test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 58 | 93.49 7 | 94.23 5 | | | | | 97.49 1 | 89.08 4 | 96.41 8 | 94.21 32 |
|
SED-MVS | | | 90.08 1 | 90.85 1 | 87.77 23 | 95.30 2 | 70.98 65 | 93.57 5 | 94.06 10 | 77.24 47 | 93.10 1 | 95.72 6 | 82.99 1 | 97.44 2 | 89.07 6 | 96.63 2 | 94.88 7 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 50 | 66.81 228 | 92.39 5 | | | | 88.94 8 | 96.63 2 | 94.85 10 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 65 | | 94.06 10 | 77.17 50 | 93.10 1 | 95.39 9 | 82.99 1 | 97.27 7 | | | |
|
DVP-MVS | | | 89.60 2 | 90.35 2 | 87.33 42 | 95.27 5 | 71.25 59 | 93.49 7 | 92.73 58 | 77.33 45 | 92.12 8 | 95.78 4 | 80.98 7 | 97.40 4 | 89.08 4 | 96.41 8 | 93.33 75 |
|
test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 4 | 94.11 6 | 77.33 45 | 92.81 3 | 95.79 3 | 80.98 7 | | | | |
|
test_part2 | | | | | | 95.06 7 | 72.65 31 | | | | 91.80 10 | | | | | | |
|
HPM-MVS++ | | | 89.02 7 | 89.15 7 | 88.63 2 | 95.01 8 | 76.03 1 | 92.38 23 | 92.85 53 | 80.26 13 | 87.78 26 | 94.27 34 | 75.89 16 | 96.81 19 | 87.45 16 | 96.44 7 | 93.05 86 |
|
DPE-MVS | | | 89.48 4 | 89.98 3 | 88.01 12 | 94.80 9 | 72.69 30 | 91.59 40 | 94.10 8 | 75.90 81 | 92.29 6 | 95.66 8 | 81.67 4 | 97.38 6 | 87.44 17 | 96.34 11 | 93.95 44 |
|
CNVR-MVS | | | 88.93 8 | 89.13 8 | 88.33 5 | 94.77 10 | 73.82 7 | 90.51 59 | 93.00 43 | 80.90 9 | 88.06 24 | 94.06 44 | 76.43 13 | 96.84 17 | 88.48 11 | 95.99 15 | 94.34 27 |
|
ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 11 | 94.64 11 | 73.59 10 | 93.04 10 | 93.20 34 | 76.78 62 | 84.66 59 | 94.52 21 | 68.81 79 | 96.65 26 | 84.53 37 | 94.90 41 | 94.00 42 |
|
region2R | | | 87.42 27 | 87.20 31 | 88.09 10 | 94.63 12 | 73.55 11 | 93.03 12 | 93.12 38 | 76.73 65 | 84.45 62 | 94.52 21 | 69.09 76 | 96.70 23 | 84.37 40 | 94.83 46 | 94.03 39 |
|
OPU-MVS | | | | | 89.06 1 | 94.62 13 | 75.42 2 | 93.57 5 | | | | 94.02 45 | 82.45 3 | 96.87 16 | 83.77 48 | 96.48 6 | 94.88 7 |
|
HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 15 | 94.58 14 | 73.54 13 | 93.04 10 | 93.24 32 | 76.78 62 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 84.53 37 | 94.89 42 | 93.66 57 |
|
#test# | | | 87.33 30 | 87.13 32 | 87.94 15 | 94.58 14 | 73.54 13 | 92.34 25 | 93.24 32 | 75.23 93 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 83.75 49 | 94.89 42 | 93.66 57 |
|
testtj | | | 87.78 19 | 87.78 20 | 87.77 23 | 94.55 16 | 72.47 37 | 92.23 29 | 93.49 25 | 74.75 103 | 88.33 21 | 94.43 30 | 73.27 39 | 97.02 13 | 84.18 45 | 94.84 44 | 93.82 52 |
|
MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 27 | 94.53 17 | 72.46 38 | 89.82 78 | 93.82 16 | 73.07 137 | 84.86 57 | 92.89 68 | 76.22 14 | 96.33 36 | 84.89 32 | 95.13 37 | 94.40 24 |
|
APDe-MVS | | | 89.15 5 | 89.63 5 | 87.73 27 | 94.49 18 | 71.69 55 | 93.83 2 | 93.96 14 | 75.70 85 | 91.06 12 | 96.03 1 | 76.84 12 | 97.03 12 | 89.09 3 | 95.65 28 | 94.47 23 |
|
DP-MVS Recon | | | 83.11 86 | 82.09 93 | 86.15 65 | 94.44 19 | 70.92 71 | 88.79 106 | 92.20 81 | 70.53 176 | 79.17 123 | 91.03 105 | 64.12 119 | 96.03 47 | 68.39 183 | 90.14 99 | 91.50 132 |
|
XVS | | | 87.18 33 | 86.91 36 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 45 | 79.14 21 | 83.67 76 | 94.17 38 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
X-MVStestdata | | | 80.37 137 | 77.83 171 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 45 | 79.14 21 | 83.67 76 | 12.47 353 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 29 | 94.41 22 | 73.55 11 | 92.74 17 | 92.22 80 | 76.87 59 | 82.81 87 | 94.25 36 | 66.44 97 | 96.24 39 | 82.88 59 | 94.28 58 | 93.38 72 |
|
NCCC | | | 88.06 13 | 88.01 17 | 88.24 8 | 94.41 22 | 73.62 9 | 91.22 49 | 92.83 54 | 81.50 6 | 85.79 41 | 93.47 56 | 73.02 42 | 97.00 14 | 84.90 30 | 94.94 40 | 94.10 35 |
|
ZNCC-MVS | | | 87.94 17 | 87.85 19 | 88.20 9 | 94.39 24 | 73.33 18 | 93.03 12 | 93.81 17 | 76.81 60 | 85.24 47 | 94.32 33 | 71.76 51 | 96.93 15 | 85.53 26 | 95.79 21 | 94.32 28 |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 45 | | 92.67 60 | 70.98 167 | 87.75 27 | 94.07 43 | 74.01 35 | 96.70 23 | 84.66 36 | 94.84 44 | |
|
MP-MVS | | | 87.71 20 | 87.64 22 | 87.93 18 | 94.36 26 | 73.88 5 | 92.71 19 | 92.65 63 | 77.57 38 | 83.84 73 | 94.40 32 | 72.24 47 | 96.28 38 | 85.65 25 | 95.30 36 | 93.62 64 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MSP-MVS | | | 89.51 3 | 89.91 4 | 88.30 7 | 94.28 27 | 73.46 16 | 92.90 14 | 94.11 6 | 80.27 12 | 91.35 11 | 94.16 39 | 78.35 10 | 96.77 20 | 89.59 1 | 94.22 60 | 94.67 16 |
|
SMA-MVS | | | 89.08 6 | 89.23 6 | 88.61 3 | 94.25 28 | 73.73 8 | 92.40 20 | 93.63 20 | 74.77 102 | 92.29 6 | 95.97 2 | 74.28 31 | 97.24 8 | 88.58 10 | 96.91 1 | 94.87 9 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS | | | 87.44 25 | 87.52 23 | 87.19 44 | 94.24 29 | 72.39 40 | 91.86 37 | 92.83 54 | 73.01 139 | 88.58 19 | 94.52 21 | 73.36 37 | 96.49 34 | 84.26 42 | 95.01 38 | 92.70 96 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 19 | 94.22 30 | 73.38 17 | 90.22 71 | 93.04 39 | 75.53 87 | 83.86 72 | 94.42 31 | 67.87 85 | 96.64 27 | 82.70 62 | 94.57 51 | 93.66 57 |
|
CP-MVS | | | 87.11 34 | 86.92 35 | 87.68 34 | 94.20 31 | 73.86 6 | 93.98 1 | 92.82 57 | 76.62 67 | 83.68 75 | 94.46 25 | 67.93 83 | 95.95 52 | 84.20 44 | 94.39 55 | 93.23 78 |
|
zzz-MVS | | | 87.53 23 | 87.41 26 | 87.90 19 | 94.18 32 | 74.25 3 | 90.23 69 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
MTAPA | | | 87.23 32 | 87.00 33 | 87.90 19 | 94.18 32 | 74.25 3 | 86.58 176 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 22 | 94.12 34 | 72.97 23 | 92.39 22 | 93.43 28 | 76.89 58 | 84.68 58 | 93.99 47 | 70.67 61 | 96.82 18 | 84.18 45 | 95.01 38 | 93.90 47 |
|
SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 35 | 72.11 48 | 92.37 24 | 92.56 66 | 74.50 107 | 86.84 33 | 94.65 18 | 67.31 90 | 95.77 57 | 84.80 34 | 92.85 68 | 92.84 94 |
|
114514_t | | | 80.68 128 | 79.51 132 | 84.20 114 | 94.09 36 | 67.27 146 | 89.64 85 | 91.11 124 | 58.75 310 | 74.08 227 | 90.72 110 | 58.10 188 | 95.04 88 | 69.70 171 | 89.42 108 | 90.30 172 |
|
test1172 | | | 86.20 49 | 86.22 45 | 86.12 67 | 93.95 37 | 69.89 90 | 91.79 39 | 92.28 75 | 75.07 97 | 86.40 35 | 94.58 20 | 65.00 114 | 95.56 62 | 84.34 41 | 92.60 72 | 92.90 92 |
|
HPM-MVS | | | 87.11 34 | 86.98 34 | 87.50 38 | 93.88 38 | 72.16 46 | 92.19 30 | 93.33 31 | 76.07 80 | 83.81 74 | 93.95 48 | 69.77 70 | 96.01 49 | 85.15 28 | 94.66 48 | 94.32 28 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
xxxxxxxxxxxxxcwj | | | 87.88 18 | 87.92 18 | 87.77 23 | 93.80 39 | 72.35 42 | 90.47 62 | 89.69 162 | 74.31 111 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
save fliter | | | | | | 93.80 39 | 72.35 42 | 90.47 62 | 91.17 122 | 74.31 111 | | | | | | | |
|
ETH3 D test6400 | | | 87.50 24 | 87.44 25 | 87.70 32 | 93.71 41 | 71.75 54 | 90.62 57 | 94.05 13 | 70.80 169 | 87.59 29 | 93.51 53 | 77.57 11 | 96.63 28 | 83.31 50 | 95.77 22 | 94.72 15 |
|
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 15 | 93.70 42 | 73.05 21 | 90.86 52 | 93.59 21 | 76.27 77 | 88.14 22 | 95.09 13 | 71.06 56 | 96.67 25 | 87.67 13 | 96.37 10 | 94.09 36 |
|
HPM-MVS_fast | | | 85.35 61 | 84.95 66 | 86.57 58 | 93.69 43 | 70.58 79 | 92.15 32 | 91.62 106 | 73.89 122 | 82.67 89 | 94.09 42 | 62.60 138 | 95.54 65 | 80.93 73 | 92.93 66 | 93.57 66 |
|
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 29 | 93.68 44 | 72.13 47 | 91.41 45 | 92.35 73 | 74.62 106 | 88.90 17 | 93.85 49 | 75.75 17 | 96.00 50 | 87.80 12 | 94.63 49 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 45 | 72.04 49 | 89.80 80 | 93.50 24 | 75.17 96 | 86.34 36 | 95.29 10 | 70.86 57 | 96.00 50 | 88.78 9 | 96.04 12 | 94.58 19 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP | | | 85.89 52 | 85.39 57 | 87.38 41 | 93.59 46 | 72.63 32 | 92.74 17 | 93.18 36 | 76.78 62 | 80.73 112 | 93.82 50 | 64.33 117 | 96.29 37 | 82.67 63 | 90.69 91 | 93.23 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepC-MVS_fast | | 79.65 3 | 86.91 37 | 86.62 40 | 87.76 26 | 93.52 47 | 72.37 41 | 91.26 46 | 93.04 39 | 76.62 67 | 84.22 67 | 93.36 58 | 71.44 54 | 96.76 21 | 80.82 75 | 95.33 34 | 94.16 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 85.76 54 | 85.29 61 | 87.17 45 | 93.49 48 | 71.08 63 | 88.58 116 | 92.42 71 | 68.32 220 | 84.61 60 | 93.48 54 | 72.32 46 | 96.15 45 | 79.00 86 | 95.43 30 | 94.28 30 |
|
DP-MVS | | | 76.78 213 | 74.57 225 | 83.42 137 | 93.29 49 | 69.46 101 | 88.55 117 | 83.70 263 | 63.98 267 | 70.20 261 | 88.89 151 | 54.01 221 | 94.80 100 | 46.66 321 | 81.88 196 | 86.01 286 |
|
CPTT-MVS | | | 83.73 74 | 83.33 77 | 84.92 92 | 93.28 50 | 70.86 72 | 92.09 33 | 90.38 140 | 68.75 214 | 79.57 119 | 92.83 70 | 60.60 175 | 93.04 175 | 80.92 74 | 91.56 82 | 90.86 151 |
|
TEST9 | | | | | | 93.26 51 | 72.96 24 | 88.75 108 | 91.89 96 | 68.44 219 | 85.00 50 | 93.10 62 | 74.36 30 | 95.41 71 | | | |
|
train_agg | | | 86.43 44 | 86.20 46 | 87.13 46 | 93.26 51 | 72.96 24 | 88.75 108 | 91.89 96 | 68.69 215 | 85.00 50 | 93.10 62 | 74.43 27 | 95.41 71 | 84.97 29 | 95.71 26 | 93.02 88 |
|
test_8 | | | | | | 93.13 53 | 72.57 34 | 88.68 113 | 91.84 99 | 68.69 215 | 84.87 56 | 93.10 62 | 74.43 27 | 95.16 81 | | | |
