HY-MVS | | 5.90 1 | 5.90 19 | 5.90 19 | 5.90 20 | 5.90 20 | 5.90 20 | 5.90 21 | 5.90 19 | 5.90 20 |
|
ACMH+ | | 729.97 2 | 894.58 44 | 641.24 44 | 1063.48 45 | 901.73 45 | 959.70 45 | 639.95 45 | 642.52 44 | 1329.02 45 |
|
PMVS | | 863.65 3 | 639.40 38 | 530.00 42 | 712.33 39 | 798.00 44 | 888.00 44 | 701.00 46 | 359.00 34 | 451.00 34 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
IB-MVS | | 872.44 4 | 1486.92 47 | 1152.62 47 | 1709.78 48 | 1537.96 49 | 1610.93 48 | 1146.17 49 | 1159.07 48 | 1980.45 48 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ACMH | | 993.80 5 | 1055.91 45 | 719.19 45 | 1280.39 46 | 1101.67 46 | 1267.33 46 | 717.78 47 | 720.60 45 | 1472.17 46 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PVSNet | | 1207.94 6 | 2116.05 51 | 1643.70 52 | 2430.96 52 | 2140.83 52 | 2235.92 51 | 1648.06 54 | 1639.33 52 | 2916.13 52 |
|
ACMP | | 1246.57 7 | 1631.36 48 | 1293.07 49 | 1856.88 50 | 1568.97 50 | 1868.85 50 | 1273.91 51 | 1312.23 49 | 2132.82 50 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMM | | 1311.08 8 | 1661.53 49 | 1487.23 50 | 1777.73 49 | 1530.09 48 | 1690.76 49 | 1475.05 52 | 1499.41 50 | 2112.35 49 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PVSNet_0 | | 1661.03 9 | 3323.02 56 | 2633.37 56 | 3782.80 56 | 3505.59 57 | 3539.91 56 | 2550.07 58 | 2716.66 56 | 4302.89 56 |
|
OpenMVS_ROB | | 1936.51 10 | 1881.32 50 | 1172.27 48 | 2354.03 51 | 2118.19 51 | 2241.51 52 | 1205.90 50 | 1138.64 47 | 2702.38 51 |
|
COLMAP_ROB | | 2144.59 11 | 3311.60 55 | 2554.50 55 | 3816.33 57 | 3382.00 56 | 3555.00 57 | 2484.00 57 | 2625.00 55 | 4512.00 57 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepC-MVS_fast | | 2190.19 12 | 3761.23 57 | 3050.62 58 | 4234.97 58 | 3851.12 58 | 3561.12 58 | 3001.56 61 | 3099.67 58 | 5292.66 58 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OpenMVS | | 2352.88 13 | 2568.40 54 | 1727.00 53 | 3129.33 55 | 2833.00 55 | 3048.00 55 | 1755.00 55 | 1699.00 53 | 3507.00 55 |
|
3Dnovator | | 2482.06 14 | 2364.20 52 | 1597.00 51 | 2875.67 54 | 2548.00 54 | 2712.00 54 | 1635.00 53 | 1559.00 51 | 3367.00 54 |
|
CMPMVS | | 2623.62 15 | 4160.94 59 | 3037.05 57 | 4910.20 60 | 4057.20 60 | 5253.20 61 | 3109.40 62 | 2964.70 57 | 5420.20 60 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PLC | | 2858.82 16 | 4457.00 60 | 3560.00 61 | 5055.00 61 | 4457.00 61 | 4671.00 60 | 3360.00 63 | 3760.00 59 | 6037.00 61 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator+ | | 3414.41 17 | 4057.00 58 | 3365.00 59 | 4518.33 59 | 3909.00 59 | 4339.00 59 | 2806.00 59 | 3924.00 61 | 5307.00 59 |
|
DeepPCF-MVS | | 3452.42 18 | 5328.53 61 | 3926.82 62 | 6263.00 62 | 5101.63 62 | 5379.92 63 | 4010.62 64 | 3843.02 60 | 8307.46 62 |
|
