 73 | 61.58 80 | 71.28 55 | 82.27 51 | 75.92 55 |
|
CasMVSNet(SR_B) | | | 70.07 71 | 71.18 62 | 69.33 74 | 69.73 75 | 77.06 63 | 64.06 64 | 78.31 58 | 61.20 75 |
|
PMVS | | 70.75 22 | 58.19 81 | 43.22 82 | 68.18 75 | 73.06 67 | 84.09 52 | 54.23 79 | 32.21 82 | 47.37 81 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
confMetMVS | | | 63.51 77 | 60.95 77 | 65.21 76 | 60.95 82 | 76.48 64 | 55.53 77 | 66.38 80 | 58.21 76 |
|
QQQNet | | | 67.18 74 | 74.04 58 | 62.60 77 | 71.02 72 | 62.30 77 | 73.86 53 | 74.22 66 | 54.48 79 |
|
CCVNet | | | 64.24 76 | 67.70 69 | 61.94 78 | 65.09 78 | 66.24 71 | 63.67 65 | 71.73 71 | 54.48 79 |
|
test_1120 | | | 58.74 80 | 57.03 81 | 59.88 79 | 49.42 84 | 64.79 73 | 49.65 82 | 64.41 81 | 65.45 72 |
|
SVVNet | | | 62.40 78 | 68.72 66 | 58.19 80 | 63.36 79 | 54.86 81 | 63.22 66 | 74.22 66 | 56.34 77 |
|
ternet | | | 62.40 78 | 68.72 66 | 58.19 80 | 63.36 79 | 54.86 81 | 63.22 66 | 74.22 66 | 56.34 77 |
|
Cas-MVS_preliminary | | | 56.71 82 | 62.57 76 | 52.80 82 | 50.07 83 | 61.96 79 | 54.15 80 | 71.00 74 | 46.38 82 |
|
test_robustmvs | | | | | 44.81 83 | 63.28 81 | 45.49 83 | 59.95 74 | | 25.66 83 |
|
FADENet | | | 18.58 83 | 15.51 83 | 20.63 84 | 21.45 85 | 32.74 85 | 15.09 85 | 15.93 83 | 7.68 84 |
|
CMPMVS | | 69.68 23 | 11.01 84 | 0.97 84 | 17.70 85 | 10.09 86 | 43.01 84 | 1.93 86 | 0.00 84 | 0.00 85 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
dnet | | | 0.00 85 | 0.00 85 | 0.00 86 | 0.00 87 | 0.00 86 | 0.00 87 | 0.00 84 | 0.00 85 |
|
test_MVS | | | | | | | | 69.14 57 | | |
|
UnsupFinetunedMVSNet | | | | | | 75.05 65 | | | | |
|