|
新几何1 | | | | | 83.42 137 | 93.13 53 | 70.71 74 | | 85.48 244 | 57.43 317 | 81.80 98 | 91.98 79 | 63.28 126 | 92.27 196 | 64.60 215 | 92.99 65 | 87.27 260 |
|
1121 | | | 80.84 119 | 79.77 126 | 84.05 120 | 93.11 55 | 70.78 73 | 84.66 220 | 85.42 245 | 57.37 318 | 81.76 101 | 92.02 78 | 63.41 124 | 94.12 122 | 67.28 191 | 92.93 66 | 87.26 261 |
|
AdaColmap | | | 80.58 132 | 79.42 134 | 84.06 119 | 93.09 56 | 68.91 110 | 89.36 88 | 88.97 187 | 69.27 198 | 75.70 196 | 89.69 128 | 57.20 199 | 95.77 57 | 63.06 224 | 88.41 120 | 87.50 255 |
|
SR-MVS-dyc-post | | | 85.77 53 | 85.61 54 | 86.23 63 | 93.06 57 | 70.63 76 | 91.88 35 | 92.27 76 | 73.53 130 | 85.69 42 | 94.45 26 | 65.00 114 | 95.56 62 | 82.75 60 | 91.87 77 | 92.50 103 |
|
RE-MVS-def | | | | 85.48 55 | | 93.06 57 | 70.63 76 | 91.88 35 | 92.27 76 | 73.53 130 | 85.69 42 | 94.45 26 | 63.87 121 | | 82.75 60 | 91.87 77 | 92.50 103 |
|
原ACMM1 | | | | | 84.35 109 | 93.01 59 | 68.79 111 | | 92.44 68 | 63.96 268 | 81.09 108 | 91.57 89 | 66.06 102 | 95.45 68 | 67.19 194 | 94.82 47 | 88.81 229 |
|
CSCG | | | 86.41 46 | 86.19 47 | 87.07 47 | 92.91 60 | 72.48 36 | 90.81 53 | 93.56 22 | 73.95 119 | 83.16 81 | 91.07 102 | 75.94 15 | 95.19 80 | 79.94 83 | 94.38 56 | 93.55 67 |
|
agg_prior1 | | | 86.22 48 | 86.09 50 | 86.62 56 | 92.85 61 | 71.94 51 | 88.59 115 | 91.78 102 | 68.96 210 | 84.41 63 | 93.18 61 | 74.94 23 | 94.93 91 | 84.75 35 | 95.33 34 | 93.01 89 |
|
agg_prior | | | | | | 92.85 61 | 71.94 51 | | 91.78 102 | | 84.41 63 | | | 94.93 91 | | | |
|
9.14 | | | | 88.26 14 | | 92.84 63 | | 91.52 43 | 94.75 1 | 73.93 121 | 88.57 20 | 94.67 17 | 75.57 20 | 95.79 56 | 86.77 20 | 95.76 24 | |
|
SF-MVS | | | 88.46 10 | 88.74 10 | 87.64 35 | 92.78 64 | 71.95 50 | 92.40 20 | 94.74 2 | 75.71 83 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
ETH3D-3000-0.1 | | | 88.09 12 | 88.29 13 | 87.50 38 | 92.76 65 | 71.89 53 | 91.43 44 | 94.70 3 | 74.47 108 | 88.86 18 | 94.61 19 | 75.23 21 | 95.84 54 | 86.62 23 | 95.92 17 | 94.78 13 |
|
MG-MVS | | | 83.41 80 | 83.45 75 | 83.28 142 | 92.74 66 | 62.28 234 | 88.17 133 | 89.50 166 | 75.22 94 | 81.49 102 | 92.74 73 | 66.75 93 | 95.11 83 | 72.85 146 | 91.58 81 | 92.45 106 |
|
APD-MVS_3200maxsize | | | 85.97 50 | 85.88 51 | 86.22 64 | 92.69 67 | 69.53 97 | 91.93 34 | 92.99 45 | 73.54 129 | 85.94 37 | 94.51 24 | 65.80 106 | 95.61 60 | 83.04 57 | 92.51 74 | 93.53 69 |
|
test12 | | | | | 86.80 52 | 92.63 68 | 70.70 75 | | 91.79 101 | | 82.71 88 | | 71.67 52 | 96.16 44 | | 94.50 52 | 93.54 68 |
|
test_prior3 | | | 86.73 38 | 86.86 38 | 86.33 60 | 92.61 69 | 69.59 95 | 88.85 104 | 92.97 48 | 75.41 89 | 84.91 52 | 93.54 51 | 74.28 31 | 95.48 66 | 83.31 50 | 95.86 18 | 93.91 45 |
|
test_prior | | | | | 86.33 60 | 92.61 69 | 69.59 95 | | 92.97 48 | | | | | 95.48 66 | | | 93.91 45 |
|
SD-MVS | | | 88.06 13 | 88.50 12 | 86.71 54 | 92.60 71 | 72.71 28 | 91.81 38 | 93.19 35 | 77.87 33 | 90.32 13 | 94.00 46 | 74.83 24 | 93.78 138 | 87.63 14 | 94.27 59 | 93.65 62 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PAPM_NR | | | 83.02 87 | 82.41 88 | 84.82 94 | 92.47 72 | 66.37 159 | 87.93 140 | 91.80 100 | 73.82 123 | 77.32 159 | 90.66 111 | 67.90 84 | 94.90 95 | 70.37 164 | 89.48 107 | 93.19 82 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 11 | 88.56 11 | 86.73 53 | 92.24 73 | 69.03 105 | 89.57 86 | 93.39 30 | 77.53 42 | 89.79 14 | 94.12 41 | 78.98 9 | 96.58 33 | 85.66 24 | 95.72 25 | 94.58 19 |
|
abl_6 | | | 85.23 62 | 84.95 66 | 86.07 68 | 92.23 74 | 70.48 80 | 90.80 54 | 92.08 85 | 73.51 132 | 85.26 46 | 94.16 39 | 62.75 137 | 95.92 53 | 82.46 65 | 91.30 86 | 91.81 125 |
|
SteuartSystems-ACMMP | | | 88.72 9 | 88.86 9 | 88.32 6 | 92.14 75 | 72.96 24 | 93.73 3 | 93.67 19 | 80.19 14 | 88.10 23 | 94.80 14 | 73.76 36 | 97.11 10 | 87.51 15 | 95.82 20 | 94.90 6 |
Skip Steuart: Steuart Systems R&D Blog. |
UA-Net | | | 85.08 66 | 84.96 65 | 85.45 74 | 92.07 76 | 68.07 132 | 89.78 81 | 90.86 130 | 82.48 2 | 84.60 61 | 93.20 60 | 69.35 73 | 95.22 79 | 71.39 156 | 90.88 90 | 93.07 85 |
|
旧先验1 | | | | | | 91.96 77 | 65.79 169 | | 86.37 236 | | | 93.08 66 | 69.31 75 | | | 92.74 69 | 88.74 232 |
|
MSLP-MVS++ | | | 85.43 59 | 85.76 53 | 84.45 104 | 91.93 78 | 70.24 81 | 90.71 55 | 92.86 52 | 77.46 44 | 84.22 67 | 92.81 72 | 67.16 92 | 92.94 177 | 80.36 79 | 94.35 57 | 90.16 176 |
|
LFMVS | | | 81.82 103 | 81.23 104 | 83.57 134 | 91.89 79 | 63.43 216 | 89.84 77 | 81.85 288 | 77.04 55 | 83.21 79 | 93.10 62 | 52.26 233 | 93.43 157 | 71.98 151 | 89.95 103 | 93.85 49 |
|
PLC | | 70.83 11 | 78.05 190 | 76.37 207 | 83.08 153 | 91.88 80 | 67.80 136 | 88.19 132 | 89.46 167 | 64.33 263 | 69.87 270 | 88.38 165 | 53.66 223 | 93.58 147 | 58.86 261 | 82.73 186 | 87.86 247 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_111021_HR | | | 85.14 64 | 84.75 68 | 86.32 62 | 91.65 81 | 72.70 29 | 85.98 191 | 90.33 144 | 76.11 79 | 82.08 93 | 91.61 88 | 71.36 55 | 94.17 121 | 81.02 72 | 92.58 73 | 92.08 118 |
|
ETH3D cwj APD-0.16 | | | 87.31 31 | 87.27 27 | 87.44 40 | 91.60 82 | 72.45 39 | 90.02 74 | 94.37 4 | 71.76 153 | 87.28 30 | 94.27 34 | 75.18 22 | 96.08 46 | 85.16 27 | 95.77 22 | 93.80 55 |
|
test222 | | | | | | 91.50 83 | 68.26 128 | 84.16 235 | 83.20 275 | 54.63 329 | 79.74 117 | 91.63 87 | 58.97 184 | | | 91.42 83 | 86.77 272 |
|
TSAR-MVS + GP. | | | 85.71 55 | 85.33 58 | 86.84 50 | 91.34 84 | 72.50 35 | 89.07 98 | 87.28 224 | 76.41 70 | 85.80 40 | 90.22 119 | 74.15 34 | 95.37 76 | 81.82 67 | 91.88 76 | 92.65 100 |
|
MAR-MVS | | | 81.84 102 | 80.70 110 | 85.27 79 | 91.32 85 | 71.53 57 | 89.82 78 | 90.92 127 | 69.77 189 | 78.50 134 | 86.21 228 | 62.36 144 | 94.52 107 | 65.36 208 | 92.05 75 | 89.77 200 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS | | 79.81 2 | 87.08 36 | 86.88 37 | 87.69 33 | 91.16 86 | 72.32 44 | 90.31 67 | 93.94 15 | 77.12 52 | 82.82 86 | 94.23 37 | 72.13 49 | 97.09 11 | 84.83 33 | 95.37 31 | 93.65 62 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 77.84 4 | 85.48 57 | 84.47 71 | 88.51 4 | 91.08 87 | 73.49 15 | 93.18 9 | 93.78 18 | 80.79 10 | 76.66 175 | 93.37 57 | 60.40 179 | 96.75 22 | 77.20 105 | 93.73 63 | 95.29 2 |
|
Anonymous202405211 | | | 78.25 182 | 77.01 190 | 81.99 185 | 91.03 88 | 60.67 252 | 84.77 218 | 83.90 261 | 70.65 175 | 80.00 116 | 91.20 98 | 41.08 318 | 91.43 222 | 65.21 209 | 85.26 155 | 93.85 49 |
|
VDD-MVS | | | 83.01 88 | 82.36 90 | 84.96 89 | 91.02 89 | 66.40 158 | 88.91 101 | 88.11 204 | 77.57 38 | 84.39 65 | 93.29 59 | 52.19 234 | 93.91 133 | 77.05 107 | 88.70 115 | 94.57 21 |
|
API-MVS | | | 81.99 100 | 81.23 104 | 84.26 113 | 90.94 90 | 70.18 87 | 91.10 50 | 89.32 170 | 71.51 160 | 78.66 132 | 88.28 168 | 65.26 109 | 95.10 86 | 64.74 214 | 91.23 87 | 87.51 254 |
|
testdata | | | | | 79.97 227 | 90.90 91 | 64.21 198 | | 84.71 250 | 59.27 305 | 85.40 44 | 92.91 67 | 62.02 151 | 89.08 265 | 68.95 179 | 91.37 84 | 86.63 276 |
|
PHI-MVS | | | 86.43 44 | 86.17 48 | 87.24 43 | 90.88 92 | 70.96 67 | 92.27 28 | 94.07 9 | 72.45 142 | 85.22 48 | 91.90 81 | 69.47 72 | 96.42 35 | 83.28 53 | 95.94 16 | 94.35 26 |
|
VNet | | | 82.21 95 | 82.41 88 | 81.62 191 | 90.82 93 | 60.93 248 | 84.47 226 | 89.78 158 | 76.36 75 | 84.07 70 | 91.88 82 | 64.71 116 | 90.26 245 | 70.68 161 | 88.89 111 | 93.66 57 |
|
PVSNet_Blended_VisFu | | | 82.62 91 | 81.83 99 | 84.96 89 | 90.80 94 | 69.76 92 | 88.74 110 | 91.70 105 | 69.39 195 | 78.96 125 | 88.46 163 | 65.47 108 | 94.87 98 | 74.42 128 | 88.57 116 | 90.24 174 |
|
Anonymous20240529 | | | 80.19 141 | 78.89 147 | 84.10 117 | 90.60 95 | 64.75 188 | 88.95 100 | 90.90 128 | 65.97 244 | 80.59 113 | 91.17 99 | 49.97 262 | 93.73 144 | 69.16 177 | 82.70 188 | 93.81 53 |
|
Anonymous20231211 | | | 78.97 168 | 77.69 178 | 82.81 167 | 90.54 96 | 64.29 197 | 90.11 73 | 91.51 110 | 65.01 255 | 76.16 190 | 88.13 176 | 50.56 256 | 93.03 176 | 69.68 172 | 77.56 239 | 91.11 143 |
|
LS3D | | | 76.95 211 | 74.82 223 | 83.37 140 | 90.45 97 | 67.36 145 | 89.15 96 | 86.94 228 | 61.87 286 | 69.52 273 | 90.61 112 | 51.71 245 | 94.53 106 | 46.38 324 | 86.71 141 | 88.21 242 |
|
VDDNet | | | 81.52 108 | 80.67 111 | 84.05 120 | 90.44 98 | 64.13 200 | 89.73 83 | 85.91 242 | 71.11 164 | 83.18 80 | 93.48 54 | 50.54 257 | 93.49 153 | 73.40 140 | 88.25 121 | 94.54 22 |
|
CNLPA | | | 78.08 188 | 76.79 197 | 81.97 186 | 90.40 99 | 71.07 64 | 87.59 147 | 84.55 253 | 66.03 243 | 72.38 243 | 89.64 130 | 57.56 193 | 86.04 294 | 59.61 253 | 83.35 177 | 88.79 230 |
|
PAPR | | | 81.66 106 | 80.89 109 | 83.99 126 | 90.27 100 | 64.00 201 | 86.76 172 | 91.77 104 | 68.84 213 | 77.13 167 | 89.50 134 | 67.63 86 | 94.88 97 | 67.55 188 | 88.52 118 | 93.09 84 |
|
Vis-MVSNet | | | 83.46 79 | 82.80 85 | 85.43 75 | 90.25 101 | 68.74 115 | 90.30 68 | 90.13 150 | 76.33 76 | 80.87 111 | 92.89 68 | 61.00 168 | 94.20 118 | 72.45 150 | 90.97 88 | 93.35 74 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DPM-MVS | | | 84.93 67 | 84.29 72 | 86.84 50 | 90.20 102 | 73.04 22 | 87.12 158 | 93.04 39 | 69.80 188 | 82.85 85 | 91.22 97 | 73.06 41 | 96.02 48 | 76.72 112 | 94.63 49 | 91.46 135 |
|
