DeepPCF-MVS | | 80.84 1 | 63.41 1 | 53.95 1 | 69.71 2 | 69.72 4 | 71.26 1 | 48.73 1 | 59.18 1 | 68.16 2 |
|
TAPA-MVS | | 73.13 9 | 58.67 7 | 52.34 3 | 62.89 13 | 63.68 12 | 63.46 13 | 45.85 4 | 58.83 2 | 61.53 12 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepC-MVS | | 79.81 2 | 62.37 2 | 52.77 2 | 68.77 3 | 68.65 5 | 70.30 3 | 46.95 2 | 58.59 3 | 67.37 3 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS_fast | | 79.65 3 | 62.24 3 | 50.96 4 | 69.75 1 | 69.91 3 | 71.08 2 | 46.04 3 | 55.88 4 | 68.27 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
tm-dncc | | | 58.94 6 | 48.02 7 | 66.22 6 | 66.30 8 | 65.64 8 | 41.30 12 | 54.73 5 | 66.71 5 |
|
PCF-MVS | | 73.52 7 | 57.06 8 | 48.10 6 | 63.03 11 | 66.85 7 | 62.36 15 | 43.32 8 | 52.89 6 | 59.86 15 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ACMP | | 74.13 6 | 56.41 9 | 44.60 13 | 64.28 7 | 61.46 16 | 65.81 7 | 37.07 20 | 52.13 7 | 65.56 6 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
3Dnovator | | 76.31 5 | 59.36 5 | 48.19 5 | 66.81 5 | 70.04 2 | 67.59 5 | 44.27 5 | 52.10 8 | 62.80 11 |
|
OpenMVS | | 72.83 10 | 56.18 11 | 45.66 10 | 63.19 10 | 64.67 10 | 65.13 10 | 39.60 15 | 51.71 9 | 59.76 16 |
|
3Dnovator+ | | 77.84 4 | 59.53 4 | 47.18 8 | 67.76 4 | 70.63 1 | 67.68 4 | 43.34 7 | 51.01 10 | 64.98 7 |
|
ACMM | | 73.20 8 | 55.01 14 | 43.19 17 | 62.89 13 | 59.60 19 | 66.07 6 | 35.89 23 | 50.48 11 | 63.01 10 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PLC | | 70.83 11 | 53.50 17 | 45.79 9 | 58.64 19 | 56.31 28 | 60.76 18 | 41.70 11 | 49.88 12 | 58.86 19 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
IB-MVS | | 68.01 15 | 49.19 23 | 42.00 19 | 53.98 31 | 58.50 22 | 51.98 35 | 35.85 24 | 48.16 13 | 51.46 31 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
COLMAP(base) | | | 55.51 12 | 44.97 12 | 62.54 15 | 60.85 17 | 62.46 14 | 42.24 9 | 47.71 14 | 64.29 8 |
|
ACMH+ | | 68.96 14 | 52.02 20 | 43.83 15 | 57.49 22 | 59.85 18 | 51.27 38 | 40.04 13 | 47.62 15 | 61.35 13 |
|
LTVRE_ROB | | 69.57 13 | 53.52 16 | 45.46 11 | 58.89 17 | 58.76 21 | 60.60 20 | 43.91 6 | 47.01 16 | 57.32 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TAPA-MVS(SR) | | | 55.07 13 | 43.33 16 | 62.90 12 | 67.41 6 | 57.81 25 | 39.94 14 | 46.71 17 | 63.49 9 |
|
COLMAP(SR) | | | 56.21 10 | 44.16 14 | 64.25 8 | 63.87 11 | 62.07 16 | 41.86 10 | 46.45 18 | 66.80 4 |
|
COLMAP_ROB | | 66.92 17 | 52.32 19 | 42.45 18 | 58.89 17 | 56.18 29 | 61.09 17 | 38.61 16 | 46.28 19 | 59.41 17 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
