This table lists the benchmark results for the low-res many-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoalllow-res
many-view
indooroutdoordelivery areaelectroforestplaygroundterrains
sort bysorted bysort bysort bysort bysort bysort bysort bysort by
IB-MVS750.90 31265.46 91097.63 91377.35 101297.43 91576.53 91316.54 101238.99 11897.82 9
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH+702.88 1786.25 7666.07 7866.37 7756.10 6981.86 7863.96 7753.29 7576.04 7
ACMH935.68 4903.04 8751.55 81004.03 8854.91 81107.40 81023.28 8881.42 8648.19 8
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM1129.18 51341.37 111146.34 101471.40 111316.71 101684.74 111438.02 111291.43 12975.96 11
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP1170.86 61377.53 121177.08 111511.17 121372.08 111704.92 121467.23 121361.37 13982.07 12
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft743.55 2501.45 2633.01 6413.75 2820.45 7569.13 2329.71 2342.41 2445.57 6
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast2081.98 84084.28 174364.05 193897.76 164394.81 175099.10 173901.83 172692.36 164333.29 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft2049.89 72450.20 141863.00 142841.67 142031.00 142756.00 143396.00 142373.00 151695.00 14
PCF-MVS3738.24 137920.69 236103.35 229132.25 237514.18 2211282.20 248635.60 227478.96 244692.52 21
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepPCF-MVS3033.31 114776.65 194064.82 185251.21 204735.13 195889.05 184910.76 204953.82 213394.50 18
CMPMVSbinary2507.20 103608.58 153347.50 153782.63 153781.10 154349.80 163675.60 163322.50 172913.90 16
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
3Dnovator2220.89 92005.40 131734.00 132186.33 131890.00 132293.00 132401.00 131865.00 141578.00 13
COLMAP_ROBcopyleft3798.28 146678.20 215786.00 207273.00 216586.00 208004.00 217160.00 216655.00 224986.00 22
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+3173.67 123784.40 163578.00 163922.00 174630.00 184097.00 154027.00 183642.00 192526.00 15
TAPA-MVS5463.68 1612482.30 2610175.90 2614019.90 2611505.50 2613643.50 2614462.80 2613953.40 268846.30 26
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft4785.50 158711.40 247528.00 249500.33 258563.00 2310519.00 239308.00 238674.00 256493.00 24
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DeepC-MVS5581.15 177547.35 227431.84 237624.36 229452.53 2411925.40 259946.15 241001.53 95411.14 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVEpermissive11086.50 185386.80 205931.00 215024.00 187481.00 217892.00 203578.00 153602.00 184381.00 20
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
LTVRE_ROB38377.89 199054.60 258823.00 259209.00 249622.00 258174.00 2212680.00 256773.00 238024.00 25
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
unsupervisedMVS_cas10000000.00 3410000000.00 3410000000.00 3410000000.00 3410000000.00 3410000000.00 3410000000.00 3410000000.00 34
BP-MVSNet1.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 1
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020
CasMVSNet(SR_A)1000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 29
CasMVSNet(SR_B)1000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 29
TAPA-MVS(SR)1277.29 101266.16 121284.72 91563.19 121636.30 101182.07 91035.78 10969.13 10
CasMVSNet(base)1000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 29
GSE80193.40 2777534.00 2781966.33 2777986.00 2784461.00 2781903.00 2779535.00 2777082.00 27
LPCS80193.40 2777534.00 2781966.33 2777986.00 2784461.00 2781903.00 2779535.00 2777082.00 27
COLMAP(SR)1000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 29
COLMAP(base)1000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 291000000.00 29
dnet10000000.00 3410000000.00 3410000000.00 3410000000.00 3410000000.00 3410000000.00 3410000000.00 3410000000.00 34
CIDER579.53 3473.33 2650.33 3556.87 2682.70 3648.68 6619.62 6389.78 2
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020
A-TVSNet + Gipumacopyleft4524.17 183635.58 175116.56 194258.39 166368.01 194636.00 194345.67 203012.77 17
hgnet596.54 4503.79 3658.37 4595.27 3751.63 4637.83 3585.64 3412.31 3
example596.54 4503.79 3658.37 4595.27 3751.63 4637.83 3585.64 3412.31 3
DPSNet596.54 4503.79 3658.37 4595.27 3751.63 4637.83 3585.64 3412.31 3