EPP-MVSNet | | | 83.40 81 | 83.02 81 | 84.57 100 | 90.13 103 | 64.47 194 | 92.32 26 | 90.73 131 | 74.45 110 | 79.35 122 | 91.10 100 | 69.05 78 | 95.12 82 | 72.78 147 | 87.22 133 | 94.13 34 |
|
CANet | | | 86.45 43 | 86.10 49 | 87.51 37 | 90.09 104 | 70.94 69 | 89.70 84 | 92.59 65 | 81.78 4 | 81.32 103 | 91.43 94 | 70.34 63 | 97.23 9 | 84.26 42 | 93.36 64 | 94.37 25 |
|
HQP_MVS | | | 83.64 76 | 83.14 78 | 85.14 83 | 90.08 105 | 68.71 117 | 91.25 47 | 92.44 68 | 79.12 23 | 78.92 127 | 91.00 106 | 60.42 177 | 95.38 73 | 78.71 89 | 86.32 146 | 91.33 137 |
|
plane_prior7 | | | | | | 90.08 105 | 68.51 124 | | | | | | | | | | |
|
CHOSEN 1792x2688 | | | 77.63 201 | 75.69 210 | 83.44 136 | 89.98 107 | 68.58 123 | 78.70 295 | 87.50 220 | 56.38 323 | 75.80 195 | 86.84 204 | 58.67 185 | 91.40 223 | 61.58 239 | 85.75 154 | 90.34 171 |
|
IS-MVSNet | | | 83.15 84 | 82.81 84 | 84.18 115 | 89.94 108 | 63.30 218 | 91.59 40 | 88.46 201 | 79.04 25 | 79.49 120 | 92.16 76 | 65.10 111 | 94.28 112 | 67.71 186 | 91.86 79 | 94.95 5 |
|
plane_prior1 | | | | | | 89.90 109 | | | | | | | | | | | |
|
canonicalmvs | | | 85.91 51 | 85.87 52 | 86.04 69 | 89.84 110 | 69.44 103 | 90.45 65 | 93.00 43 | 76.70 66 | 88.01 25 | 91.23 96 | 73.28 38 | 93.91 133 | 81.50 69 | 88.80 113 | 94.77 14 |
|
plane_prior6 | | | | | | 89.84 110 | 68.70 119 | | | | | | 60.42 177 | | | | |
|
CS-MVS | | | 84.76 70 | 84.61 70 | 85.22 82 | 89.66 112 | 66.43 157 | 90.23 69 | 93.56 22 | 76.52 69 | 82.59 90 | 85.93 232 | 70.41 62 | 95.80 55 | 79.93 84 | 92.68 71 | 93.42 71 |
|
NP-MVS | | | | | | 89.62 113 | 68.32 126 | | | | | 90.24 117 | | | | | |
|
EIA-MVS | | | 83.31 83 | 82.80 85 | 84.82 94 | 89.59 114 | 65.59 172 | 88.21 131 | 92.68 59 | 74.66 105 | 78.96 125 | 86.42 224 | 69.06 77 | 95.26 78 | 75.54 122 | 90.09 100 | 93.62 64 |
|
HyFIR lowres test | | | 77.53 202 | 75.40 216 | 83.94 129 | 89.59 114 | 66.62 154 | 80.36 277 | 88.64 198 | 56.29 324 | 76.45 178 | 85.17 250 | 57.64 192 | 93.28 160 | 61.34 242 | 83.10 182 | 91.91 121 |
|
TAPA-MVS | | 73.13 9 | 79.15 162 | 77.94 167 | 82.79 170 | 89.59 114 | 62.99 227 | 88.16 134 | 91.51 110 | 65.77 245 | 77.14 166 | 91.09 101 | 60.91 169 | 93.21 162 | 50.26 304 | 87.05 135 | 92.17 116 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
thres100view900 | | | 76.50 216 | 75.55 213 | 79.33 239 | 89.52 117 | 56.99 292 | 85.83 197 | 83.23 273 | 73.94 120 | 76.32 183 | 87.12 200 | 51.89 242 | 91.95 207 | 48.33 312 | 83.75 171 | 89.07 212 |
|
alignmvs | | | 85.48 57 | 85.32 59 | 85.96 70 | 89.51 118 | 69.47 99 | 89.74 82 | 92.47 67 | 76.17 78 | 87.73 28 | 91.46 93 | 70.32 64 | 93.78 138 | 81.51 68 | 88.95 110 | 94.63 18 |
|
PS-MVSNAJ | | | 81.69 104 | 81.02 108 | 83.70 131 | 89.51 118 | 68.21 130 | 84.28 234 | 90.09 151 | 70.79 170 | 81.26 107 | 85.62 241 | 63.15 131 | 94.29 111 | 75.62 120 | 88.87 112 | 88.59 235 |
|
ACMP | | 74.13 6 | 81.51 110 | 80.57 112 | 84.36 108 | 89.42 120 | 68.69 120 | 89.97 76 | 91.50 113 | 74.46 109 | 75.04 217 | 90.41 115 | 53.82 222 | 94.54 105 | 77.56 101 | 82.91 183 | 89.86 196 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
thres600view7 | | | 76.50 216 | 75.44 214 | 79.68 233 | 89.40 121 | 57.16 289 | 85.53 205 | 83.23 273 | 73.79 124 | 76.26 184 | 87.09 201 | 51.89 242 | 91.89 210 | 48.05 317 | 83.72 174 | 90.00 188 |
|
ETV-MVS | | | 84.90 69 | 84.67 69 | 85.59 73 | 89.39 122 | 68.66 121 | 88.74 110 | 92.64 64 | 79.97 17 | 84.10 69 | 85.71 237 | 69.32 74 | 95.38 73 | 80.82 75 | 91.37 84 | 92.72 95 |
|
BH-RMVSNet | | | 79.61 149 | 78.44 155 | 83.14 150 | 89.38 123 | 65.93 165 | 84.95 215 | 87.15 226 | 73.56 128 | 78.19 142 | 89.79 127 | 56.67 203 | 93.36 158 | 59.53 254 | 86.74 140 | 90.13 178 |
|
Regformer-1 | | | 86.41 46 | 86.33 42 | 86.64 55 | 89.33 124 | 70.93 70 | 88.43 118 | 91.39 115 | 82.14 3 | 86.65 34 | 90.09 121 | 74.39 29 | 95.01 89 | 83.97 47 | 90.63 92 | 93.97 43 |
|
Regformer-2 | | | 86.63 42 | 86.53 41 | 86.95 48 | 89.33 124 | 71.24 62 | 88.43 118 | 92.05 86 | 82.50 1 | 86.88 32 | 90.09 121 | 74.45 26 | 95.61 60 | 84.38 39 | 90.63 92 | 94.01 41 |
|
HQP-NCC | | | | | | 89.33 124 | | 89.17 92 | | 76.41 70 | 77.23 162 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 124 | | 89.17 92 | | 76.41 70 | 77.23 162 | | | | | | |
|
HQP-MVS | | | 82.61 92 | 82.02 95 | 84.37 107 | 89.33 124 | 66.98 150 | 89.17 92 | 92.19 82 | 76.41 70 | 77.23 162 | 90.23 118 | 60.17 180 | 95.11 83 | 77.47 102 | 85.99 151 | 91.03 145 |
|
ACMM | | 73.20 8 | 80.78 127 | 79.84 125 | 83.58 133 | 89.31 129 | 68.37 125 | 89.99 75 | 91.60 107 | 70.28 180 | 77.25 160 | 89.66 129 | 53.37 225 | 93.53 152 | 74.24 131 | 82.85 184 | 88.85 227 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Test_1112_low_res | | | 76.40 220 | 75.44 214 | 79.27 240 | 89.28 130 | 58.09 274 | 81.69 267 | 87.07 227 | 59.53 303 | 72.48 241 | 86.67 214 | 61.30 161 | 89.33 260 | 60.81 246 | 80.15 216 | 90.41 168 |
|
F-COLMAP | | | 76.38 221 | 74.33 230 | 82.50 177 | 89.28 130 | 66.95 153 | 88.41 121 | 89.03 182 | 64.05 265 | 66.83 295 | 88.61 158 | 46.78 284 | 92.89 178 | 57.48 273 | 78.55 229 | 87.67 250 |
|
LPG-MVS_test | | | 82.08 97 | 81.27 103 | 84.50 102 | 89.23 132 | 68.76 113 | 90.22 71 | 91.94 94 | 75.37 91 | 76.64 176 | 91.51 90 | 54.29 217 | 94.91 93 | 78.44 92 | 83.78 169 | 89.83 197 |
|
LGP-MVS_train | | | | | 84.50 102 | 89.23 132 | 68.76 113 | | 91.94 94 | 75.37 91 | 76.64 176 | 91.51 90 | 54.29 217 | 94.91 93 | 78.44 92 | 83.78 169 | 89.83 197 |
|
BH-untuned | | | 79.47 153 | 78.60 151 | 82.05 183 | 89.19 134 | 65.91 166 | 86.07 190 | 88.52 200 | 72.18 148 | 75.42 203 | 87.69 182 | 61.15 165 | 93.54 151 | 60.38 247 | 86.83 139 | 86.70 274 |
|
xiu_mvs_v2_base | | | 81.69 104 | 81.05 107 | 83.60 132 | 89.15 135 | 68.03 133 | 84.46 228 | 90.02 152 | 70.67 173 | 81.30 106 | 86.53 222 | 63.17 130 | 94.19 119 | 75.60 121 | 88.54 117 | 88.57 236 |
|
test_yl | | | 81.17 113 | 80.47 115 | 83.24 145 | 89.13 136 | 63.62 207 | 86.21 186 | 89.95 154 | 72.43 145 | 81.78 99 | 89.61 131 | 57.50 194 | 93.58 147 | 70.75 159 | 86.90 137 | 92.52 101 |
|
DCV-MVSNet | | | 81.17 113 | 80.47 115 | 83.24 145 | 89.13 136 | 63.62 207 | 86.21 186 | 89.95 154 | 72.43 145 | 81.78 99 | 89.61 131 | 57.50 194 | 93.58 147 | 70.75 159 | 86.90 137 | 92.52 101 |
|
tfpn200view9 | | | 76.42 219 | 75.37 218 | 79.55 238 | 89.13 136 | 57.65 284 | 85.17 208 | 83.60 264 | 73.41 133 | 76.45 178 | 86.39 225 | 52.12 235 | 91.95 207 | 48.33 312 | 83.75 171 | 89.07 212 |
|
thres400 | | | 76.50 216 | 75.37 218 | 79.86 229 | 89.13 136 | 57.65 284 | 85.17 208 | 83.60 264 | 73.41 133 | 76.45 178 | 86.39 225 | 52.12 235 | 91.95 207 | 48.33 312 | 83.75 171 | 90.00 188 |
|
1112_ss | | | 77.40 205 | 76.43 205 | 80.32 222 | 89.11 140 | 60.41 257 | 83.65 244 | 87.72 216 | 62.13 284 | 73.05 235 | 86.72 208 | 62.58 140 | 89.97 250 | 62.11 234 | 80.80 206 | 90.59 162 |
|
Regformer-3 | | | 85.23 62 | 85.07 63 | 85.70 72 | 88.95 141 | 69.01 107 | 88.29 128 | 89.91 156 | 80.95 8 | 85.01 49 | 90.01 123 | 72.45 45 | 94.19 119 | 82.50 64 | 87.57 125 | 93.90 47 |
|
Regformer-4 | | | 85.68 56 | 85.45 56 | 86.35 59 | 88.95 141 | 69.67 94 | 88.29 128 | 91.29 117 | 81.73 5 | 85.36 45 | 90.01 123 | 72.62 44 | 95.35 77 | 83.28 53 | 87.57 125 | 94.03 39 |
|
Fast-Effi-MVS+ | | | 80.81 122 | 79.92 123 | 83.47 135 | 88.85 143 | 64.51 191 | 85.53 205 | 89.39 168 | 70.79 170 | 78.49 135 | 85.06 253 | 67.54 87 | 93.58 147 | 67.03 197 | 86.58 142 | 92.32 109 |
|
PVSNet_BlendedMVS | | | 80.60 130 | 80.02 121 | 82.36 180 | 88.85 143 | 65.40 175 | 86.16 188 | 92.00 90 | 69.34 197 | 78.11 144 | 86.09 231 | 66.02 103 | 94.27 113 | 71.52 153 | 82.06 193 | 87.39 256 |
|
PVSNet_Blended | | | 80.98 116 | 80.34 117 | 82.90 162 | 88.85 143 | 65.40 175 | 84.43 230 | 92.00 90 | 67.62 223 | 78.11 144 | 85.05 254 | 66.02 103 | 94.27 113 | 71.52 153 | 89.50 106 | 89.01 219 |
|
MVS_111021_LR | | | 82.61 92 | 82.11 92 | 84.11 116 | 88.82 146 | 71.58 56 | 85.15 210 | 86.16 239 | 74.69 104 | 80.47 114 | 91.04 103 | 62.29 145 | 90.55 243 | 80.33 80 | 90.08 101 | 90.20 175 |
|
BH-w/o | | | 78.21 184 | 77.33 186 | 80.84 212 | 88.81 147 | 65.13 183 | 84.87 216 | 87.85 214 | 69.75 190 | 74.52 223 | 84.74 257 | 61.34 160 | 93.11 170 | 58.24 268 | 85.84 153 | 84.27 303 |
|
FIs | | | 82.07 98 | 82.42 87 | 81.04 209 | 88.80 148 | 58.34 272 | 88.26 130 | 93.49 25 | 76.93 57 | 78.47 136 | 91.04 103 | 69.92 68 | 92.34 195 | 69.87 170 | 84.97 157 | 92.44 107 |
|
OPM-MVS | | | 83.50 78 | 82.95 82 | 85.14 83 | 88.79 149 | 70.95 68 | 89.13 97 | 91.52 109 | 77.55 41 | 80.96 110 | 91.75 83 | 60.71 171 | 94.50 108 | 79.67 85 | 86.51 144 | 89.97 192 |
|
WR-MVS | | | 79.49 152 | 79.22 141 | 80.27 223 | 88.79 149 | 58.35 271 | 85.06 212 | 88.61 199 | 78.56 29 | 77.65 152 | 88.34 166 | 63.81 123 | 90.66 242 | 64.98 212 | 77.22 242 | 91.80 126 |
|
OMC-MVS | | | 82.69 90 | 81.97 97 | 84.85 93 | 88.75 151 | 67.42 142 | 87.98 136 | 90.87 129 | 74.92 100 | 79.72 118 | 91.65 85 | 62.19 148 | 93.96 126 | 75.26 125 | 86.42 145 | 93.16 83 |
|
AUN-MVS | | | 79.21 161 | 77.60 180 | 84.05 120 | 88.71 152 | 67.61 139 | 85.84 196 | 87.26 225 | 69.08 205 | 77.23 162 | 88.14 175 | 53.20 227 | 93.47 154 | 75.50 123 | 73.45 294 | 91.06 144 |
|