HY-MVS | | 69.67 12 | 49.80 22 | 40.39 22 | 56.07 26 | 59.17 20 | 53.68 33 | 36.13 21 | 44.66 20 | 55.36 25 |
|
AttMVS | | | 45.85 28 | 39.26 23 | 50.25 39 | 49.36 40 | 51.75 37 | 34.83 25 | 43.70 21 | 49.63 35 |
|
GSE | | | 52.52 18 | 40.81 20 | 60.34 16 | 61.71 15 | 58.23 23 | 38.13 18 | 43.48 22 | 61.07 14 |
|
CIDER | | | 47.21 26 | 38.36 26 | 53.11 33 | 55.37 31 | 55.10 32 | 33.25 29 | 43.46 23 | 48.87 37 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
LPCS | | | 50.60 21 | 40.43 21 | 57.38 23 | 58.37 23 | 56.00 29 | 38.14 17 | 42.71 24 | 57.77 20 |
|
ACMH | | 67.68 16 | 47.97 25 | 38.24 27 | 54.45 30 | 56.88 25 | 50.08 39 | 34.49 26 | 41.99 25 | 56.40 23 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OpenMVS_ROB | | 64.09 19 | 48.56 24 | 38.68 25 | 55.15 27 | 61.90 14 | 49.65 40 | 36.02 22 | 41.33 26 | 53.89 27 |
|
tmmvs | | | 53.89 15 | 39.15 24 | 63.73 9 | 66.30 8 | 65.64 8 | 37.77 19 | 40.52 27 | 59.24 18 |
|
P-MVSNet | | | 44.46 34 | 37.09 28 | 49.37 41 | 49.27 41 | 49.30 41 | 34.35 27 | 39.83 28 | 49.54 36 |
|
PVSNet_0 | | 57.27 20 | 46.73 27 | 34.96 30 | 54.57 29 | 55.50 30 | 51.93 36 | 31.22 30 | 38.71 29 | 56.27 24 |
|
PVSNet | | 64.34 18 | 45.78 29 | 36.40 29 | 52.03 34 | 52.49 34 | 49.20 42 | 34.18 28 | 38.61 30 | 54.41 26 |
|
PVSNet_LR | | | 44.83 32 | 30.05 32 | 54.69 28 | 53.21 32 | 57.88 24 | 21.84 38 | 38.25 31 | 52.98 28 |
|
BP-MVSNet | | | 43.22 35 | 32.08 31 | 50.65 38 | 52.86 33 | 46.16 49 | 27.25 32 | 36.92 32 | 52.94 29 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
R-MVSNet | | | 36.87 44 | 29.78 33 | 41.61 47 | 42.00 47 | 46.99 44 | 24.73 33 | 34.83 33 | 35.83 47 |
|
test_1205 | | | 40.46 39 | 29.35 34 | 47.87 42 | 47.88 43 | 56.48 28 | 24.37 34 | 34.32 34 | 39.23 46 |
|
MVSNet | | | 38.33 42 | 26.99 38 | 45.89 43 | 40.49 48 | 57.57 26 | 20.52 41 | 33.47 35 | 39.63 45 |
|
mvs_zhu_1030 | | | 42.98 36 | 27.14 37 | 53.53 32 | 52.24 35 | 58.28 22 | 20.89 39 | 33.39 36 | 50.07 34 |
|
CasMVSNet(SR_B) | | | 32.16 45 | 26.80 39 | 35.73 50 | 34.57 51 | 46.99 44 | 20.55 40 | 33.05 37 | 25.63 56 |
|
test_1126 | | | 45.72 30 | 28.57 36 | 57.15 24 | 62.33 13 | 59.06 21 | 24.22 35 | 32.91 38 | 50.08 33 |
|
CasMVSNet(SR_A) | | | 45.13 31 | 25.99 40 | 57.89 20 | 56.32 27 | 64.81 11 | 19.76 43 | 32.23 39 | 52.54 30 |
|
MVSNet_++ | | | 25.72 52 | 17.38 54 | 31.27 53 | 33.47 52 | 18.28 74 | 2.87 84 | 31.90 40 | 42.06 43 |
|
