A-TVSNet + Gipuma | | | 61.02 5 | 56.34 1 | 64.14 15 | 64.32 12 | 66.91 24 | 52.09 4 | 60.60 1 | 61.19 16 |
|
ANet-0.75 | | | 52.71 23 | 55.63 2 | 50.76 42 | 44.38 51 | 59.75 37 | 53.05 2 | 58.21 2 | 48.17 35 |
|
A1Net | | | 62.59 3 | 54.91 3 | 67.70 9 | 68.95 6 | 72.10 9 | 52.15 3 | 57.67 3 | 62.06 13 |
|
PCF-MVS | | 73.15 9 | 58.42 13 | 54.11 4 | 61.29 20 | 61.25 19 | 64.94 30 | 51.80 5 | 56.43 4 | 57.66 21 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
TAPA-MVS | | 70.22 12 | 58.89 12 | 51.21 7 | 64.01 16 | 62.59 16 | 66.45 26 | 46.31 14 | 56.11 5 | 62.99 11 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepPCF-MVS | | 81.17 1 | 60.64 7 | 53.51 5 | 65.40 14 | 64.27 13 | 69.40 18 | 51.28 6 | 55.74 6 | 62.53 12 |
|
ACMP | | 71.68 10 | 62.33 4 | 51.03 8 | 69.86 5 | 66.41 9 | 74.93 2 | 47.36 8 | 54.70 7 | 68.24 3 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
BP-MVSNet | | | 64.34 2 | 50.31 9 | 73.69 2 | 74.99 2 | 71.90 11 | 46.42 12 | 54.19 8 | 74.18 2 |
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer: BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020 |
IB-MVS | | 77.80 4 | 67.29 1 | 53.24 6 | 76.65 1 | 77.55 1 | 78.10 1 | 53.88 1 | 52.59 9 | 74.31 1 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
DeepC-MVS | | 77.85 3 | 59.42 9 | 49.21 10 | 66.23 13 | 64.01 14 | 70.42 15 | 46.20 15 | 52.23 10 | 64.26 9 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
tm-dncc | | | 55.48 18 | 48.30 12 | 60.27 21 | 56.02 31 | 65.28 28 | 44.96 17 | 51.65 11 | 59.50 18 |
|
DeepC-MVS_fast | | 79.48 2 | 59.14 10 | 48.44 11 | 66.27 11 | 64.81 11 | 70.57 13 | 46.73 11 | 50.15 12 | 63.44 10 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMM | | 69.62 13 | 58.27 14 | 46.31 15 | 66.24 12 | 60.67 21 | 72.46 7 | 42.63 18 | 50.00 13 | 65.60 7 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PLC | | 68.80 14 | 53.38 20 | 47.19 14 | 57.51 29 | 57.17 27 | 61.22 36 | 46.82 10 | 47.56 14 | 54.14 25 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PVSNet_0 | | 68.08 15 | 59.14 10 | 42.70 20 | 70.10 3 | 74.33 3 | 74.52 3 | 38.12 22 | 47.28 15 | 61.46 15 |
|
COLMAP(SR) | | | 60.84 6 | 47.20 13 | 69.93 4 | 69.97 5 | 72.99 6 | 47.93 7 | 46.47 16 | 66.85 4 |
|
PSD-MVSNet | | | 47.65 30 | 39.40 24 | 53.15 37 | 56.48 30 | 53.80 47 | 32.51 32 | 46.29 17 | 49.16 34 |
|
PVSNet | | 73.49 8 | 57.76 16 | 43.28 19 | 67.41 10 | 70.29 4 | 72.10 9 | 40.29 20 | 46.26 18 | 59.84 17 |
|
ACMH+ | | 65.35 16 | 59.83 8 | 46.18 16 | 68.93 7 | 65.70 10 | 74.24 4 | 46.34 13 | 46.01 19 | 66.83 5 |