DeepC-MVS | | 3917.13 19 | 5746.11 62 | 4462.91 63 | 6601.57 63 | 5612.31 63 | 5379.45 62 | 4610.56 65 | 4315.25 63 | 8812.96 63 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PCF-MVS | | 4335.85 20 | 9288.52 64 | 5777.29 64 | 11629.34 65 | 9919.03 66 | 10475.60 65 | 5496.66 66 | 6057.92 64 | 14493.40 67 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
TAPA-MVS | | 6309.84 21 | 13353.70 66 | 10496.80 67 | 15258.30 67 | 14678.80 67 | 14057.00 66 | 10791.00 69 | 10202.60 67 | 17039.10 68 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MVE | | 10021.00 22 | 8749.80 63 | 3439.50 60 | 12290.00 66 | 6275.00 64 | 16332.00 67 | 2923.00 60 | 3956.00 62 | 14263.00 66 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
LTVRE_ROB | | 20565.47 23 | 13815.20 67 | 7669.50 66 | 17912.33 68 | 22283.00 68 | 21104.00 68 | 7445.00 68 | 7894.00 66 | 10350.00 64 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
tm-dncc | | | 10000000.00 80 | 10000000.00 80 | 10000000.00 81 | 10000000.00 81 | 10000000.00 81 | 10000000.00 82 | 10000000.00 80 | 10000000.00 81 |
|
tmmvs | | | 10000000.00 80 | 10000000.00 80 | 10000000.00 81 | 10000000.00 81 | 10000000.00 81 | 10000000.00 82 | 10000000.00 80 | 10000000.00 81 |
|
test_mvsss | | | 0.76 5 | 0.73 5 | 0.78 5 | 0.79 5 | 0.80 5 | 0.74 6 | 0.72 5 | 0.76 5 |
|
MVS_test_1 | | | 0.89 6 | 0.90 6 | 0.89 6 | 0.85 6 | 0.90 6 | 0.87 7 | 0.92 6 | 0.93 6 |
|
test_MVS | | | | | | | | 0.73 5 | | |
|
test_robustmvs | | | | | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 12 | | 1.42 11 |
|
vp_mvsnet | | | 1.10 9 | 1.00 7 | 1.17 9 | 1.10 9 | 1.20 9 | 0.90 8 | 1.10 9 | 1.20 9 |
|
PVSNet_LR | | | 479.50 34 | 374.44 34 | 549.55 35 | 489.44 35 | 511.52 35 | 366.16 35 | 382.72 35 | 647.68 36 |
|
CCVNet | | | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 12 | 1.42 11 | 1.42 11 |
|
TVSNet | | | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 12 | 1.42 11 | 1.42 11 |
|
test3 | | | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 12 | 1.42 11 | 1.42 11 |
|
QQQNet | | | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 12 | 1.42 11 | 1.42 11 |
|
SVVNet | | | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 12 | 1.42 11 | 1.42 11 |
|
ternet | | | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 12 | 1.42 11 | 1.42 11 |
|
SGNet | | | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 12 | 1.42 11 | 1.42 11 |
|
unsupervisedMVS_cas | | | 10000000.00 80 | 10000000.00 80 | 10000000.00 81 | 10000000.00 81 | 10000000.00 81 | 10000000.00 82 | 10000000.00 80 | 10000000.00 81 |
|
mvs_zhu_1030 | | | 0.53 4 | 0.53 4 | 0.53 4 | 0.53 4 | 0.53 4 | 0.53 4 | 0.53 4 | 0.53 4 |
|
PSD-MVSNet | | | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 11 | 1.42 12 | 1.42 11 | 1.42 11 |
|