CasMVSNet(base) | | | 44.49 33 | 24.93 41 | 57.53 21 | 56.38 26 | 64.76 12 | 18.64 45 | 31.23 41 | 51.43 32 |
|
A-TVSNet + Gipuma | | | 42.12 38 | 29.09 35 | 50.80 36 | 48.28 42 | 56.53 27 | 29.14 31 | 29.04 42 | 47.59 38 |
|
A1Net | | | 23.74 56 | 23.95 43 | 23.61 59 | 21.43 62 | 19.62 71 | 19.93 42 | 27.96 43 | 29.78 51 |
|
CPR_FA | | | 23.28 57 | 23.62 44 | 23.05 60 | 19.33 64 | 23.00 64 | 19.34 44 | 27.89 44 | 26.81 55 |
|
MVS_test_1 | | | 25.14 53 | 18.49 48 | 29.57 54 | 37.50 49 | 27.99 59 | 9.50 72 | 27.48 45 | 23.21 63 |
|
ANet | | | 39.53 40 | 24.60 42 | 49.48 40 | 49.42 39 | 55.75 30 | 22.08 37 | 27.13 46 | 43.25 41 |
|
ANet-0.75 | | | 39.47 41 | 22.61 45 | 50.71 37 | 49.43 38 | 55.75 30 | 18.21 46 | 27.01 47 | 46.96 39 |
|
Pnet-eth | | | 16.08 73 | 18.30 49 | 14.59 75 | 21.78 59 | 7.07 81 | 9.66 70 | 26.95 48 | 14.91 72 |
|
unsupervisedMVS_cas | | | 30.64 49 | 20.24 47 | 37.57 49 | 35.93 50 | 42.74 52 | 15.36 48 | 25.12 49 | 34.04 48 |
|
Pnet_fast | | | 37.64 43 | 17.70 52 | 50.93 35 | 49.72 37 | 60.73 19 | 10.59 69 | 24.81 50 | 42.34 42 |
|
Pnet-blend++ | | | 31.51 47 | 15.02 61 | 42.51 45 | 47.41 44 | 46.50 47 | 6.99 76 | 23.05 51 | 33.62 49 |
|
Pnet-blend | | | 31.51 47 | 15.02 61 | 42.51 45 | 47.41 44 | 46.50 47 | 6.99 76 | 23.05 51 | 33.62 49 |
|
Snet | | | 23.85 55 | 17.41 53 | 28.15 55 | 32.72 53 | 24.90 60 | 12.22 62 | 22.60 53 | 26.83 54 |
|
MVSCRF | | | 28.32 51 | 18.18 50 | 35.09 52 | 32.16 54 | 44.37 51 | 14.66 51 | 21.69 54 | 28.73 52 |
|
TVSNet | | | 20.06 60 | 17.25 55 | 21.93 62 | 18.25 65 | 23.77 62 | 13.74 56 | 20.77 55 | 23.78 58 |
|
test3 | | | 20.33 59 | 17.79 51 | 22.02 61 | 17.88 66 | 24.31 61 | 14.91 49 | 20.68 56 | 23.87 57 |
|
Pnet-new- | | | 42.61 37 | 22.17 46 | 56.24 25 | 58.21 24 | 53.03 34 | 24.08 36 | 20.25 57 | 57.48 21 |
|
MVSNet_plusplus | | | 28.64 50 | 12.93 69 | 39.11 48 | 49.80 36 | 21.55 69 | 6.17 79 | 19.69 58 | 45.98 40 |
|
MVE | | 26.22 23 | 16.26 72 | 16.97 56 | 15.79 74 | 11.75 77 | 19.40 72 | 14.45 52 | 19.48 59 | 16.21 70 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
metmvs_fine | | | 10.03 78 | 14.31 64 | 7.18 82 | 6.75 82 | 6.98 82 | 9.52 71 | 19.10 60 | 7.81 76 |
|
SGNet | | | 18.50 64 | 16.17 57 | 20.06 66 | 16.84 69 | 22.87 65 | 13.42 57 | 18.92 61 | 20.47 66 |
|
RMVSNet | | | 11.09 77 | 15.49 59 | 8.17 81 | 9.16 78 | 10.05 78 | 12.57 61 | 18.40 62 | 5.29 81 |
|
PSD-MVSNet | | | 17.93 67 | 15.59 58 | 19.48 67 | 16.64 72 | 22.17 68 | 13.02 58 | 18.15 63 | 19.64 67 |
|
QQQNet | | | 18.88 63 | 15.19 60 | 21.34 63 | 17.26 68 | 23.30 63 | 13.79 55 | 16.60 64 | 23.48 59 |