|
HY-MVS | | 76.49 5 | 57.81 15 | 40.66 22 | 69.25 6 | 68.59 7 | 73.61 5 | 35.90 28 | 45.41 20 | 65.54 8 |
|
CPR_FA | | | 47.15 31 | 40.41 23 | 51.65 41 | 47.19 47 | 53.80 47 | 36.70 25 | 44.12 21 | 53.96 27 |
|
COLMAP(base) | | | 54.01 19 | 44.78 17 | 60.17 22 | 58.77 25 | 63.60 32 | 45.57 16 | 43.99 22 | 58.14 20 |
|
unMVSv1 | | | 43.21 38 | 44.62 18 | 42.27 54 | 40.66 55 | 51.71 54 | 47.08 9 | 42.16 23 | 34.44 54 |
|
SGNet | | | 44.07 36 | 34.19 33 | 50.65 43 | 53.93 37 | 51.56 55 | 26.54 38 | 41.85 24 | 46.47 39 |
|
GSE | | | 52.65 25 | 41.64 21 | 59.98 24 | 55.71 33 | 65.76 27 | 41.60 19 | 41.69 25 | 58.48 19 |
|
OpenMVS | | 70.45 11 | 51.01 26 | 37.34 28 | 60.13 23 | 56.52 29 | 67.91 20 | 33.72 30 | 40.96 26 | 55.96 24 |
|
3Dnovator | | 73.91 6 | 52.81 22 | 38.17 27 | 62.58 19 | 60.95 20 | 69.63 17 | 35.98 27 | 40.36 27 | 57.16 22 |
|
3Dnovator+ | | 73.60 7 | 53.20 21 | 38.24 26 | 63.18 18 | 62.18 17 | 70.72 12 | 36.81 23 | 39.68 28 | 56.64 23 |
|
test3 | | | 42.75 39 | 31.34 36 | 50.36 44 | 52.00 39 | 53.28 49 | 23.88 41 | 38.80 29 | 45.79 41 |
|
TAPA-MVS(SR) | | | 55.57 17 | 35.84 31 | 68.73 8 | 67.52 8 | 72.24 8 | 33.19 31 | 38.50 30 | 66.42 6 |
|
test_1205 | | | 45.54 35 | 30.23 37 | 55.74 32 | 56.56 28 | 66.59 25 | 21.99 44 | 38.47 31 | 44.08 44 |
|
LTVRE_ROB | | 59.60 19 | 43.60 37 | 37.31 29 | 47.80 46 | 45.94 50 | 49.52 59 | 36.19 26 | 38.43 32 | 47.93 36 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LPCS | | | 48.13 29 | 38.62 25 | 54.48 35 | 51.49 41 | 57.98 39 | 38.93 21 | 38.30 33 | 53.97 26 |
|
COLMAP_ROB | | 57.96 20 | 45.89 34 | 37.03 30 | 51.79 40 | 49.43 44 | 56.42 45 | 36.78 24 | 37.28 34 | 49.53 31 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH | | 63.93 17 | 52.68 24 | 35.79 32 | 63.93 17 | 60.12 23 | 70.07 16 | 34.99 29 | 36.59 35 | 61.61 14 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CIDER | | | 49.33 27 | 33.81 34 | 59.69 26 | 61.47 18 | 68.26 19 | 31.50 33 | 36.11 36 | 49.34 33 |
Qingshan Xu and Wenbing Tao: Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. AAAI 2020 |
TVSNet | | | 38.58 45 | 26.99 42 | 46.30 48 | 49.23 45 | 49.73 58 | 19.13 47 | 34.85 37 | 39.94 48 |
|
PVSNet_LR | | | 46.69 32 | 27.25 41 | 59.64 27 | 58.01 26 | 67.25 21 | 20.54 46 | 33.97 38 | 53.67 28 |
|
RMVSNet | | | 15.61 75 | 22.67 47 | 10.90 78 | 13.04 79 | 14.34 79 | 12.27 65 | 33.07 39 | 5.30 81 |
|
MVSNet_++ | | | 41.03 42 | 19.38 55 | 55.47 33 | 63.04 15 | 57.24 40 | 6.23 77 | 32.52 40 | 46.14 40 |
|