ACMH | | 67.68 16 | 75.89 226 | 73.93 233 | 81.77 189 | 88.71 152 | 66.61 155 | 88.62 114 | 89.01 184 | 69.81 187 | 66.78 296 | 86.70 213 | 41.95 315 | 91.51 221 | 55.64 283 | 78.14 235 | 87.17 263 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Vis-MVSNet (Re-imp) | | | 78.36 181 | 78.45 154 | 78.07 258 | 88.64 154 | 51.78 326 | 86.70 173 | 79.63 309 | 74.14 117 | 75.11 214 | 90.83 109 | 61.29 162 | 89.75 253 | 58.10 269 | 91.60 80 | 92.69 98 |
|
PatchMatch-RL | | | 72.38 262 | 70.90 261 | 76.80 276 | 88.60 155 | 67.38 144 | 79.53 285 | 76.17 324 | 62.75 278 | 69.36 275 | 82.00 291 | 45.51 295 | 84.89 301 | 53.62 290 | 80.58 209 | 78.12 334 |
|
ACMH+ | | 68.96 14 | 76.01 225 | 74.01 232 | 82.03 184 | 88.60 155 | 65.31 179 | 88.86 103 | 87.55 218 | 70.25 181 | 67.75 284 | 87.47 189 | 41.27 316 | 93.19 165 | 58.37 266 | 75.94 261 | 87.60 252 |
|
LTVRE_ROB | | 69.57 13 | 76.25 222 | 74.54 227 | 81.41 196 | 88.60 155 | 64.38 196 | 79.24 288 | 89.12 181 | 70.76 172 | 69.79 272 | 87.86 178 | 49.09 273 | 93.20 164 | 56.21 282 | 80.16 215 | 86.65 275 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DELS-MVS | | | 85.41 60 | 85.30 60 | 85.77 71 | 88.49 158 | 67.93 134 | 85.52 207 | 93.44 27 | 78.70 28 | 83.63 78 | 89.03 149 | 74.57 25 | 95.71 59 | 80.26 81 | 94.04 61 | 93.66 57 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CLD-MVS | | | 82.31 94 | 81.65 100 | 84.29 112 | 88.47 159 | 67.73 138 | 85.81 198 | 92.35 73 | 75.78 82 | 78.33 139 | 86.58 219 | 64.01 120 | 94.35 110 | 76.05 116 | 87.48 130 | 90.79 152 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet_NR-MVSNet | | | 81.88 101 | 81.54 101 | 82.92 161 | 88.46 160 | 63.46 214 | 87.13 157 | 92.37 72 | 80.19 14 | 78.38 137 | 89.14 144 | 71.66 53 | 93.05 173 | 70.05 167 | 76.46 253 | 92.25 112 |
|
ab-mvs | | | 79.51 151 | 78.97 145 | 81.14 206 | 88.46 160 | 60.91 249 | 83.84 241 | 89.24 175 | 70.36 178 | 79.03 124 | 88.87 152 | 63.23 129 | 90.21 247 | 65.12 210 | 82.57 189 | 92.28 111 |
|
FC-MVSNet-test | | | 81.52 108 | 82.02 95 | 80.03 226 | 88.42 162 | 55.97 308 | 87.95 138 | 93.42 29 | 77.10 53 | 77.38 157 | 90.98 108 | 69.96 67 | 91.79 212 | 68.46 182 | 84.50 162 | 92.33 108 |
|
Effi-MVS+ | | | 83.62 77 | 83.08 79 | 85.24 80 | 88.38 163 | 67.45 141 | 88.89 102 | 89.15 178 | 75.50 88 | 82.27 91 | 88.28 168 | 69.61 71 | 94.45 109 | 77.81 99 | 87.84 123 | 93.84 51 |
|
UniMVSNet (Re) | | | 81.60 107 | 81.11 106 | 83.09 152 | 88.38 163 | 64.41 195 | 87.60 146 | 93.02 42 | 78.42 31 | 78.56 133 | 88.16 171 | 69.78 69 | 93.26 161 | 69.58 173 | 76.49 252 | 91.60 128 |
|
VPNet | | | 78.69 173 | 78.66 150 | 78.76 247 | 88.31 165 | 55.72 310 | 84.45 229 | 86.63 232 | 76.79 61 | 78.26 140 | 90.55 113 | 59.30 182 | 89.70 255 | 66.63 198 | 77.05 244 | 90.88 150 |
|
TR-MVS | | | 77.44 203 | 76.18 208 | 81.20 204 | 88.24 166 | 63.24 219 | 84.61 224 | 86.40 235 | 67.55 224 | 77.81 149 | 86.48 223 | 54.10 219 | 93.15 167 | 57.75 272 | 82.72 187 | 87.20 262 |
|
EI-MVSNet-Vis-set | | | 84.19 71 | 83.81 73 | 85.31 77 | 88.18 167 | 67.85 135 | 87.66 145 | 89.73 161 | 80.05 16 | 82.95 82 | 89.59 133 | 70.74 60 | 94.82 99 | 80.66 78 | 84.72 160 | 93.28 77 |
|
baseline1 | | | 76.98 210 | 76.75 200 | 77.66 263 | 88.13 168 | 55.66 311 | 85.12 211 | 81.89 286 | 73.04 138 | 76.79 170 | 88.90 150 | 62.43 143 | 87.78 283 | 63.30 222 | 71.18 308 | 89.55 206 |
|
test_0402 | | | 72.79 259 | 70.44 265 | 79.84 230 | 88.13 168 | 65.99 164 | 85.93 193 | 84.29 255 | 65.57 248 | 67.40 289 | 85.49 243 | 46.92 283 | 92.61 185 | 35.88 342 | 74.38 285 | 80.94 326 |
|
tttt0517 | | | 79.40 156 | 77.91 168 | 83.90 130 | 88.10 170 | 63.84 204 | 88.37 125 | 84.05 259 | 71.45 161 | 76.78 171 | 89.12 146 | 49.93 265 | 94.89 96 | 70.18 166 | 83.18 180 | 92.96 91 |
|
VPA-MVSNet | | | 80.60 130 | 80.55 113 | 80.76 214 | 88.07 171 | 60.80 251 | 86.86 166 | 91.58 108 | 75.67 86 | 80.24 115 | 89.45 140 | 63.34 125 | 90.25 246 | 70.51 163 | 79.22 228 | 91.23 140 |
|
UGNet | | | 80.83 121 | 79.59 131 | 84.54 101 | 88.04 172 | 68.09 131 | 89.42 87 | 88.16 203 | 76.95 56 | 76.22 185 | 89.46 138 | 49.30 271 | 93.94 129 | 68.48 181 | 90.31 95 | 91.60 128 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
WR-MVS_H | | | 78.51 177 | 78.49 153 | 78.56 250 | 88.02 173 | 56.38 303 | 88.43 118 | 92.67 60 | 77.14 51 | 73.89 228 | 87.55 186 | 66.25 99 | 89.24 262 | 58.92 260 | 73.55 293 | 90.06 186 |
|
QAPM | | | 80.88 117 | 79.50 133 | 85.03 86 | 88.01 174 | 68.97 109 | 91.59 40 | 92.00 90 | 66.63 236 | 75.15 213 | 92.16 76 | 57.70 191 | 95.45 68 | 63.52 218 | 88.76 114 | 90.66 157 |
|
3Dnovator | | 76.31 5 | 83.38 82 | 82.31 91 | 86.59 57 | 87.94 175 | 72.94 27 | 90.64 56 | 92.14 84 | 77.21 49 | 75.47 199 | 92.83 70 | 58.56 186 | 94.72 103 | 73.24 143 | 92.71 70 | 92.13 117 |
|
EI-MVSNet-UG-set | | | 83.81 73 | 83.38 76 | 85.09 85 | 87.87 176 | 67.53 140 | 87.44 151 | 89.66 163 | 79.74 18 | 82.23 92 | 89.41 142 | 70.24 65 | 94.74 102 | 79.95 82 | 83.92 168 | 92.99 90 |
|
TranMVSNet+NR-MVSNet | | | 80.84 119 | 80.31 118 | 82.42 178 | 87.85 177 | 62.33 232 | 87.74 144 | 91.33 116 | 80.55 11 | 77.99 147 | 89.86 125 | 65.23 110 | 92.62 184 | 67.05 196 | 75.24 278 | 92.30 110 |
|
CP-MVSNet | | | 78.22 183 | 78.34 159 | 77.84 260 | 87.83 178 | 54.54 315 | 87.94 139 | 91.17 122 | 77.65 35 | 73.48 230 | 88.49 162 | 62.24 147 | 88.43 275 | 62.19 231 | 74.07 286 | 90.55 163 |
|
DU-MVS | | | 81.12 115 | 80.52 114 | 82.90 162 | 87.80 179 | 63.46 214 | 87.02 161 | 91.87 98 | 79.01 26 | 78.38 137 | 89.07 147 | 65.02 112 | 93.05 173 | 70.05 167 | 76.46 253 | 92.20 114 |
|
NR-MVSNet | | | 80.23 139 | 79.38 136 | 82.78 171 | 87.80 179 | 63.34 217 | 86.31 183 | 91.09 125 | 79.01 26 | 72.17 245 | 89.07 147 | 67.20 91 | 92.81 183 | 66.08 203 | 75.65 264 | 92.20 114 |
|
TAMVS | | | 78.89 170 | 77.51 182 | 83.03 156 | 87.80 179 | 67.79 137 | 84.72 219 | 85.05 249 | 67.63 222 | 76.75 172 | 87.70 181 | 62.25 146 | 90.82 238 | 58.53 265 | 87.13 134 | 90.49 165 |
|
thres200 | | | 75.55 231 | 74.47 228 | 78.82 246 | 87.78 182 | 57.85 281 | 83.07 255 | 83.51 267 | 72.44 144 | 75.84 194 | 84.42 259 | 52.08 237 | 91.75 213 | 47.41 319 | 83.64 175 | 86.86 270 |
|
PS-CasMVS | | | 78.01 192 | 78.09 164 | 77.77 262 | 87.71 183 | 54.39 317 | 88.02 135 | 91.22 119 | 77.50 43 | 73.26 232 | 88.64 157 | 60.73 170 | 88.41 276 | 61.88 235 | 73.88 290 | 90.53 164 |
|
PCF-MVS | | 73.52 7 | 80.38 136 | 78.84 148 | 85.01 87 | 87.71 183 | 68.99 108 | 83.65 244 | 91.46 114 | 63.00 273 | 77.77 151 | 90.28 116 | 66.10 100 | 95.09 87 | 61.40 240 | 88.22 122 | 90.94 149 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
thisisatest0530 | | | 79.40 156 | 77.76 175 | 84.31 111 | 87.69 185 | 65.10 184 | 87.36 152 | 84.26 257 | 70.04 183 | 77.42 156 | 88.26 170 | 49.94 263 | 94.79 101 | 70.20 165 | 84.70 161 | 93.03 87 |
|
GBi-Net | | | 78.40 178 | 77.40 183 | 81.40 197 | 87.60 186 | 63.01 224 | 88.39 122 | 89.28 171 | 71.63 156 | 75.34 206 | 87.28 192 | 54.80 210 | 91.11 229 | 62.72 225 | 79.57 220 | 90.09 182 |
|
test1 | | | 78.40 178 | 77.40 183 | 81.40 197 | 87.60 186 | 63.01 224 | 88.39 122 | 89.28 171 | 71.63 156 | 75.34 206 | 87.28 192 | 54.80 210 | 91.11 229 | 62.72 225 | 79.57 220 | 90.09 182 |
|
FMVSNet2 | | | 78.20 185 | 77.21 187 | 81.20 204 | 87.60 186 | 62.89 228 | 87.47 150 | 89.02 183 | 71.63 156 | 75.29 210 | 87.28 192 | 54.80 210 | 91.10 232 | 62.38 229 | 79.38 224 | 89.61 204 |
|
CDS-MVSNet | | | 79.07 165 | 77.70 177 | 83.17 149 | 87.60 186 | 68.23 129 | 84.40 232 | 86.20 238 | 67.49 225 | 76.36 182 | 86.54 221 | 61.54 156 | 90.79 239 | 61.86 236 | 87.33 131 | 90.49 165 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HY-MVS | | 69.67 12 | 77.95 193 | 77.15 188 | 80.36 220 | 87.57 190 | 60.21 259 | 83.37 251 | 87.78 215 | 66.11 240 | 75.37 205 | 87.06 203 | 63.27 127 | 90.48 244 | 61.38 241 | 82.43 190 | 90.40 169 |
|
xiu_mvs_v1_base_debu | | | 80.80 124 | 79.72 128 | 84.03 123 | 87.35 191 | 70.19 84 | 85.56 200 | 88.77 192 | 69.06 206 | 81.83 95 | 88.16 171 | 50.91 251 | 92.85 179 | 78.29 96 | 87.56 127 | 89.06 214 |
|
xiu_mvs_v1_base | | | 80.80 124 | 79.72 128 | 84.03 123 | 87.35 191 | 70.19 84 | 85.56 200 | 88.77 192 | 69.06 206 | 81.83 95 | 88.16 171 | 50.91 251 | 92.85 179 | 78.29 96 | 87.56 127 | 89.06 214 |
|
xiu_mvs_v1_base_debi | | | 80.80 124 | 79.72 128 | 84.03 123 | 87.35 191 | 70.19 84 | 85.56 200 | 88.77 192 | 69.06 206 | 81.83 95 | 88.16 171 | 50.91 251 | 92.85 179 | 78.29 96 | 87.56 127 | 89.06 214 |
|
MVSFormer | | | 82.85 89 | 82.05 94 | 85.24 80 | 87.35 191 | 70.21 82 | 90.50 60 | 90.38 140 | 68.55 217 | 81.32 103 | 89.47 136 | 61.68 153 | 93.46 155 | 78.98 87 | 90.26 97 | 92.05 119 |
|
lupinMVS | | | 81.39 111 | 80.27 120 | 84.76 97 | 87.35 191 | 70.21 82 | 85.55 203 | 86.41 234 | 62.85 276 | 81.32 103 | 88.61 158 | 61.68 153 | 92.24 198 | 78.41 94 | 90.26 97 | 91.83 123 |
|
baseline | | | 84.93 67 | 84.98 64 | 84.80 96 | 87.30 196 | 65.39 177 | 87.30 154 | 92.88 51 | 77.62 36 | 84.04 71 | 92.26 75 | 71.81 50 | 93.96 126 | 81.31 70 | 90.30 96 | 95.03 4 |
|
PAPM | | | 77.68 200 | 76.40 206 | 81.51 194 | 87.29 197 | 61.85 239 | 83.78 242 | 89.59 164 | 64.74 257 | 71.23 253 | 88.70 154 | 62.59 139 | 93.66 146 | 52.66 294 | 87.03 136 | 89.01 219 |