|
SVVNet | | | 18.01 65 | 14.28 65 | 20.49 64 | 15.75 74 | 22.30 66 | 11.95 64 | 16.60 64 | 23.43 61 |
|
ternet | | | 18.01 65 | 14.28 65 | 20.49 64 | 15.75 74 | 22.30 66 | 11.95 64 | 16.60 64 | 23.43 61 |
|
test_mvsss | | | 19.92 61 | 11.93 75 | 25.25 57 | 24.18 56 | 32.22 54 | 7.42 75 | 16.44 67 | 19.34 68 |
|
F/T MVSNet+Gipuma | | | 17.31 68 | 14.39 63 | 19.26 69 | 16.83 70 | 19.67 70 | 14.03 53 | 14.75 68 | 21.27 64 |
|
MVSNet + Gipuma | | | 16.91 69 | 14.12 67 | 18.77 72 | 16.39 73 | 19.13 73 | 13.98 54 | 14.27 69 | 20.78 65 |
|
firsttry | | | 15.88 74 | 12.57 70 | 18.08 73 | 17.80 67 | 17.14 75 | 11.54 66 | 13.61 70 | 19.31 69 |
|
CCVNet | | | 19.37 62 | 12.14 73 | 24.19 58 | 20.50 63 | 28.61 58 | 11.03 68 | 13.25 71 | 23.48 59 |
|
unMVSv1 | | | 13.05 76 | 12.03 74 | 13.73 76 | 14.18 76 | 16.18 76 | 12.13 63 | 11.93 72 | 10.84 75 |
|
hgnet | | | 16.45 70 | 12.31 71 | 19.21 70 | 21.51 60 | 30.31 56 | 12.80 59 | 11.82 73 | 5.81 78 |
|
DPSNet | | | 16.45 70 | 12.31 71 | 19.21 70 | 21.51 60 | 30.31 56 | 12.80 59 | 11.82 73 | 5.81 78 |
|
test_1124 | | | 31.65 46 | 13.28 68 | 43.90 44 | 44.21 46 | 47.60 43 | 14.80 50 | 11.75 75 | 39.88 44 |
|
example | | | 15.69 75 | 10.14 77 | 19.39 68 | 23.73 58 | 30.32 55 | 11.10 67 | 9.17 76 | 4.13 82 |
|
PMVS | | 37.38 22 | 21.09 58 | 11.49 76 | 27.48 56 | 24.09 57 | 44.44 50 | 15.98 47 | 7.01 77 | 13.92 74 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
vp_mvsnet | | | 23.86 54 | 6.73 79 | 35.28 51 | 31.55 55 | 46.94 46 | 6.47 78 | 6.99 78 | 27.34 53 |
|
test_1120 | | | 9.53 79 | 6.82 78 | 11.33 78 | 8.74 79 | 9.06 79 | 7.57 73 | 6.06 79 | 16.20 71 |
|
unMVSmet | | | 7.42 80 | 5.82 80 | 8.48 80 | 7.60 80 | 11.29 77 | 5.84 80 | 5.81 80 | 6.56 77 |
|
confMetMVS | | | 4.86 83 | 3.39 82 | 5.85 83 | 5.59 83 | 6.61 83 | 2.94 83 | 3.83 81 | 5.35 80 |
|
Cas-MVS_preliminary | | | 7.24 82 | 3.51 81 | 9.72 79 | 7.03 81 | 7.46 80 | 4.87 82 | 2.16 82 | 14.65 73 |
|
FADENet | | | 0.17 84 | 0.15 83 | 0.18 85 | 0.31 86 | 0.16 85 | 0.19 85 | 0.10 83 | 0.08 84 |
|
dnet | | | 0.00 85 | 0.00 85 | 0.00 86 | 0.00 87 | 0.00 86 | 0.00 87 | 0.00 84 | 0.00 85 |
|
CMPMVS | | 51.72 21 | 7.38 81 | 0.03 84 | 12.27 77 | 2.37 85 | 34.46 53 | 0.06 86 | 0.00 84 | 0.00 85 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_MVS | | | | | | | | 7.47 74 | | |
|
test_robustmvs | | | | | 3.18 84 | 5.44 84 | 2.71 84 | 4.94 81 | | 1.39 83 |
|
UnsupFinetunedMVSNet | | | | | | 16.83 70 | | | | |
|