test_1205 | | | 31740.00 68 | 24750.00 68 | 36400.00 69 | 32520.00 69 | 33720.00 69 | 24240.00 70 | 25260.00 68 | 42960.00 69 |
|
test_1126 | | | 31740.00 68 | 24750.00 68 | 36400.00 69 | 32520.00 69 | 33720.00 69 | 24240.00 70 | 25260.00 68 | 42960.00 69 |
|
test_1124 | | | 31740.00 68 | 24750.00 68 | 36400.00 69 | 32520.00 69 | 33720.00 69 | 24240.00 70 | 25260.00 68 | 42960.00 69 |
|
test_1120 | | | 31740.00 68 | 24750.00 68 | 36400.00 69 | 32520.00 69 | 33720.00 69 | 24240.00 70 | 25260.00 68 | 42960.00 69 |
|
Cas-MVS_preliminary | | | 283.71 30 | 277.25 30 | 288.02 31 | 287.28 31 | 287.14 31 | 275.09 32 | 279.41 30 | 289.65 31 |
|
BP-MVSNet | | | 1.30 10 | 1.30 10 | 1.30 10 | 1.30 10 | 1.30 10 | 1.30 11 | 1.30 10 | 1.30 10 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
MVSNet_++ | | | 10.85 25 | 9.79 25 | 11.56 26 | 10.23 26 | 14.23 26 | 9.34 27 | 10.23 25 | 10.23 26 |
|
MVSNet_plusplus | | | 10.85 25 | 9.79 25 | 11.56 26 | 10.23 26 | 14.23 26 | 9.34 27 | 10.23 25 | 10.23 26 |
|
confMetMVS | | | 86.40 27 | 95.00 27 | 80.67 28 | 67.00 28 | 112.00 28 | 93.00 29 | 97.00 27 | 63.00 28 |
|
metmvs_fine | | | 86.40 27 | 95.00 27 | 80.67 28 | 67.00 28 | 112.00 28 | 93.00 29 | 97.00 27 | 63.00 28 |
|
unMVSmet | | | 86.40 27 | 95.00 27 | 80.67 28 | 67.00 28 | 112.00 28 | 93.00 29 | 97.00 27 | 63.00 28 |
|
Pnet-blend++ | | | 9.00 20 | 9.00 20 | 9.00 21 | 9.00 21 | 9.00 21 | 9.00 22 | 9.00 20 | 9.00 21 |
|
Pnet-eth | | | 9.00 20 | 9.00 20 | 9.00 21 | 9.00 21 | 9.00 21 | 9.00 22 | 9.00 20 | 9.00 21 |
|
CasMVSNet(SR_A) | | | 1000000.00 75 | 1000000.00 75 | 1000000.00 76 | 1000000.00 76 | 1000000.00 76 | 1000000.00 77 | 1000000.00 75 | 1000000.00 76 |
|
CasMVSNet(SR_B) | | | 1000000.00 75 | 1000000.00 75 | 1000000.00 76 | 1000000.00 76 | 1000000.00 76 | 1000000.00 77 | 1000000.00 75 | 1000000.00 76 |
|
TAPA-MVS(SR) | | | 1338.82 46 | 969.96 46 | 1584.73 47 | 1327.62 47 | 1473.80 47 | 922.00 48 | 1017.91 46 | 1952.77 47 |
|
CasMVSNet(base) | | | 1000000.00 75 | 1000000.00 75 | 1000000.00 76 | 1000000.00 76 | 1000000.00 76 | 1000000.00 77 | 1000000.00 75 | 1000000.00 76 |
|
Pnet-new- | | | 9.00 20 | 9.00 20 | 9.00 21 | 9.00 21 | 9.00 21 | 9.00 22 | 9.00 20 | 9.00 21 |
|
GSE | | | 84345.00 72 | 83012.00 72 | 85233.67 73 | 88513.00 73 | 78675.00 73 | 82336.00 74 | 83688.00 72 | 88513.00 73 |
|
CPR_FA | | | 300.30 31 | 300.30 31 | 300.30 32 | 300.30 32 | 300.30 32 | 300.30 33 | 300.30 31 | 300.30 32 |
|
FADENet | | | 300.30 31 | 300.30 31 | 300.30 32 | 300.30 32 | 300.30 32 | 300.30 33 | 300.30 31 | 300.30 32 |
|
LPCS | | | 84345.00 72 | 83012.00 72 | 85233.67 73 | 88513.00 73 | 78675.00 73 | 82336.00 74 | 83688.00 72 | 88513.00 73 |
|
COLMAP(SR) | | | 1000000.00 75 | 1000000.00 75 | 1000000.00 76 | 1000000.00 76 | 1000000.00 76 | 1000000.00 77 | 1000000.00 75 | 1000000.00 76 |
