DeepC-MVS | | 69.38 2 | 47.34 1 | 38.25 1 | 53.40 2 | 54.29 4 | 56.62 3 | 32.95 1 | 43.55 2 | 49.30 3 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TAPA-MVS | | 59.36 10 | 41.97 9 | 37.54 2 | 44.93 15 | 46.78 16 | 46.52 19 | 31.44 3 | 43.65 1 | 41.48 16 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepPCF-MVS | | 69.58 1 | 46.90 2 | 37.52 3 | 53.15 3 | 53.58 5 | 57.05 2 | 32.83 2 | 42.22 3 | 48.83 5 |
|
DeepC-MVS_fast | | 68.24 3 | 46.61 3 | 34.94 4 | 54.40 1 | 55.37 3 | 57.55 1 | 31.02 4 | 38.86 4 | 50.28 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator | | 64.47 5 | 45.24 4 | 34.37 5 | 52.48 5 | 57.34 1 | 53.53 5 | 30.63 5 | 38.11 6 | 46.56 9 |
|
PCF-MVS | | 61.88 8 | 40.12 13 | 33.16 6 | 44.75 16 | 49.39 10 | 46.16 20 | 28.63 7 | 37.70 7 | 38.70 25 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
3Dnovator+ | | 66.72 4 | 44.84 5 | 33.14 7 | 52.63 4 | 56.23 2 | 53.78 4 | 29.20 6 | 37.07 10 | 47.89 6 |
|
OpenMVS | | 61.03 9 | 42.28 7 | 32.86 8 | 48.56 10 | 51.94 7 | 50.82 10 | 27.02 9 | 38.70 5 | 42.92 13 |
|
tm-dncc | | | 42.17 8 | 31.89 9 | 49.03 7 | 49.63 8 | 50.53 11 | 26.59 12 | 37.19 9 | 46.92 8 |
|
ACMP | | 63.53 6 | 42.50 6 | 31.11 10 | 50.08 6 | 48.62 12 | 52.78 7 | 24.90 18 | 37.33 8 | 48.84 4 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
COLMAP(SR) | | | 41.20 10 | 29.58 11 | 48.95 8 | 48.70 11 | 48.18 14 | 28.26 8 | 30.89 19 | 49.98 2 |
|
TAPA-MVS(SR) | | | 40.72 12 | 29.34 12 | 48.31 11 | 52.32 6 | 44.77 24 | 26.63 11 | 32.05 14 | 47.84 7 |
|
ACMM | | 61.98 7 | 40.80 11 | 29.05 13 | 48.64 9 | 46.87 14 | 53.22 6 | 23.47 22 | 34.63 11 | 45.82 10 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 57.40 11 | 36.48 17 | 28.86 14 | 41.57 24 | 43.89 22 | 37.61 38 | 26.39 14 | 31.33 17 | 43.20 12 |
|
PLC | | 56.13 14 | 34.63 24 | 28.70 15 | 38.59 33 | 36.78 38 | 44.65 25 | 26.03 15 | 31.36 16 | 34.33 35 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LTVRE_ROB | | 55.42 16 | 36.88 16 | 28.57 16 | 42.42 22 | 40.72 30 | 48.22 13 | 26.97 10 | 30.17 21 | 38.32 26 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
HY-MVS | | 56.14 13 | 35.94 18 | 28.51 17 | 40.89 25 | 43.99 21 | 38.59 36 | 25.07 16 | 31.96 15 | 40.09 20 |
|
AttMVS | | | 34.35 25 | 28.45 18 | 38.28 34 | 40.03 31 | 40.06 30 | 23.67 20 | 33.23 12 | 34.75 34 |
|
IB-MVS | | 56.42 12 | 34.86 22 | 28.22 19 | 39.29 30 | 43.59 23 | 38.19 37 | 23.59 21 | 32.85 13 | 36.09 32 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