OpenMVS_ROB | | 61.12 18 | 48.48 28 | 31.63 35 | 59.71 25 | 59.03 24 | 67.15 22 | 31.08 34 | 32.18 41 | 52.95 29 |
|
AttMVS | | | 37.07 50 | 30.02 38 | 41.77 56 | 34.23 62 | 52.58 50 | 28.11 37 | 31.93 42 | 38.51 51 |
|
Pnet-eth | | | 14.99 76 | 18.95 57 | 12.35 77 | 19.54 74 | 4.23 84 | 7.59 74 | 30.32 43 | 13.27 73 |
|
P-MVSNet | | | 38.28 46 | 29.70 40 | 44.00 50 | 39.20 57 | 50.96 56 | 29.12 36 | 30.29 44 | 41.85 46 |
|
tmmvs | | | 46.16 33 | 30.02 38 | 56.92 30 | 56.02 31 | 65.28 28 | 30.14 35 | 29.91 45 | 49.47 32 |
|
firsttry | | | 32.39 57 | 25.47 44 | 36.99 59 | 32.51 63 | 46.62 61 | 21.58 45 | 29.36 46 | 31.86 56 |
|
R-MVSNet | | | 37.16 49 | 26.49 43 | 44.27 49 | 42.37 54 | 52.02 51 | 24.06 40 | 28.93 47 | 38.41 52 |
|
unsupervisedMVS_cas | | | 37.45 48 | 21.88 48 | 47.84 45 | 43.96 53 | 56.86 41 | 15.49 55 | 28.27 48 | 42.70 45 |
|
MVS_test_1 | | | 34.36 54 | 22.83 46 | 42.05 55 | 46.73 48 | 55.32 46 | 17.93 49 | 27.73 49 | 24.10 63 |
|
MVE | | 24.84 23 | 26.04 62 | 20.59 50 | 29.66 69 | 22.29 72 | 42.00 66 | 15.49 55 | 25.70 50 | 24.70 62 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
QQQNet | | | 34.46 53 | 23.92 45 | 41.49 57 | 51.88 40 | 50.62 57 | 22.82 43 | 25.03 51 | 21.97 66 |
|
SVVNet | | | 27.23 60 | 19.50 52 | 32.39 65 | 35.04 60 | 38.67 68 | 13.98 60 | 25.03 51 | 23.46 64 |
|
ternet | | | 27.23 60 | 19.50 52 | 32.39 65 | 35.04 60 | 38.67 68 | 13.98 60 | 25.03 51 | 23.46 64 |
|
CasMVSNet(SR_B) | | | 21.94 71 | 19.24 56 | 23.74 75 | 21.33 73 | 34.30 74 | 14.54 58 | 23.93 54 | 15.57 71 |
|
ANet | | | 37.00 51 | 21.13 49 | 47.57 47 | 44.38 51 | 59.75 37 | 18.53 48 | 23.72 55 | 38.59 50 |
|
test_1126 | | | 40.23 43 | 19.47 54 | 54.08 36 | 55.58 34 | 62.13 35 | 15.66 54 | 23.27 56 | 44.52 43 |
|
mvs_zhu_1030 | | | 33.65 56 | 18.58 58 | 43.70 51 | 39.88 56 | 51.94 52 | 14.13 59 | 23.03 57 | 39.29 49 |
|
CasMVSNet(SR_A) | | | 41.31 41 | 18.44 59 | 56.56 31 | 55.29 35 | 67.08 23 | 13.89 62 | 22.98 58 | 47.30 37 |
|
test_mvsss | | | 33.68 55 | 20.19 51 | 42.68 52 | 47.39 46 | 51.80 53 | 17.54 51 | 22.84 59 | 28.85 58 |
|
MVSNet | | | 27.67 59 | 18.22 60 | 33.96 60 | 26.28 67 | 43.46 65 | 13.67 63 | 22.78 60 | 32.14 55 |
|
Snet | | | 41.99 40 | 16.05 63 | 59.29 28 | 60.27 22 | 70.55 14 | 9.62 72 | 22.48 61 | 47.04 38 |
|
CasMVSNet(base) | | | 38.80 44 | 17.46 61 | 53.03 38 | 50.40 43 | 63.89 31 | 13.07 64 | 21.85 62 | 44.80 42 |
|
CCVNet | | | 23.74 66 | 14.42 64 | 29.95 67 | 25.90 68 | 41.97 67 | 9.71 71 | 19.13 63 | 21.97 66 |
|