|
LCM-MVSNet-Re | | | 77.05 208 | 76.94 193 | 77.36 268 | 87.20 198 | 51.60 327 | 80.06 280 | 80.46 301 | 75.20 95 | 67.69 285 | 86.72 208 | 62.48 141 | 88.98 267 | 63.44 220 | 89.25 109 | 91.51 131 |
|
casdiffmvs | | | 85.11 65 | 85.14 62 | 85.01 87 | 87.20 198 | 65.77 170 | 87.75 143 | 92.83 54 | 77.84 34 | 84.36 66 | 92.38 74 | 72.15 48 | 93.93 132 | 81.27 71 | 90.48 94 | 95.33 1 |
|
COLMAP_ROB | | 66.92 17 | 73.01 256 | 70.41 266 | 80.81 213 | 87.13 200 | 65.63 171 | 88.30 127 | 84.19 258 | 62.96 274 | 63.80 316 | 87.69 182 | 38.04 329 | 92.56 187 | 46.66 321 | 74.91 280 | 84.24 304 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 77.73 197 | 77.69 178 | 77.84 260 | 87.07 201 | 53.91 319 | 87.91 141 | 91.18 121 | 77.56 40 | 73.14 234 | 88.82 153 | 61.23 163 | 89.17 263 | 59.95 250 | 72.37 299 | 90.43 167 |
|
MVS_Test | | | 83.15 84 | 83.06 80 | 83.41 139 | 86.86 202 | 63.21 220 | 86.11 189 | 92.00 90 | 74.31 111 | 82.87 84 | 89.44 141 | 70.03 66 | 93.21 162 | 77.39 104 | 88.50 119 | 93.81 53 |
|
UniMVSNet_ETH3D | | | 79.10 164 | 78.24 162 | 81.70 190 | 86.85 203 | 60.24 258 | 87.28 155 | 88.79 191 | 74.25 114 | 76.84 168 | 90.53 114 | 49.48 268 | 91.56 218 | 67.98 184 | 82.15 192 | 93.29 76 |
|
FMVSNet3 | | | 77.88 195 | 76.85 195 | 80.97 210 | 86.84 204 | 62.36 231 | 86.52 179 | 88.77 192 | 71.13 163 | 75.34 206 | 86.66 215 | 54.07 220 | 91.10 232 | 62.72 225 | 79.57 220 | 89.45 207 |
|
FMVSNet1 | | | 77.44 203 | 76.12 209 | 81.40 197 | 86.81 205 | 63.01 224 | 88.39 122 | 89.28 171 | 70.49 177 | 74.39 224 | 87.28 192 | 49.06 274 | 91.11 229 | 60.91 244 | 78.52 230 | 90.09 182 |
|
nrg030 | | | 83.88 72 | 83.53 74 | 84.96 89 | 86.77 206 | 69.28 104 | 90.46 64 | 92.67 60 | 74.79 101 | 82.95 82 | 91.33 95 | 72.70 43 | 93.09 171 | 80.79 77 | 79.28 227 | 92.50 103 |
|
test_part1 | | | 80.58 132 | 78.97 145 | 85.40 76 | 86.75 207 | 69.46 101 | 92.32 26 | 93.13 37 | 66.72 231 | 76.67 174 | 87.81 179 | 56.73 202 | 95.01 89 | 75.34 124 | 75.27 276 | 91.73 127 |
|
ET-MVSNet_ETH3D | | | 78.63 174 | 76.63 203 | 84.64 99 | 86.73 208 | 69.47 99 | 85.01 213 | 84.61 252 | 69.54 193 | 66.51 299 | 86.59 217 | 50.16 260 | 91.75 213 | 76.26 114 | 84.24 166 | 92.69 98 |
|
jason | | | 81.39 111 | 80.29 119 | 84.70 98 | 86.63 209 | 69.90 89 | 85.95 192 | 86.77 230 | 63.24 270 | 81.07 109 | 89.47 136 | 61.08 167 | 92.15 201 | 78.33 95 | 90.07 102 | 92.05 119 |
jason: jason. |
PS-MVSNAJss | | | 82.07 98 | 81.31 102 | 84.34 110 | 86.51 210 | 67.27 146 | 89.27 90 | 91.51 110 | 71.75 154 | 79.37 121 | 90.22 119 | 63.15 131 | 94.27 113 | 77.69 100 | 82.36 191 | 91.49 133 |
|
WTY-MVS | | | 75.65 230 | 75.68 211 | 75.57 284 | 86.40 211 | 56.82 294 | 77.92 302 | 82.40 282 | 65.10 252 | 76.18 187 | 87.72 180 | 63.13 134 | 80.90 317 | 60.31 248 | 81.96 194 | 89.00 221 |
|
DTE-MVSNet | | | 76.99 209 | 76.80 196 | 77.54 267 | 86.24 212 | 53.06 323 | 87.52 148 | 90.66 132 | 77.08 54 | 72.50 240 | 88.67 156 | 60.48 176 | 89.52 257 | 57.33 276 | 70.74 310 | 90.05 187 |
|
PVSNet | | 64.34 18 | 72.08 264 | 70.87 263 | 75.69 282 | 86.21 213 | 56.44 301 | 74.37 320 | 80.73 296 | 62.06 285 | 70.17 263 | 82.23 288 | 42.86 308 | 83.31 309 | 54.77 286 | 84.45 164 | 87.32 259 |
|
tfpnnormal | | | 74.39 239 | 73.16 242 | 78.08 257 | 86.10 214 | 58.05 275 | 84.65 223 | 87.53 219 | 70.32 179 | 71.22 254 | 85.63 240 | 54.97 209 | 89.86 251 | 43.03 333 | 75.02 279 | 86.32 278 |
|
RRT_test8_iter05 | | | 78.38 180 | 77.40 183 | 81.34 200 | 86.00 215 | 58.86 267 | 86.55 178 | 91.26 118 | 72.13 151 | 75.91 191 | 87.42 190 | 44.97 297 | 93.73 144 | 77.02 108 | 75.30 274 | 91.45 136 |
|
IterMVS-LS | | | 80.06 142 | 79.38 136 | 82.11 182 | 85.89 216 | 63.20 221 | 86.79 169 | 89.34 169 | 74.19 115 | 75.45 202 | 86.72 208 | 66.62 94 | 92.39 192 | 72.58 148 | 76.86 247 | 90.75 154 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Baseline_NR-MVSNet | | | 78.15 187 | 78.33 160 | 77.61 265 | 85.79 217 | 56.21 306 | 86.78 170 | 85.76 243 | 73.60 127 | 77.93 148 | 87.57 185 | 65.02 112 | 88.99 266 | 67.14 195 | 75.33 273 | 87.63 251 |
|
cascas | | | 76.72 214 | 74.64 224 | 82.99 158 | 85.78 218 | 65.88 167 | 82.33 261 | 89.21 176 | 60.85 292 | 72.74 237 | 81.02 297 | 47.28 281 | 93.75 142 | 67.48 189 | 85.02 156 | 89.34 209 |
|
MVS | | | 78.19 186 | 76.99 192 | 81.78 188 | 85.66 219 | 66.99 149 | 84.66 220 | 90.47 138 | 55.08 328 | 72.02 247 | 85.27 247 | 63.83 122 | 94.11 124 | 66.10 202 | 89.80 104 | 84.24 304 |
|
XVG-OURS | | | 80.41 135 | 79.23 140 | 83.97 127 | 85.64 220 | 69.02 106 | 83.03 256 | 90.39 139 | 71.09 165 | 77.63 153 | 91.49 92 | 54.62 216 | 91.35 224 | 75.71 118 | 83.47 176 | 91.54 130 |
|
CANet_DTU | | | 80.61 129 | 79.87 124 | 82.83 165 | 85.60 221 | 63.17 223 | 87.36 152 | 88.65 197 | 76.37 74 | 75.88 193 | 88.44 164 | 53.51 224 | 93.07 172 | 73.30 141 | 89.74 105 | 92.25 112 |
|
XVG-OURS-SEG-HR | | | 80.81 122 | 79.76 127 | 83.96 128 | 85.60 221 | 68.78 112 | 83.54 249 | 90.50 137 | 70.66 174 | 76.71 173 | 91.66 84 | 60.69 172 | 91.26 226 | 76.94 109 | 81.58 198 | 91.83 123 |
|
TransMVSNet (Re) | | | 75.39 235 | 74.56 226 | 77.86 259 | 85.50 223 | 57.10 291 | 86.78 170 | 86.09 241 | 72.17 149 | 71.53 251 | 87.34 191 | 63.01 135 | 89.31 261 | 56.84 279 | 61.83 330 | 87.17 263 |
|
RRT_MVS | | | 79.88 146 | 78.38 157 | 84.38 106 | 85.42 224 | 70.60 78 | 88.71 112 | 88.75 196 | 72.30 147 | 78.83 129 | 89.14 144 | 44.44 300 | 92.18 200 | 78.50 91 | 79.33 226 | 90.35 170 |
|
MVP-Stereo | | | 76.12 223 | 74.46 229 | 81.13 207 | 85.37 225 | 69.79 91 | 84.42 231 | 87.95 210 | 65.03 254 | 67.46 287 | 85.33 246 | 53.28 226 | 91.73 215 | 58.01 270 | 83.27 178 | 81.85 323 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
thisisatest0515 | | | 77.33 206 | 75.38 217 | 83.18 148 | 85.27 226 | 63.80 205 | 82.11 263 | 83.27 272 | 65.06 253 | 75.91 191 | 83.84 267 | 49.54 267 | 94.27 113 | 67.24 193 | 86.19 148 | 91.48 134 |
|
OpenMVS | | 72.83 10 | 79.77 147 | 78.33 160 | 84.09 118 | 85.17 227 | 69.91 88 | 90.57 58 | 90.97 126 | 66.70 232 | 72.17 245 | 91.91 80 | 54.70 214 | 93.96 126 | 61.81 237 | 90.95 89 | 88.41 240 |
|
AllTest | | | 70.96 269 | 68.09 281 | 79.58 236 | 85.15 228 | 63.62 207 | 84.58 225 | 79.83 307 | 62.31 282 | 60.32 326 | 86.73 206 | 32.02 340 | 88.96 269 | 50.28 302 | 71.57 306 | 86.15 282 |
|
TestCases | | | | | 79.58 236 | 85.15 228 | 63.62 207 | | 79.83 307 | 62.31 282 | 60.32 326 | 86.73 206 | 32.02 340 | 88.96 269 | 50.28 302 | 71.57 306 | 86.15 282 |
|
Effi-MVS+-dtu | | | 80.03 143 | 78.57 152 | 84.42 105 | 85.13 230 | 68.74 115 | 88.77 107 | 88.10 205 | 74.99 98 | 74.97 218 | 83.49 273 | 57.27 197 | 93.36 158 | 73.53 136 | 80.88 204 | 91.18 141 |
|
mvs-test1 | | | 80.88 117 | 79.40 135 | 85.29 78 | 85.13 230 | 69.75 93 | 89.28 89 | 88.10 205 | 74.99 98 | 76.44 181 | 86.72 208 | 57.27 197 | 94.26 117 | 73.53 136 | 83.18 180 | 91.87 122 |
|
SixPastTwentyTwo | | | 73.37 250 | 71.26 259 | 79.70 232 | 85.08 232 | 57.89 280 | 85.57 199 | 83.56 266 | 71.03 166 | 65.66 303 | 85.88 234 | 42.10 313 | 92.57 186 | 59.11 258 | 63.34 329 | 88.65 234 |
|
EG-PatchMatch MVS | | | 74.04 244 | 71.82 253 | 80.71 215 | 84.92 233 | 67.42 142 | 85.86 195 | 88.08 207 | 66.04 242 | 64.22 313 | 83.85 266 | 35.10 337 | 92.56 187 | 57.44 274 | 80.83 205 | 82.16 322 |
|
IB-MVS | | 68.01 15 | 75.85 227 | 73.36 239 | 83.31 141 | 84.76 234 | 66.03 162 | 83.38 250 | 85.06 248 | 70.21 182 | 69.40 274 | 81.05 296 | 45.76 293 | 94.66 104 | 65.10 211 | 75.49 267 | 89.25 211 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
mvs_tets | | | 79.13 163 | 77.77 174 | 83.22 147 | 84.70 235 | 66.37 159 | 89.17 92 | 90.19 148 | 69.38 196 | 75.40 204 | 89.46 138 | 44.17 302 | 93.15 167 | 76.78 111 | 80.70 208 | 90.14 177 |
|
jajsoiax | | | 79.29 159 | 77.96 166 | 83.27 143 | 84.68 236 | 66.57 156 | 89.25 91 | 90.16 149 | 69.20 202 | 75.46 201 | 89.49 135 | 45.75 294 | 93.13 169 | 76.84 110 | 80.80 206 | 90.11 180 |
|
MIMVSNet | | | 70.69 271 | 69.30 270 | 74.88 290 | 84.52 237 | 56.35 304 | 75.87 312 | 79.42 310 | 64.59 258 | 67.76 283 | 82.41 284 | 41.10 317 | 81.54 316 | 46.64 323 | 81.34 199 | 86.75 273 |
|
MSDG | | | 73.36 252 | 70.99 260 | 80.49 218 | 84.51 238 | 65.80 168 | 80.71 274 | 86.13 240 | 65.70 246 | 65.46 304 | 83.74 270 | 44.60 298 | 90.91 237 | 51.13 299 | 76.89 246 | 84.74 299 |
|
mvs_anonymous | | | 79.42 155 | 79.11 142 | 80.34 221 | 84.45 239 | 57.97 278 | 82.59 258 | 87.62 217 | 67.40 226 | 76.17 189 | 88.56 161 | 68.47 80 | 89.59 256 | 70.65 162 | 86.05 150 | 93.47 70 |
|
EI-MVSNet | | | 80.52 134 | 79.98 122 | 82.12 181 | 84.28 240 | 63.19 222 | 86.41 180 | 88.95 188 | 74.18 116 | 78.69 130 | 87.54 187 | 66.62 94 | 92.43 190 | 72.57 149 | 80.57 210 | 90.74 155 |
|
CVMVSNet | | | 72.99 257 | 72.58 246 | 74.25 296 | 84.28 240 | 50.85 332 | 86.41 180 | 83.45 270 | 44.56 339 | 73.23 233 | 87.54 187 | 49.38 269 | 85.70 296 | 65.90 204 | 78.44 232 | 86.19 281 |
|
pm-mvs1 | | | 77.25 207 | 76.68 202 | 78.93 245 | 84.22 242 | 58.62 270 | 86.41 180 | 88.36 202 | 71.37 162 | 73.31 231 | 88.01 177 | 61.22 164 | 89.15 264 | 64.24 216 | 73.01 296 | 89.03 218 |
|