COLMAP(base) | | | 37.35 15 | 28.09 20 | 43.52 18 | 42.34 24 | 46.68 18 | 26.55 13 | 29.63 22 | 41.53 15 |
|
OpenMVS_ROB | | 52.78 18 | 35.39 20 | 27.98 21 | 40.33 26 | 46.81 15 | 36.10 44 | 24.79 19 | 31.17 18 | 38.08 27 |
|
tmmvs | | | 38.38 14 | 26.53 22 | 46.29 14 | 49.63 8 | 50.53 11 | 25.02 17 | 28.03 23 | 38.71 24 |
|
CIDER | | | 32.55 34 | 25.75 23 | 37.08 38 | 39.65 32 | 40.58 29 | 20.91 29 | 30.59 20 | 31.00 40 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
COLMAP_ROB | | 52.97 17 | 33.06 31 | 25.38 24 | 38.18 35 | 35.81 40 | 45.04 23 | 22.92 26 | 27.84 25 | 33.69 36 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LPCS | | | 33.63 28 | 24.80 25 | 39.52 28 | 42.29 25 | 39.01 34 | 23.44 23 | 26.15 28 | 37.27 29 |
|
PVSNet | | 50.76 19 | 32.44 35 | 24.74 26 | 37.57 37 | 38.43 35 | 36.66 43 | 23.03 25 | 26.46 27 | 37.62 28 |
|
PVSNet_0 | | 43.31 20 | 33.35 29 | 23.83 27 | 39.69 27 | 41.22 28 | 38.75 35 | 21.08 28 | 26.59 26 | 39.10 23 |
|
ACMH | | 55.70 15 | 32.91 32 | 23.69 28 | 39.06 31 | 41.22 28 | 36.76 42 | 21.84 27 | 25.54 29 | 39.18 22 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GSE | | | 34.79 23 | 23.63 29 | 42.23 23 | 46.31 17 | 39.18 33 | 23.20 24 | 24.07 32 | 41.20 17 |
|
PVSNet_LR | | | 34.22 26 | 21.35 30 | 42.80 21 | 42.24 26 | 45.98 21 | 14.83 39 | 27.87 24 | 40.18 19 |
|
P-MVSNet | | | 29.35 38 | 20.98 31 | 34.93 40 | 34.55 44 | 36.99 40 | 20.06 30 | 21.91 39 | 33.25 38 |
|
BP-MVSNet | | | 29.92 37 | 20.53 32 | 36.17 39 | 37.89 36 | 33.68 49 | 17.55 32 | 23.52 36 | 36.95 30 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
CasMVSNet(SR_B) | | | 23.80 46 | 19.79 33 | 26.47 50 | 24.88 50 | 37.51 39 | 14.94 38 | 24.65 30 | 17.01 52 |
|
mvs_zhu_1030 | | | 33.71 27 | 19.38 34 | 43.27 19 | 42.20 27 | 47.82 16 | 15.18 37 | 23.58 34 | 39.77 21 |
|
CasMVSNet(SR_A) | | | 35.87 19 | 19.38 34 | 46.87 12 | 46.17 18 | 51.96 9 | 14.32 41 | 24.45 31 | 42.47 14 |
|
test_1205 | | | 28.37 40 | 19.29 36 | 34.43 41 | 34.50 45 | 41.99 28 | 15.81 34 | 22.78 37 | 26.79 45 |
|
MVSNet | | | 27.45 42 | 18.54 37 | 33.39 43 | 29.32 47 | 47.13 17 | 13.18 43 | 23.89 33 | 23.72 46 |
|
CasMVSNet(base) | | | 35.32 21 | 18.44 38 | 46.56 13 | 46.00 20 | 52.64 8 | 13.32 42 | 23.57 35 | 41.04 18 |
|
R-MVSNet | | | 23.84 45 | 18.30 39 | 27.54 47 | 27.82 48 | 33.79 48 | 14.57 40 | 22.03 38 | 21.00 50 |
|
test_1126 | | | 33.11 30 | 18.21 40 | 43.04 20 | 47.43 13 | 45.33 22 | 15.33 36 | 21.10 40 | 36.35 31 |
|