metmvs_fine | | | 12.14 78 | 14.21 65 | 10.76 79 | 8.78 80 | 13.01 81 | 10.35 70 | 18.07 64 | 10.49 74 |
|
Pnet_fast | | | 36.12 52 | 12.02 70 | 52.20 39 | 52.81 38 | 63.56 33 | 6.47 76 | 17.57 65 | 40.22 47 |
|
example | | | 24.50 65 | 16.56 62 | 29.80 68 | 27.47 65 | 56.53 44 | 17.69 50 | 15.43 66 | 5.40 80 |
|
MVSCRF | | | 24.97 64 | 13.50 67 | 32.61 64 | 26.31 66 | 43.85 64 | 12.02 66 | 14.98 67 | 27.67 59 |
|
Pnet-blend++ | | | 23.49 67 | 9.16 74 | 33.04 62 | 38.23 58 | 35.75 72 | 3.77 81 | 14.54 68 | 25.15 60 |
|
Pnet-blend | | | 23.49 67 | 9.16 74 | 33.04 62 | 38.23 58 | 35.75 72 | 3.77 81 | 14.54 68 | 25.15 60 |
|
MVSNet_plusplus | | | 29.36 58 | 9.54 73 | 42.57 53 | 46.21 49 | 44.17 63 | 6.65 75 | 12.43 70 | 37.33 53 |
|
Pnet-new- | | | 38.13 47 | 13.54 66 | 54.53 34 | 50.63 42 | 63.16 34 | 15.34 57 | 11.75 71 | 49.79 30 |
|
F/T MVSNet+Gipuma | | | 19.68 72 | 11.34 71 | 25.23 73 | 16.34 75 | 38.41 70 | 11.15 68 | 11.54 72 | 20.95 68 |
|
MVSNet + Gipuma | | | 19.59 73 | 11.32 72 | 25.11 74 | 16.29 77 | 38.21 71 | 11.18 67 | 11.45 73 | 20.83 69 |
|
hgnet | | | 22.90 69 | 13.03 68 | 29.49 70 | 25.13 69 | 56.72 42 | 16.70 52 | 9.35 74 | 6.62 78 |
|
DPSNet | | | 22.90 69 | 13.03 68 | 29.49 70 | 25.13 69 | 56.72 42 | 16.70 52 | 9.35 74 | 6.62 78 |
|
test_1124 | | | 25.42 63 | 7.36 76 | 37.46 58 | 31.97 64 | 49.24 60 | 8.21 73 | 6.51 76 | 31.19 57 |
|
PMVS | | 26.43 22 | 13.46 77 | 7.26 77 | 17.59 76 | 14.19 78 | 30.85 76 | 10.42 69 | 4.11 77 | 7.73 77 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
vp_mvsnet | | | 19.19 74 | 4.47 78 | 29.00 72 | 22.46 71 | 45.93 62 | 5.19 78 | 3.74 78 | 18.61 70 |
|
unMVSmet | | | 7.50 79 | 3.60 79 | 10.10 80 | 6.98 81 | 18.02 78 | 3.83 80 | 3.37 79 | 5.28 82 |
|
test_1120 | | | 5.30 81 | 3.59 80 | 6.45 84 | 4.63 83 | 4.96 83 | 3.98 79 | 3.19 80 | 9.76 75 |
|
confMetMVS | | | 4.71 83 | 2.07 82 | 6.46 83 | 4.51 84 | 11.02 82 | 1.90 84 | 2.24 81 | 3.85 83 |
|
Cas-MVS_preliminary | | | 6.17 80 | 2.14 81 | 8.86 81 | 4.86 82 | 13.44 80 | 3.08 83 | 1.20 82 | 8.27 76 |
|
FADENet | | | 0.32 84 | 0.12 83 | 0.45 85 | 0.50 86 | 0.77 85 | 0.16 85 | 0.09 83 | 0.08 84 |
|
dnet | | | 0.00 85 | 0.00 85 | 0.00 86 | 0.00 87 | 0.00 86 | 0.00 87 | 0.00 84 | 0.00 85 |
|
CMPMVS | | 48.56 21 | 4.84 82 | 0.02 84 | 8.06 82 | 1.22 85 | 22.96 77 | 0.03 86 | 0.00 84 | 0.00 85 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_MVS | | | | | | | | 23.36 42 | | |
|
test_robustmvs | | | | | 33.07 61 | 53.99 36 | 31.42 75 | 26.47 39 | | 13.81 72 |
|
UnsupFinetunedMVSNet | | | | | | 16.34 75 | | | | |
|