EPNet | | | 83.72 75 | 82.92 83 | 86.14 66 | 84.22 242 | 69.48 98 | 91.05 51 | 85.27 246 | 81.30 7 | 76.83 169 | 91.65 85 | 66.09 101 | 95.56 62 | 76.00 117 | 93.85 62 | 93.38 72 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v8 | | | 79.97 145 | 79.02 144 | 82.80 168 | 84.09 244 | 64.50 193 | 87.96 137 | 90.29 147 | 74.13 118 | 75.24 211 | 86.81 205 | 62.88 136 | 93.89 135 | 74.39 129 | 75.40 271 | 90.00 188 |
|
v10 | | | 79.74 148 | 78.67 149 | 82.97 160 | 84.06 245 | 64.95 185 | 87.88 142 | 90.62 133 | 73.11 136 | 75.11 214 | 86.56 220 | 61.46 157 | 94.05 125 | 73.68 134 | 75.55 266 | 89.90 194 |
|
SCA | | | 74.22 242 | 72.33 249 | 79.91 228 | 84.05 246 | 62.17 235 | 79.96 282 | 79.29 311 | 66.30 239 | 72.38 243 | 80.13 305 | 51.95 240 | 88.60 273 | 59.25 256 | 77.67 238 | 88.96 223 |
|
test_djsdf | | | 80.30 138 | 79.32 138 | 83.27 143 | 83.98 247 | 65.37 178 | 90.50 60 | 90.38 140 | 68.55 217 | 76.19 186 | 88.70 154 | 56.44 204 | 93.46 155 | 78.98 87 | 80.14 217 | 90.97 148 |
|
1314 | | | 76.53 215 | 75.30 220 | 80.21 224 | 83.93 248 | 62.32 233 | 84.66 220 | 88.81 190 | 60.23 296 | 70.16 264 | 84.07 264 | 55.30 208 | 90.73 241 | 67.37 190 | 83.21 179 | 87.59 253 |
|
MS-PatchMatch | | | 73.83 246 | 72.67 245 | 77.30 270 | 83.87 249 | 66.02 163 | 81.82 264 | 84.66 251 | 61.37 290 | 68.61 280 | 82.82 280 | 47.29 280 | 88.21 277 | 59.27 255 | 84.32 165 | 77.68 335 |
|
v1144 | | | 80.03 143 | 79.03 143 | 83.01 157 | 83.78 250 | 64.51 191 | 87.11 159 | 90.57 135 | 71.96 152 | 78.08 146 | 86.20 229 | 61.41 158 | 93.94 129 | 74.93 126 | 77.23 241 | 90.60 160 |
|
OurMVSNet-221017-0 | | | 74.26 241 | 72.42 248 | 79.80 231 | 83.76 251 | 59.59 263 | 85.92 194 | 86.64 231 | 66.39 238 | 66.96 292 | 87.58 184 | 39.46 323 | 91.60 216 | 65.76 206 | 69.27 314 | 88.22 241 |
|
v2v482 | | | 80.23 139 | 79.29 139 | 83.05 155 | 83.62 252 | 64.14 199 | 87.04 160 | 89.97 153 | 73.61 126 | 78.18 143 | 87.22 196 | 61.10 166 | 93.82 136 | 76.11 115 | 76.78 250 | 91.18 141 |
|
XXY-MVS | | | 75.41 234 | 75.56 212 | 74.96 289 | 83.59 253 | 57.82 282 | 80.59 276 | 83.87 262 | 66.54 237 | 74.93 219 | 88.31 167 | 63.24 128 | 80.09 320 | 62.16 232 | 76.85 248 | 86.97 268 |
|
v1192 | | | 79.59 150 | 78.43 156 | 83.07 154 | 83.55 254 | 64.52 190 | 86.93 164 | 90.58 134 | 70.83 168 | 77.78 150 | 85.90 233 | 59.15 183 | 93.94 129 | 73.96 133 | 77.19 243 | 90.76 153 |
|
v7n | | | 78.97 168 | 77.58 181 | 83.14 150 | 83.45 255 | 65.51 173 | 88.32 126 | 91.21 120 | 73.69 125 | 72.41 242 | 86.32 227 | 57.93 189 | 93.81 137 | 69.18 176 | 75.65 264 | 90.11 180 |
|
v144192 | | | 79.47 153 | 78.37 158 | 82.78 171 | 83.35 256 | 63.96 202 | 86.96 162 | 90.36 143 | 69.99 184 | 77.50 154 | 85.67 239 | 60.66 173 | 93.77 140 | 74.27 130 | 76.58 251 | 90.62 158 |
|
tpm2 | | | 73.26 253 | 71.46 255 | 78.63 248 | 83.34 257 | 56.71 297 | 80.65 275 | 80.40 302 | 56.63 322 | 73.55 229 | 82.02 290 | 51.80 244 | 91.24 227 | 56.35 281 | 78.42 233 | 87.95 244 |
|
v1921920 | | | 79.22 160 | 78.03 165 | 82.80 168 | 83.30 258 | 63.94 203 | 86.80 168 | 90.33 144 | 69.91 186 | 77.48 155 | 85.53 242 | 58.44 187 | 93.75 142 | 73.60 135 | 76.85 248 | 90.71 156 |
|
baseline2 | | | 75.70 229 | 73.83 236 | 81.30 201 | 83.26 259 | 61.79 241 | 82.57 259 | 80.65 297 | 66.81 228 | 66.88 293 | 83.42 274 | 57.86 190 | 92.19 199 | 63.47 219 | 79.57 220 | 89.91 193 |
|
v1240 | | | 78.99 167 | 77.78 173 | 82.64 174 | 83.21 260 | 63.54 211 | 86.62 175 | 90.30 146 | 69.74 192 | 77.33 158 | 85.68 238 | 57.04 200 | 93.76 141 | 73.13 144 | 76.92 245 | 90.62 158 |
|
XVG-ACMP-BASELINE | | | 76.11 224 | 74.27 231 | 81.62 191 | 83.20 261 | 64.67 189 | 83.60 247 | 89.75 160 | 69.75 190 | 71.85 248 | 87.09 201 | 32.78 339 | 92.11 202 | 69.99 169 | 80.43 213 | 88.09 243 |
|
MDTV_nov1_ep13 | | | | 69.97 269 | | 83.18 262 | 53.48 321 | 77.10 306 | 80.18 306 | 60.45 293 | 69.33 276 | 80.44 302 | 48.89 275 | 86.90 288 | 51.60 297 | 78.51 231 | |
|
PatchmatchNet | | | 73.12 255 | 71.33 257 | 78.49 253 | 83.18 262 | 60.85 250 | 79.63 284 | 78.57 313 | 64.13 264 | 71.73 249 | 79.81 310 | 51.20 249 | 85.97 295 | 57.40 275 | 76.36 258 | 88.66 233 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Fast-Effi-MVS+-dtu | | | 78.02 191 | 76.49 204 | 82.62 175 | 83.16 264 | 66.96 152 | 86.94 163 | 87.45 222 | 72.45 142 | 71.49 252 | 84.17 262 | 54.79 213 | 91.58 217 | 67.61 187 | 80.31 214 | 89.30 210 |
|
gg-mvs-nofinetune | | | 69.95 279 | 67.96 282 | 75.94 280 | 83.07 265 | 54.51 316 | 77.23 305 | 70.29 337 | 63.11 271 | 70.32 260 | 62.33 340 | 43.62 304 | 88.69 272 | 53.88 289 | 87.76 124 | 84.62 302 |
|
MVSTER | | | 79.01 166 | 77.88 170 | 82.38 179 | 83.07 265 | 64.80 187 | 84.08 240 | 88.95 188 | 69.01 209 | 78.69 130 | 87.17 199 | 54.70 214 | 92.43 190 | 74.69 127 | 80.57 210 | 89.89 195 |
|
K. test v3 | | | 71.19 267 | 68.51 275 | 79.21 242 | 83.04 267 | 57.78 283 | 84.35 233 | 76.91 322 | 72.90 141 | 62.99 319 | 82.86 279 | 39.27 324 | 91.09 234 | 61.65 238 | 52.66 342 | 88.75 231 |
|
eth_miper_zixun_eth | | | 77.92 194 | 76.69 201 | 81.61 193 | 83.00 268 | 61.98 237 | 83.15 252 | 89.20 177 | 69.52 194 | 74.86 220 | 84.35 260 | 61.76 152 | 92.56 187 | 71.50 155 | 72.89 297 | 90.28 173 |
|
diffmvs | | | 82.10 96 | 81.88 98 | 82.76 173 | 83.00 268 | 63.78 206 | 83.68 243 | 89.76 159 | 72.94 140 | 82.02 94 | 89.85 126 | 65.96 105 | 90.79 239 | 82.38 66 | 87.30 132 | 93.71 56 |
|
FMVSNet5 | | | 69.50 281 | 67.96 282 | 74.15 297 | 82.97 270 | 55.35 312 | 80.01 281 | 82.12 285 | 62.56 280 | 63.02 317 | 81.53 292 | 36.92 332 | 81.92 314 | 48.42 311 | 74.06 287 | 85.17 295 |
|
DWT-MVSNet_test | | | 73.70 247 | 71.86 252 | 79.21 242 | 82.91 271 | 58.94 266 | 82.34 260 | 82.17 283 | 65.21 250 | 71.05 256 | 78.31 316 | 44.21 301 | 90.17 248 | 63.29 223 | 77.28 240 | 88.53 237 |
|
cl_fuxian | | | 78.75 171 | 77.91 168 | 81.26 202 | 82.89 272 | 61.56 243 | 84.09 239 | 89.13 180 | 69.97 185 | 75.56 197 | 84.29 261 | 66.36 98 | 92.09 203 | 73.47 139 | 75.48 268 | 90.12 179 |
|
sss | | | 73.60 248 | 73.64 237 | 73.51 299 | 82.80 273 | 55.01 313 | 76.12 308 | 81.69 289 | 62.47 281 | 74.68 222 | 85.85 236 | 57.32 196 | 78.11 327 | 60.86 245 | 80.93 203 | 87.39 256 |
|
GA-MVS | | | 76.87 212 | 75.17 221 | 81.97 186 | 82.75 274 | 62.58 229 | 81.44 271 | 86.35 237 | 72.16 150 | 74.74 221 | 82.89 278 | 46.20 289 | 92.02 205 | 68.85 180 | 81.09 202 | 91.30 139 |
|
v148 | | | 78.72 172 | 77.80 172 | 81.47 195 | 82.73 275 | 61.96 238 | 86.30 184 | 88.08 207 | 73.26 135 | 76.18 187 | 85.47 244 | 62.46 142 | 92.36 194 | 71.92 152 | 73.82 291 | 90.09 182 |
|
IterMVS-SCA-FT | | | 75.43 233 | 73.87 235 | 80.11 225 | 82.69 276 | 64.85 186 | 81.57 269 | 83.47 269 | 69.16 203 | 70.49 258 | 84.15 263 | 51.95 240 | 88.15 278 | 69.23 175 | 72.14 302 | 87.34 258 |
|
miper_ehance_all_eth | | | 78.59 176 | 77.76 175 | 81.08 208 | 82.66 277 | 61.56 243 | 83.65 244 | 89.15 178 | 68.87 212 | 75.55 198 | 83.79 269 | 66.49 96 | 92.03 204 | 73.25 142 | 76.39 255 | 89.64 203 |
|
CostFormer | | | 75.24 236 | 73.90 234 | 79.27 240 | 82.65 278 | 58.27 273 | 80.80 272 | 82.73 280 | 61.57 287 | 75.33 209 | 83.13 276 | 55.52 206 | 91.07 235 | 64.98 212 | 78.34 234 | 88.45 238 |
|
EPNet_dtu | | | 75.46 232 | 74.86 222 | 77.23 272 | 82.57 279 | 54.60 314 | 86.89 165 | 83.09 276 | 71.64 155 | 66.25 301 | 85.86 235 | 55.99 205 | 88.04 280 | 54.92 285 | 86.55 143 | 89.05 217 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 73.23 254 | 71.46 255 | 78.54 251 | 82.50 280 | 59.85 260 | 82.18 262 | 82.84 279 | 58.96 307 | 71.15 255 | 89.41 142 | 45.48 296 | 84.77 302 | 58.82 262 | 71.83 304 | 91.02 147 |
|
cl-mvsnet_ | | | 77.72 198 | 76.76 198 | 80.58 216 | 82.49 281 | 60.48 255 | 83.09 253 | 87.87 212 | 69.22 200 | 74.38 225 | 85.22 249 | 62.10 149 | 91.53 219 | 71.09 157 | 75.41 270 | 89.73 202 |
|
cl-mvsnet1 | | | 77.72 198 | 76.76 198 | 80.58 216 | 82.48 282 | 60.48 255 | 83.09 253 | 87.86 213 | 69.22 200 | 74.38 225 | 85.24 248 | 62.10 149 | 91.53 219 | 71.09 157 | 75.40 271 | 89.74 201 |
|
tpm cat1 | | | 70.57 272 | 68.31 277 | 77.35 269 | 82.41 283 | 57.95 279 | 78.08 300 | 80.22 305 | 52.04 334 | 68.54 281 | 77.66 322 | 52.00 239 | 87.84 282 | 51.77 295 | 72.07 303 | 86.25 279 |
|
cl-mvsnet2 | | | 78.07 189 | 77.01 190 | 81.23 203 | 82.37 284 | 61.83 240 | 83.55 248 | 87.98 209 | 68.96 210 | 75.06 216 | 83.87 265 | 61.40 159 | 91.88 211 | 73.53 136 | 76.39 255 | 89.98 191 |
|
MVS_0304 | | | 72.48 260 | 70.89 262 | 77.24 271 | 82.20 285 | 59.68 261 | 84.11 237 | 83.49 268 | 67.10 227 | 66.87 294 | 80.59 301 | 35.00 338 | 87.40 285 | 59.07 259 | 79.58 219 | 84.63 301 |
|
tpm | | | 72.37 263 | 71.71 254 | 74.35 295 | 82.19 286 | 52.00 324 | 79.22 289 | 77.29 320 | 64.56 259 | 72.95 236 | 83.68 272 | 51.35 247 | 83.26 310 | 58.33 267 | 75.80 262 | 87.81 248 |
|
tpmvs | | | 71.09 268 | 69.29 271 | 76.49 277 | 82.04 287 | 56.04 307 | 78.92 293 | 81.37 292 | 64.05 265 | 67.18 291 | 78.28 317 | 49.74 266 | 89.77 252 | 49.67 307 | 72.37 299 | 83.67 309 |
|
pmmvs4 | | | 74.03 245 | 71.91 251 | 80.39 219 | 81.96 288 | 68.32 126 | 81.45 270 | 82.14 284 | 59.32 304 | 69.87 270 | 85.13 251 | 52.40 231 | 88.13 279 | 60.21 249 | 74.74 282 | 84.73 300 |