A-TVSNet + Gipuma | | | 26.68 43 | 16.93 41 | 33.18 44 | 31.29 46 | 39.82 32 | 17.28 33 | 16.57 47 | 28.43 43 |
|
ANet | | | 30.02 36 | 16.73 42 | 38.88 32 | 39.32 33 | 44.06 26 | 15.61 35 | 17.85 43 | 33.26 37 |
|
Pnet-new- | | | 32.65 33 | 16.09 43 | 43.68 17 | 46.15 19 | 39.98 31 | 18.51 31 | 13.67 55 | 44.91 11 |
|
CPR_FA | | | 14.43 57 | 14.90 44 | 14.12 65 | 11.38 62 | 14.82 68 | 11.91 45 | 17.89 42 | 16.15 58 |
|
A1Net | | | 14.51 56 | 14.40 45 | 14.59 58 | 13.30 59 | 12.51 70 | 11.95 44 | 16.85 45 | 17.96 51 |
|
ANet-0.75 | | | 29.06 39 | 13.44 46 | 39.47 29 | 39.32 33 | 44.06 26 | 10.78 47 | 16.11 49 | 35.02 33 |
|
unsupervisedMVS_cas | | | 21.41 49 | 13.42 47 | 26.73 49 | 25.53 49 | 31.05 52 | 10.34 48 | 16.50 48 | 23.60 47 |
|
Pnet_fast | | | 27.80 41 | 12.25 48 | 38.17 36 | 37.73 37 | 47.91 15 | 7.47 62 | 17.03 44 | 28.88 42 |
|
MVSCRF | | | 18.49 51 | 12.01 49 | 22.81 52 | 20.51 55 | 32.84 50 | 9.61 49 | 14.41 54 | 15.08 62 |
|
Snet | | | 16.01 53 | 11.97 50 | 18.70 54 | 22.09 53 | 17.12 59 | 8.46 55 | 15.48 51 | 16.90 55 |
|
test3 | | | 13.22 59 | 11.25 51 | 14.54 59 | 11.46 61 | 17.02 60 | 9.59 50 | 12.91 57 | 15.13 60 |
|
MVS_test_1 | | | 15.08 55 | 10.97 52 | 17.82 55 | 23.84 51 | 16.69 61 | 5.32 70 | 16.61 46 | 12.93 63 |
|
TVSNet | | | 13.02 60 | 10.86 53 | 14.46 61 | 11.60 60 | 16.67 62 | 8.79 53 | 12.93 56 | 15.10 61 |
|
Pnet-eth | | | 8.45 75 | 10.49 54 | 7.10 78 | 9.98 72 | 2.92 83 | 5.14 71 | 15.84 50 | 8.40 72 |
|
MVSNet_++ | | | 16.58 52 | 10.34 55 | 20.75 53 | 22.25 52 | 11.60 72 | 1.64 83 | 19.05 41 | 28.39 44 |
|
SGNet | | | 11.73 64 | 9.85 56 | 12.98 66 | 10.55 68 | 15.85 64 | 8.23 57 | 11.47 58 | 12.53 64 |
|
MVE | | 17.77 23 | 9.03 74 | 9.66 57 | 8.62 75 | 6.03 78 | 11.40 74 | 8.30 56 | 11.02 59 | 8.42 71 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
QQQNet | | | 12.59 61 | 9.43 58 | 14.70 57 | 10.88 66 | 16.24 63 | 8.64 54 | 10.22 61 | 16.97 53 |
|
PSD-MVSNet | | | 11.22 65 | 9.34 59 | 12.48 67 | 10.37 69 | 15.20 67 | 7.81 61 | 10.86 60 | 11.87 65 |
|
SVVNet | | | 12.22 62 | 9.22 60 | 14.22 63 | 10.32 70 | 15.62 65 | 8.22 58 | 10.22 61 | 16.70 56 |
|
ternet | | | 12.22 62 | 9.22 60 | 14.22 63 | 10.32 70 | 15.62 65 | 8.22 58 | 10.22 61 | 16.70 56 |
|
Pnet-blend++ | | | 21.89 47 | 9.21 62 | 30.34 45 | 34.58 42 | 34.44 45 | 3.76 76 | 14.67 52 | 22.00 48 |
|
Pnet-blend | | | 21.89 47 | 9.21 62 | 30.34 45 | 34.58 42 | 34.44 45 | 3.76 76 | 14.67 52 | 22.00 48 |
|