|
COLMAP(base) | | | 1000000.00 75 | 1000000.00 75 | 1000000.00 76 | 1000000.00 76 | 1000000.00 76 | 1000000.00 77 | 1000000.00 75 | 1000000.00 76 |
|
Pnet_fast | | | 9.00 20 | 9.00 20 | 9.00 21 | 9.00 21 | 9.00 21 | 9.00 22 | 9.00 20 | 9.00 21 |
|
Snet | | | 10000000.00 80 | 10000000.00 80 | 10000000.00 81 | 10000000.00 81 | 10000000.00 81 | 10000000.00 82 | 10000000.00 80 | 10000000.00 81 |
|
Pnet-blend | | | 9.00 20 | 9.00 20 | 9.00 21 | 9.00 21 | 9.00 21 | 9.00 22 | 9.00 20 | 9.00 21 |
|
ANet-0.75 | | | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 |
|
A1Net | | | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 |
|
ANet | | | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 | 0.21 1 |
|
dnet | | | 10000000.00 80 | 10000000.00 80 | 10000000.00 81 | 10000000.00 81 | 10000000.00 81 | 10000000.00 82 | 10000000.00 80 | 10000000.00 81 |
|
unMVSv1 | | | 438.86 33 | 369.40 33 | 485.16 34 | 432.90 34 | 452.10 34 | 398.70 36 | 340.10 33 | 570.50 35 |
|
CIDER | | | 669.75 42 | 505.36 41 | 779.35 43 | 703.58 42 | 808.57 42 | 513.92 43 | 496.79 36 | 825.90 40 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
RMVSNet | | | 1.03 7 | 1.03 8 | 1.03 7 | 1.03 7 | 1.03 7 | 1.03 9 | 1.03 7 | 1.03 7 |
|
firsttry | | | 1.03 7 | 1.03 8 | 1.03 7 | 1.03 7 | 1.03 7 | 1.03 9 | 1.03 7 | 1.03 7 |
|
AttMVS | | | 10000000.00 80 | 10000000.00 80 | 10000000.00 81 | 10000000.00 81 | 10000000.00 81 | 10000000.00 82 | 10000000.00 80 | 10000000.00 81 |
|
A-TVSNet + Gipuma | | | 9351.57 65 | 7502.61 65 | 10584.21 64 | 9219.52 65 | 10119.20 64 | 7334.37 67 | 7670.84 65 | 12413.90 65 |
|
MVSCRF | | | 279999.00 74 | 99999.00 74 | 399999.00 75 | 999999.00 75 | 99999.00 75 | 99999.00 76 | 99999.00 74 | 99999.00 75 |
|
P-MVSNet | | | 626.74 37 | 503.44 38 | 708.94 38 | 634.45 36 | 681.77 38 | 490.58 40 | 516.29 42 | 810.60 39 |
|
MVSNet + Gipuma | | | 622.80 35 | 505.00 39 | 701.33 36 | 642.00 37 | 671.00 36 | 502.00 41 | 508.00 37 | 791.00 37 |
|
F/T MVSNet+Gipuma | | | 622.80 35 | 505.00 39 | 701.33 36 | 642.00 37 | 671.00 36 | 502.00 41 | 508.00 37 | 791.00 37 |
|
UnsupFinetunedMVSNet | | | | | | 10000000.00 81 | | | | |
|
hgnet | | | 660.88 39 | 500.81 35 | 767.59 40 | 683.99 39 | 726.46 39 | 489.58 37 | 512.04 39 | 892.32 41 |
|
example | | | 660.88 39 | 500.81 35 | 767.59 40 | 683.99 39 | 726.46 39 | 489.58 37 | 512.04 39 | 892.32 41 |
|
DPSNet | | | 660.88 39 | 500.81 35 | 767.59 40 | 683.99 39 | 726.46 39 | 489.58 37 | 512.04 39 | 892.32 41 |
|
R-MVSNet | | | 2412.80 53 | 1890.00 54 | 2761.33 53 | 2391.00 53 | 2612.00 53 | 1879.00 56 | 1901.00 54 | 3281.00 53 |
|
MVSNet | | | 769.20 43 | 609.10 43 | 875.93 44 | 786.50 43 | 836.20 43 | 593.70 44 | 624.50 43 | 1005.10 44 |
|