|
TinyColmap | | | 67.30 293 | 64.81 297 | 74.76 292 | 81.92 289 | 56.68 298 | 80.29 279 | 81.49 291 | 60.33 294 | 56.27 338 | 83.22 275 | 24.77 345 | 87.66 284 | 45.52 327 | 69.47 313 | 79.95 330 |
|
ITE_SJBPF | | | | | 78.22 255 | 81.77 290 | 60.57 253 | | 83.30 271 | 69.25 199 | 67.54 286 | 87.20 197 | 36.33 334 | 87.28 287 | 54.34 287 | 74.62 283 | 86.80 271 |
|
miper_enhance_ethall | | | 77.87 196 | 76.86 194 | 80.92 211 | 81.65 291 | 61.38 245 | 82.68 257 | 88.98 185 | 65.52 249 | 75.47 199 | 82.30 286 | 65.76 107 | 92.00 206 | 72.95 145 | 76.39 255 | 89.39 208 |
|
MVS-HIRNet | | | 59.14 309 | 57.67 312 | 63.57 324 | 81.65 291 | 43.50 345 | 71.73 325 | 65.06 347 | 39.59 344 | 51.43 342 | 57.73 344 | 38.34 328 | 82.58 313 | 39.53 339 | 73.95 288 | 64.62 343 |
|
GG-mvs-BLEND | | | | | 75.38 287 | 81.59 293 | 55.80 309 | 79.32 287 | 69.63 339 | | 67.19 290 | 73.67 333 | 43.24 305 | 88.90 271 | 50.41 301 | 84.50 162 | 81.45 325 |
|
IterMVS | | | 74.29 240 | 72.94 244 | 78.35 254 | 81.53 294 | 63.49 213 | 81.58 268 | 82.49 281 | 68.06 221 | 69.99 267 | 83.69 271 | 51.66 246 | 85.54 297 | 65.85 205 | 71.64 305 | 86.01 286 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CHOSEN 280x420 | | | 66.51 297 | 64.71 298 | 71.90 303 | 81.45 295 | 63.52 212 | 57.98 345 | 68.95 343 | 53.57 330 | 62.59 321 | 76.70 325 | 46.22 288 | 75.29 339 | 55.25 284 | 79.68 218 | 76.88 337 |
|
gm-plane-assit | | | | | | 81.40 296 | 53.83 320 | | | 62.72 279 | | 80.94 299 | | 92.39 192 | 63.40 221 | | |
|
pmmvs6 | | | 74.69 238 | 73.39 238 | 78.61 249 | 81.38 297 | 57.48 287 | 86.64 174 | 87.95 210 | 64.99 256 | 70.18 262 | 86.61 216 | 50.43 258 | 89.52 257 | 62.12 233 | 70.18 312 | 88.83 228 |
|
test-LLR | | | 72.94 258 | 72.43 247 | 74.48 293 | 81.35 298 | 58.04 276 | 78.38 296 | 77.46 318 | 66.66 233 | 69.95 268 | 79.00 314 | 48.06 277 | 79.24 321 | 66.13 200 | 84.83 158 | 86.15 282 |
|
test-mter | | | 71.41 266 | 70.39 267 | 74.48 293 | 81.35 298 | 58.04 276 | 78.38 296 | 77.46 318 | 60.32 295 | 69.95 268 | 79.00 314 | 36.08 335 | 79.24 321 | 66.13 200 | 84.83 158 | 86.15 282 |
|
CR-MVSNet | | | 73.37 250 | 71.27 258 | 79.67 234 | 81.32 300 | 65.19 181 | 75.92 310 | 80.30 303 | 59.92 299 | 72.73 238 | 81.19 293 | 52.50 229 | 86.69 289 | 59.84 251 | 77.71 236 | 87.11 266 |
|
RPMNet | | | 73.51 249 | 70.49 264 | 82.58 176 | 81.32 300 | 65.19 181 | 75.92 310 | 92.27 76 | 57.60 316 | 72.73 238 | 76.45 327 | 52.30 232 | 95.43 70 | 48.14 316 | 77.71 236 | 87.11 266 |
|
V42 | | | 79.38 158 | 78.24 162 | 82.83 165 | 81.10 302 | 65.50 174 | 85.55 203 | 89.82 157 | 71.57 159 | 78.21 141 | 86.12 230 | 60.66 173 | 93.18 166 | 75.64 119 | 75.46 269 | 89.81 199 |
|
lessismore_v0 | | | | | 78.97 244 | 81.01 303 | 57.15 290 | | 65.99 345 | | 61.16 323 | 82.82 280 | 39.12 325 | 91.34 225 | 59.67 252 | 46.92 345 | 88.43 239 |
|
Patchmtry | | | 70.74 270 | 69.16 272 | 75.49 286 | 80.72 304 | 54.07 318 | 74.94 319 | 80.30 303 | 58.34 311 | 70.01 265 | 81.19 293 | 52.50 229 | 86.54 290 | 53.37 291 | 71.09 309 | 85.87 289 |
|
PatchT | | | 68.46 288 | 67.85 284 | 70.29 312 | 80.70 305 | 43.93 344 | 72.47 323 | 74.88 327 | 60.15 297 | 70.55 257 | 76.57 326 | 49.94 263 | 81.59 315 | 50.58 300 | 74.83 281 | 85.34 292 |
|
USDC | | | 70.33 275 | 68.37 276 | 76.21 279 | 80.60 306 | 56.23 305 | 79.19 290 | 86.49 233 | 60.89 291 | 61.29 322 | 85.47 244 | 31.78 342 | 89.47 259 | 53.37 291 | 76.21 259 | 82.94 319 |
|
tpmrst | | | 72.39 261 | 72.13 250 | 73.18 301 | 80.54 307 | 49.91 335 | 79.91 283 | 79.08 312 | 63.11 271 | 71.69 250 | 79.95 307 | 55.32 207 | 82.77 312 | 65.66 207 | 73.89 289 | 86.87 269 |
|
anonymousdsp | | | 78.60 175 | 77.15 188 | 82.98 159 | 80.51 308 | 67.08 148 | 87.24 156 | 89.53 165 | 65.66 247 | 75.16 212 | 87.19 198 | 52.52 228 | 92.25 197 | 77.17 106 | 79.34 225 | 89.61 204 |
|
OpenMVS_ROB | | 64.09 19 | 70.56 273 | 68.19 278 | 77.65 264 | 80.26 309 | 59.41 265 | 85.01 213 | 82.96 278 | 58.76 309 | 65.43 305 | 82.33 285 | 37.63 331 | 91.23 228 | 45.34 329 | 76.03 260 | 82.32 320 |
|
Anonymous20231206 | | | 68.60 285 | 67.80 286 | 71.02 310 | 80.23 310 | 50.75 333 | 78.30 299 | 80.47 300 | 56.79 321 | 66.11 302 | 82.63 283 | 46.35 287 | 78.95 323 | 43.62 332 | 75.70 263 | 83.36 312 |
|
miper_lstm_enhance | | | 74.11 243 | 73.11 243 | 77.13 273 | 80.11 311 | 59.62 262 | 72.23 324 | 86.92 229 | 66.76 230 | 70.40 259 | 82.92 277 | 56.93 201 | 82.92 311 | 69.06 178 | 72.63 298 | 88.87 226 |
|
MIMVSNet1 | | | 68.58 286 | 66.78 293 | 73.98 298 | 80.07 312 | 51.82 325 | 80.77 273 | 84.37 254 | 64.40 261 | 59.75 329 | 82.16 289 | 36.47 333 | 83.63 307 | 42.73 334 | 70.33 311 | 86.48 277 |
|
ADS-MVSNet2 | | | 66.20 300 | 63.33 302 | 74.82 291 | 79.92 313 | 58.75 269 | 67.55 337 | 75.19 326 | 53.37 331 | 65.25 307 | 75.86 328 | 42.32 311 | 80.53 319 | 41.57 336 | 68.91 316 | 85.18 293 |
|
ADS-MVSNet | | | 64.36 304 | 62.88 306 | 68.78 319 | 79.92 313 | 47.17 340 | 67.55 337 | 71.18 335 | 53.37 331 | 65.25 307 | 75.86 328 | 42.32 311 | 73.99 343 | 41.57 336 | 68.91 316 | 85.18 293 |
|
D2MVS | | | 74.82 237 | 73.21 241 | 79.64 235 | 79.81 315 | 62.56 230 | 80.34 278 | 87.35 223 | 64.37 262 | 68.86 277 | 82.66 282 | 46.37 286 | 90.10 249 | 67.91 185 | 81.24 201 | 86.25 279 |
|
our_test_3 | | | 69.14 283 | 67.00 291 | 75.57 284 | 79.80 316 | 58.80 268 | 77.96 301 | 77.81 316 | 59.55 302 | 62.90 320 | 78.25 318 | 47.43 279 | 83.97 304 | 51.71 296 | 67.58 320 | 83.93 308 |
|
ppachtmachnet_test | | | 70.04 278 | 67.34 290 | 78.14 256 | 79.80 316 | 61.13 246 | 79.19 290 | 80.59 298 | 59.16 306 | 65.27 306 | 79.29 311 | 46.75 285 | 87.29 286 | 49.33 308 | 66.72 321 | 86.00 288 |
|
dp | | | 66.80 294 | 65.43 296 | 70.90 311 | 79.74 318 | 48.82 338 | 75.12 317 | 74.77 328 | 59.61 301 | 64.08 314 | 77.23 323 | 42.89 307 | 80.72 318 | 48.86 310 | 66.58 323 | 83.16 314 |
|
EPMVS | | | 69.02 284 | 68.16 279 | 71.59 304 | 79.61 319 | 49.80 337 | 77.40 304 | 66.93 344 | 62.82 277 | 70.01 265 | 79.05 312 | 45.79 292 | 77.86 329 | 56.58 280 | 75.26 277 | 87.13 265 |
|
PVSNet_0 | | 57.27 20 | 61.67 308 | 59.27 311 | 68.85 318 | 79.61 319 | 57.44 288 | 68.01 336 | 73.44 333 | 55.93 325 | 58.54 331 | 70.41 337 | 44.58 299 | 77.55 330 | 47.01 320 | 35.91 346 | 71.55 340 |
|
Patchmatch-test | | | 64.82 303 | 63.24 303 | 69.57 314 | 79.42 321 | 49.82 336 | 63.49 343 | 69.05 342 | 51.98 335 | 59.95 328 | 80.13 305 | 50.91 251 | 70.98 345 | 40.66 338 | 73.57 292 | 87.90 246 |
|
MDA-MVSNet-bldmvs | | | 66.68 295 | 63.66 301 | 75.75 281 | 79.28 322 | 60.56 254 | 73.92 321 | 78.35 314 | 64.43 260 | 50.13 343 | 79.87 309 | 44.02 303 | 83.67 306 | 46.10 325 | 56.86 337 | 83.03 317 |
|
TESTMET0.1,1 | | | 69.89 280 | 69.00 273 | 72.55 302 | 79.27 323 | 56.85 293 | 78.38 296 | 74.71 330 | 57.64 315 | 68.09 282 | 77.19 324 | 37.75 330 | 76.70 332 | 63.92 217 | 84.09 167 | 84.10 307 |
|
N_pmnet | | | 52.79 314 | 53.26 315 | 51.40 331 | 78.99 324 | 7.68 360 | 69.52 330 | 3.89 359 | 51.63 336 | 57.01 335 | 74.98 331 | 40.83 319 | 65.96 348 | 37.78 341 | 64.67 327 | 80.56 329 |
|
EU-MVSNet | | | 68.53 287 | 67.61 289 | 71.31 309 | 78.51 325 | 47.01 341 | 84.47 226 | 84.27 256 | 42.27 340 | 66.44 300 | 84.79 256 | 40.44 321 | 83.76 305 | 58.76 263 | 68.54 319 | 83.17 313 |
|
pmmvs5 | | | 71.55 265 | 70.20 268 | 75.61 283 | 77.83 326 | 56.39 302 | 81.74 266 | 80.89 293 | 57.76 314 | 67.46 287 | 84.49 258 | 49.26 272 | 85.32 300 | 57.08 278 | 75.29 275 | 85.11 296 |
|
test0.0.03 1 | | | 68.00 289 | 67.69 288 | 68.90 317 | 77.55 327 | 47.43 339 | 75.70 313 | 72.95 334 | 66.66 233 | 66.56 297 | 82.29 287 | 48.06 277 | 75.87 336 | 44.97 330 | 74.51 284 | 83.41 311 |
|
Patchmatch-RL test | | | 70.24 276 | 67.78 287 | 77.61 265 | 77.43 328 | 59.57 264 | 71.16 326 | 70.33 336 | 62.94 275 | 68.65 279 | 72.77 334 | 50.62 255 | 85.49 298 | 69.58 173 | 66.58 323 | 87.77 249 |
|
pmmvs-eth3d | | | 70.50 274 | 67.83 285 | 78.52 252 | 77.37 329 | 66.18 161 | 81.82 264 | 81.51 290 | 58.90 308 | 63.90 315 | 80.42 303 | 42.69 309 | 86.28 293 | 58.56 264 | 65.30 326 | 83.11 315 |
|
testing_2 | | | 75.73 228 | 73.34 240 | 82.89 164 | 77.37 329 | 65.22 180 | 84.10 238 | 90.54 136 | 69.09 204 | 60.46 325 | 81.15 295 | 40.48 320 | 92.84 182 | 76.36 113 | 80.54 212 | 90.60 160 |
|
JIA-IIPM | | | 66.32 299 | 62.82 307 | 76.82 275 | 77.09 331 | 61.72 242 | 65.34 340 | 75.38 325 | 58.04 313 | 64.51 311 | 62.32 341 | 42.05 314 | 86.51 291 | 51.45 298 | 69.22 315 | 82.21 321 |
|
Gipuma | | | 45.18 317 | 41.86 320 | 55.16 329 | 77.03 332 | 51.52 328 | 32.50 351 | 80.52 299 | 32.46 348 | 27.12 349 | 35.02 349 | 9.52 356 | 75.50 337 | 22.31 348 | 60.21 335 | 38.45 347 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet_test_wron | | | 65.03 301 | 62.92 304 | 71.37 306 | 75.93 333 | 56.73 295 | 69.09 335 | 74.73 329 | 57.28 319 | 54.03 340 | 77.89 319 | 45.88 290 | 74.39 342 | 49.89 306 | 61.55 331 | 82.99 318 |
|
YYNet1 | | | 65.03 301 | 62.91 305 | 71.38 305 | 75.85 334 | 56.60 299 | 69.12 334 | 74.66 331 | 57.28 319 | 54.12 339 | 77.87 320 | 45.85 291 | 74.48 341 | 49.95 305 | 61.52 332 | 83.05 316 |
|