test_1124 | | | 23.88 44 | 8.92 64 | 33.86 42 | 35.80 41 | 36.79 41 | 10.99 46 | 6.84 72 | 28.99 41 |
|
F/T MVSNet+Gipuma | | | 9.78 68 | 8.13 65 | 10.88 73 | 9.23 73 | 11.92 71 | 8.81 51 | 7.45 70 | 11.49 66 |
|
MVSNet + Gipuma | | | 9.47 71 | 7.91 66 | 10.52 74 | 8.91 75 | 11.46 73 | 8.80 52 | 7.01 71 | 11.18 69 |
|
CCVNet | | | 13.25 58 | 7.81 67 | 16.88 56 | 13.52 57 | 20.14 55 | 7.96 60 | 7.67 69 | 16.97 53 |
|
RMVSNet | | | 4.93 80 | 7.73 68 | 3.06 82 | 3.93 80 | 3.22 82 | 5.95 69 | 9.52 65 | 2.04 81 |
|
firsttry | | | 9.57 69 | 7.40 69 | 11.02 72 | 11.05 63 | 10.54 75 | 6.97 65 | 7.82 68 | 11.49 66 |
|
metmvs_fine | | | 4.94 79 | 7.02 70 | 3.56 81 | 3.18 82 | 3.86 80 | 4.62 73 | 9.43 66 | 3.63 75 |
|
MVSNet_plusplus | | | 19.10 50 | 6.64 71 | 27.41 48 | 36.63 39 | 14.19 69 | 3.12 79 | 10.15 64 | 31.41 39 |
|
hgnet | | | 9.31 72 | 6.52 72 | 11.17 70 | 10.91 64 | 20.13 56 | 7.15 63 | 5.89 73 | 2.47 79 |
|
DPSNet | | | 9.31 72 | 6.52 72 | 11.17 70 | 10.91 64 | 20.13 56 | 7.15 63 | 5.89 73 | 2.47 79 |
|
unMVSv1 | | | 6.85 76 | 6.06 74 | 7.37 77 | 7.56 76 | 9.33 76 | 6.35 68 | 5.76 75 | 5.22 74 |
|
test_mvsss | | | 11.00 66 | 6.00 75 | 14.32 62 | 13.56 56 | 19.16 58 | 4.03 75 | 7.98 67 | 10.25 70 |
|
example | | | 9.54 70 | 5.97 76 | 11.92 68 | 13.40 58 | 20.72 54 | 6.89 66 | 5.05 76 | 1.63 82 |
|
PMVS | | 28.69 22 | 10.60 67 | 4.70 77 | 14.53 60 | 10.82 67 | 30.05 53 | 6.66 67 | 2.74 78 | 2.71 77 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_1120 | | | 6.40 78 | 4.10 78 | 7.94 76 | 6.69 77 | 5.86 78 | 4.95 72 | 3.26 77 | 11.26 68 |
|
vp_mvsnet | | | 15.26 54 | 2.83 79 | 23.55 51 | 21.00 54 | 34.21 47 | 3.45 78 | 2.22 79 | 15.43 59 |
|
unMVSmet | | | 3.60 82 | 2.44 80 | 4.38 80 | 3.82 81 | 6.35 77 | 2.69 81 | 2.18 80 | 2.97 76 |
|
Cas-MVS_preliminary | | | 4.12 81 | 1.79 81 | 5.67 79 | 4.49 79 | 4.19 79 | 2.85 80 | 0.74 82 | 8.32 73 |
|
confMetMVS | | | 2.34 83 | 1.33 82 | 3.02 83 | 3.03 83 | 3.47 81 | 1.14 84 | 1.52 81 | 2.56 78 |
|
FADENet | | | 0.06 84 | 0.04 83 | 0.07 85 | 0.12 86 | 0.08 85 | 0.05 85 | 0.03 83 | 0.02 84 |
|
CMPMVS | | 42.80 21 | 6.77 77 | 0.01 84 | 11.27 69 | 1.93 85 | 31.86 51 | 0.03 86 | 0.00 84 | 0.00 85 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
dnet | | | 0.00 85 | 0.00 85 | 0.00 86 | 0.00 87 | 0.00 86 | 0.00 87 | 0.00 84 | 0.00 85 |
|
test_MVS | | | | | | | | 4.13 74 | | |
|
test_robustmvs | | | | | 1.65 84 | 2.89 84 | 1.35 84 | 2.69 81 | | 0.72 83 |
|
UnsupFinetunedMVSNet | | | | | | 9.23 73 | | | | |
|