PMMVS | | | 69.34 282 | 68.67 274 | 71.35 308 | 75.67 335 | 62.03 236 | 75.17 314 | 73.46 332 | 50.00 337 | 68.68 278 | 79.05 312 | 52.07 238 | 78.13 326 | 61.16 243 | 82.77 185 | 73.90 338 |
|
testgi | | | 66.67 296 | 66.53 294 | 67.08 322 | 75.62 336 | 41.69 347 | 75.93 309 | 76.50 323 | 66.11 240 | 65.20 309 | 86.59 217 | 35.72 336 | 74.71 340 | 43.71 331 | 73.38 295 | 84.84 298 |
|
test20.03 | | | 67.45 291 | 66.95 292 | 68.94 316 | 75.48 337 | 44.84 343 | 77.50 303 | 77.67 317 | 66.66 233 | 63.01 318 | 83.80 268 | 47.02 282 | 78.40 325 | 42.53 335 | 68.86 318 | 83.58 310 |
|
PM-MVS | | | 66.41 298 | 64.14 300 | 73.20 300 | 73.92 338 | 56.45 300 | 78.97 292 | 64.96 348 | 63.88 269 | 64.72 310 | 80.24 304 | 19.84 349 | 83.44 308 | 66.24 199 | 64.52 328 | 79.71 331 |
|
UnsupCasMVSNet_bld | | | 63.70 306 | 61.53 310 | 70.21 313 | 73.69 339 | 51.39 330 | 72.82 322 | 81.89 286 | 55.63 326 | 57.81 333 | 71.80 336 | 38.67 326 | 78.61 324 | 49.26 309 | 52.21 343 | 80.63 327 |
|
UnsupCasMVSNet_eth | | | 67.33 292 | 65.99 295 | 71.37 306 | 73.48 340 | 51.47 329 | 75.16 315 | 85.19 247 | 65.20 251 | 60.78 324 | 80.93 300 | 42.35 310 | 77.20 331 | 57.12 277 | 53.69 341 | 85.44 291 |
|
TDRefinement | | | 67.49 290 | 64.34 299 | 76.92 274 | 73.47 341 | 61.07 247 | 84.86 217 | 82.98 277 | 59.77 300 | 58.30 332 | 85.13 251 | 26.06 344 | 87.89 281 | 47.92 318 | 60.59 334 | 81.81 324 |
|
ambc | | | | | 75.24 288 | 73.16 342 | 50.51 334 | 63.05 344 | 87.47 221 | | 64.28 312 | 77.81 321 | 17.80 350 | 89.73 254 | 57.88 271 | 60.64 333 | 85.49 290 |
|
CMPMVS | | 51.72 21 | 70.19 277 | 68.16 279 | 76.28 278 | 73.15 343 | 57.55 286 | 79.47 286 | 83.92 260 | 48.02 338 | 56.48 337 | 84.81 255 | 43.13 306 | 86.42 292 | 62.67 228 | 81.81 197 | 84.89 297 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
new-patchmatchnet | | | 61.73 307 | 61.73 309 | 61.70 325 | 72.74 344 | 24.50 357 | 69.16 333 | 78.03 315 | 61.40 288 | 56.72 336 | 75.53 330 | 38.42 327 | 76.48 334 | 45.95 326 | 57.67 336 | 84.13 306 |
|
LF4IMVS | | | 64.02 305 | 62.19 308 | 69.50 315 | 70.90 345 | 53.29 322 | 76.13 307 | 77.18 321 | 52.65 333 | 58.59 330 | 80.98 298 | 23.55 346 | 76.52 333 | 53.06 293 | 66.66 322 | 78.68 333 |
|
new_pmnet | | | 50.91 315 | 50.29 317 | 52.78 330 | 68.58 346 | 34.94 352 | 63.71 342 | 56.63 350 | 39.73 343 | 44.95 344 | 65.47 339 | 21.93 347 | 58.48 349 | 34.98 343 | 56.62 338 | 64.92 342 |
|
DSMNet-mixed | | | 57.77 311 | 56.90 313 | 60.38 326 | 67.70 347 | 35.61 350 | 69.18 332 | 53.97 351 | 32.30 349 | 57.49 334 | 79.88 308 | 40.39 322 | 68.57 347 | 38.78 340 | 72.37 299 | 76.97 336 |
|
FPMVS | | | 53.68 313 | 51.64 316 | 59.81 327 | 65.08 348 | 51.03 331 | 69.48 331 | 69.58 340 | 41.46 341 | 40.67 345 | 72.32 335 | 16.46 352 | 70.00 346 | 24.24 347 | 65.42 325 | 58.40 344 |
|
pmmvs3 | | | 57.79 310 | 54.26 314 | 68.37 320 | 64.02 349 | 56.72 296 | 75.12 317 | 65.17 346 | 40.20 342 | 52.93 341 | 69.86 338 | 20.36 348 | 75.48 338 | 45.45 328 | 55.25 340 | 72.90 339 |
|
wuyk23d | | | 16.82 325 | 15.94 328 | 19.46 337 | 58.74 350 | 31.45 353 | 39.22 349 | 3.74 360 | 6.84 354 | 6.04 356 | 2.70 356 | 1.27 361 | 24.29 355 | 10.54 354 | 14.40 354 | 2.63 352 |
|
PMMVS2 | | | 40.82 319 | 38.86 322 | 46.69 332 | 53.84 351 | 16.45 358 | 48.61 348 | 49.92 352 | 37.49 345 | 31.67 347 | 60.97 343 | 8.14 358 | 56.42 350 | 28.42 345 | 30.72 347 | 67.19 341 |
|
LCM-MVSNet | | | 54.25 312 | 49.68 318 | 67.97 321 | 53.73 352 | 45.28 342 | 66.85 339 | 80.78 295 | 35.96 346 | 39.45 346 | 62.23 342 | 8.70 357 | 78.06 328 | 48.24 315 | 51.20 344 | 80.57 328 |
|
E-PMN | | | 31.77 320 | 30.64 323 | 35.15 334 | 52.87 353 | 27.67 354 | 57.09 346 | 47.86 353 | 24.64 350 | 16.40 354 | 33.05 350 | 11.23 354 | 54.90 351 | 14.46 352 | 18.15 350 | 22.87 349 |
|
EMVS | | | 30.81 321 | 29.65 324 | 34.27 335 | 50.96 354 | 25.95 356 | 56.58 347 | 46.80 354 | 24.01 351 | 15.53 355 | 30.68 351 | 12.47 353 | 54.43 352 | 12.81 353 | 17.05 351 | 22.43 350 |
|
ANet_high | | | 50.57 316 | 46.10 319 | 63.99 323 | 48.67 355 | 39.13 348 | 70.99 328 | 80.85 294 | 61.39 289 | 31.18 348 | 57.70 345 | 17.02 351 | 73.65 344 | 31.22 344 | 15.89 352 | 79.18 332 |
|
MVE | | 26.22 23 | 30.37 322 | 25.89 326 | 43.81 333 | 44.55 356 | 35.46 351 | 28.87 352 | 39.07 355 | 18.20 352 | 18.58 353 | 40.18 348 | 2.68 360 | 47.37 353 | 17.07 351 | 23.78 349 | 48.60 346 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS | | 37.38 22 | 44.16 318 | 40.28 321 | 55.82 328 | 40.82 357 | 42.54 346 | 65.12 341 | 63.99 349 | 34.43 347 | 24.48 350 | 57.12 346 | 3.92 359 | 76.17 335 | 17.10 350 | 55.52 339 | 48.75 345 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepMVS_CX | | | | | 27.40 336 | 40.17 358 | 26.90 355 | | 24.59 358 | 17.44 353 | 23.95 351 | 48.61 347 | 9.77 355 | 26.48 354 | 18.06 349 | 24.47 348 | 28.83 348 |
|
tmp_tt | | | 18.61 324 | 21.40 327 | 10.23 338 | 4.82 359 | 10.11 359 | 34.70 350 | 30.74 357 | 1.48 355 | 23.91 352 | 26.07 352 | 28.42 343 | 13.41 356 | 27.12 346 | 15.35 353 | 7.17 351 |
|
testmvs | | | 6.04 328 | 8.02 331 | 0.10 340 | 0.08 360 | 0.03 362 | 69.74 329 | 0.04 361 | 0.05 356 | 0.31 357 | 1.68 357 | 0.02 363 | 0.04 357 | 0.24 355 | 0.02 355 | 0.25 354 |
|
test123 | | | 6.12 327 | 8.11 330 | 0.14 339 | 0.06 361 | 0.09 361 | 71.05 327 | 0.03 362 | 0.04 357 | 0.25 358 | 1.30 358 | 0.05 362 | 0.03 358 | 0.21 356 | 0.01 356 | 0.29 353 |
|
uanet_test | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
cdsmvs_eth3d_5k | | | 19.96 323 | 26.61 325 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 89.26 174 | 0.00 358 | 0.00 359 | 88.61 158 | 61.62 155 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
pcd_1.5k_mvsjas | | | 5.26 329 | 7.02 332 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 63.15 131 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
sosnet-low-res | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
sosnet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
uncertanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
Regformer | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
ab-mvs-re | | | 7.23 326 | 9.64 329 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 86.72 208 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
uanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 47 | 92.78 4 | 95.72 6 | 81.26 6 | 97.44 2 | 89.07 6 | 96.58 4 | 94.26 31 |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 8 | 95.78 4 | 81.46 5 | 97.40 4 | 89.42 2 | 96.57 5 | 94.67 16 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 223 |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 248 | | | | 88.96 223 |
|
sam_mvs | | | | | | | | | | | | | 50.01 261 | | | | |
|
MTGPA | | | | | | | | | 92.02 87 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 294 | | | | 5.43 355 | 48.81 276 | 85.44 299 | 59.25 256 | | |
|
test_post | | | | | | | | | | | | 5.46 354 | 50.36 259 | 84.24 303 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 332 | 51.12 250 | 88.60 273 | | | |
|
MTMP | | | | | | | | 92.18 31 | 32.83 356 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 30 | 95.70 27 | 92.87 93 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 58 | 95.45 29 | 92.70 96 |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 99 | | | | | | | | | |
|
test_prior2 | | | | | | | | 88.85 104 | | 75.41 89 | 84.91 52 | 93.54 51 | 74.28 31 | | 83.31 50 | 95.86 18 | |
|
旧先验2 | | | | | | | | 86.56 177 | | 58.10 312 | 87.04 31 | | | 88.98 267 | 74.07 132 | | |
|
新几何2 | | | | | | | | 86.29 185 | | | | | | | | | |
|
无先验 | | | | | | | | 87.48 149 | 88.98 185 | 60.00 298 | | | | 94.12 122 | 67.28 191 | | 88.97 222 |
|
原ACMM2 | | | | | | | | 86.86 166 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 236 | 62.37 230 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 40 | | | | |
|
testdata1 | | | | | | | | 84.14 236 | | 75.71 83 | | | | | | | |
|
plane_prior5 | | | | | | | | | 92.44 68 | | | | | 95.38 73 | 78.71 89 | 86.32 146 | 91.33 137 |
|
plane_prior4 | | | | | | | | | | | | 91.00 106 | | | | | |
|
plane_prior3 | | | | | | | 68.60 122 | | | 78.44 30 | 78.92 127 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 47 | | 79.12 23 | | | | | | | |
|
plane_prior | | | | | | | 68.71 117 | 90.38 66 | | 77.62 36 | | | | | | 86.16 149 | |
|
n2 | | | | | | | | | 0.00 363 | | | | | | | | |
|
nn | | | | | | | | | 0.00 363 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 338 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
door | | | | | | | | | 69.44 341 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 150 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 102 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 161 | | | 95.11 83 | | | 91.03 145 |
|
HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 151 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 180 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 349 | 75.16 315 | | 55.10 327 | 66.53 298 | | 49.34 270 | | 53.98 288 | | 87.94 245 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 195 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 200 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 117 | | | | |
|