This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
IU-MVS95.30 271.25 5992.95 5066.81 22892.39 588.94 896.63 294.85 10
test_241102_ONE95.30 270.98 6594.06 1077.17 5093.10 195.39 982.99 197.27 7
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5877.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
test072695.27 571.25 5993.60 494.11 677.33 4592.81 395.79 380.98 7
test_part295.06 772.65 3191.80 10
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
DPE-MVS89.48 489.98 388.01 1294.80 972.69 3091.59 4094.10 875.90 8192.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5993.00 4380.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3476.78 6284.66 5994.52 2168.81 7996.65 2684.53 3794.90 4194.00 42
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3876.73 6584.45 6294.52 2169.09 7696.70 2384.37 4094.83 4694.03 39
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3276.78 6284.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 57
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3275.23 9384.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 57
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2993.49 2574.75 10388.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7893.82 1673.07 13784.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8591.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
DP-MVS Recon83.11 8682.09 9386.15 6594.44 1970.92 7188.79 10692.20 8170.53 17679.17 12391.03 10564.12 11996.03 4768.39 18390.14 9991.50 132
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7694.17 3867.45 8896.60 3183.06 5594.50 5294.07 37
X-MVStestdata80.37 13777.83 17188.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7612.47 35367.45 8896.60 3183.06 5594.50 5294.07 37
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8076.87 5982.81 8794.25 3666.44 9796.24 3982.88 5994.28 5893.38 72
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4992.83 5481.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6085.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
ZD-MVS94.38 2572.22 4592.67 6070.98 16787.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6377.57 3883.84 7394.40 3272.24 4796.28 3885.65 2595.30 3693.62 64
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
SMA-MVScopyleft89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10292.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3792.83 5473.01 13988.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7193.04 3975.53 8783.86 7294.42 3167.87 8596.64 2782.70 6294.57 5193.66 57
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5776.62 6783.68 7594.46 2567.93 8395.95 5284.20 4494.39 5593.23 78
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 6992.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17692.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2876.89 5884.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6674.50 10786.84 3394.65 1867.31 9095.77 5784.80 3492.85 6892.84 94
114514_t80.68 12879.51 13284.20 11494.09 3667.27 14689.64 8591.11 12458.75 31074.08 22790.72 11058.10 18895.04 8869.70 17189.42 10890.30 172
test117286.20 4986.22 4586.12 6793.95 3769.89 9091.79 3992.28 7575.07 9786.40 3594.58 2065.00 11495.56 6284.34 4192.60 7292.90 92
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 3093.33 3176.07 8083.81 7493.95 4869.77 7096.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6289.69 16274.31 11189.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
save fliter93.80 3972.35 4290.47 6291.17 12274.31 111
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5794.05 1370.80 16987.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5293.59 2176.27 7788.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
HPM-MVS_fast85.35 6184.95 6686.57 5893.69 4370.58 7992.15 3291.62 10673.89 12282.67 8994.09 4262.60 13895.54 6580.93 7392.93 6693.57 66
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4592.35 7374.62 10688.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 8093.50 2475.17 9686.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft85.89 5285.39 5787.38 4193.59 4672.63 3292.74 1793.18 3676.78 6280.73 11293.82 5064.33 11796.29 3782.67 6390.69 9193.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4693.04 3976.62 6784.22 6793.36 5871.44 5496.76 2180.82 7595.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS85.76 5485.29 6187.17 4593.49 4871.08 6388.58 11692.42 7168.32 22084.61 6093.48 5472.32 4696.15 4579.00 8695.43 3094.28 30
DP-MVS76.78 21374.57 22583.42 13793.29 4969.46 10188.55 11783.70 26363.98 26770.20 26188.89 15154.01 22194.80 10046.66 32181.88 19686.01 286
CPTT-MVS83.73 7483.33 7784.92 9293.28 5070.86 7292.09 3390.38 14068.75 21479.57 11992.83 7060.60 17593.04 17580.92 7491.56 8290.86 151
TEST993.26 5172.96 2488.75 10891.89 9668.44 21985.00 5093.10 6274.36 3095.41 71
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10891.89 9668.69 21585.00 5093.10 6274.43 2795.41 7184.97 2995.71 2693.02 88
test_893.13 5372.57 3488.68 11391.84 9968.69 21584.87 5693.10 6274.43 2795.16 81
新几何183.42 13793.13 5370.71 7485.48 24457.43 31781.80 9891.98 7963.28 12692.27 19664.60 21592.99 6587.27 260
112180.84 11979.77 12684.05 12093.11 5570.78 7384.66 22085.42 24557.37 31881.76 10192.02 7863.41 12494.12 12267.28 19192.93 6687.26 261
AdaColmapbinary80.58 13279.42 13484.06 11993.09 5668.91 11089.36 8888.97 18769.27 19875.70 19689.69 12857.20 19995.77 5763.06 22488.41 12087.50 255
SR-MVS-dyc-post85.77 5385.61 5486.23 6393.06 5770.63 7691.88 3592.27 7673.53 13085.69 4294.45 2665.00 11495.56 6282.75 6091.87 7792.50 103
RE-MVS-def85.48 5593.06 5770.63 7691.88 3592.27 7673.53 13085.69 4294.45 2663.87 12182.75 6091.87 7792.50 103
原ACMM184.35 10993.01 5968.79 11192.44 6863.96 26881.09 10891.57 8966.06 10295.45 6867.19 19494.82 4788.81 229
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5393.56 2273.95 11983.16 8191.07 10275.94 1595.19 8079.94 8394.38 5693.55 67
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11591.78 10268.96 21084.41 6393.18 6174.94 2394.93 9184.75 3595.33 3493.01 89
agg_prior92.85 6171.94 5191.78 10284.41 6394.93 91
9.1488.26 1492.84 6391.52 4394.75 173.93 12188.57 2094.67 1775.57 2095.79 5686.77 2095.76 24
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8389.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4494.70 374.47 10888.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
MG-MVS83.41 8083.45 7583.28 14292.74 6662.28 23488.17 13389.50 16675.22 9481.49 10292.74 7366.75 9395.11 8372.85 14691.58 8192.45 106
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9791.93 3492.99 4573.54 12985.94 3794.51 2465.80 10695.61 6083.04 5792.51 7493.53 69
test1286.80 5292.63 6870.70 7591.79 10182.71 8871.67 5296.16 4494.50 5293.54 68
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9588.85 10492.97 4875.41 8984.91 5293.54 5174.28 3195.48 6683.31 5095.86 1893.91 45
test_prior86.33 6092.61 6969.59 9592.97 4895.48 6693.91 45
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3893.19 3577.87 3390.32 1394.00 4674.83 2493.78 13887.63 1494.27 5993.65 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR83.02 8782.41 8884.82 9492.47 7266.37 15987.93 14091.80 10073.82 12377.32 15990.66 11167.90 8494.90 9570.37 16489.48 10793.19 82
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10589.57 8693.39 3077.53 4289.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
abl_685.23 6284.95 6686.07 6892.23 7470.48 8090.80 5492.08 8573.51 13285.26 4694.16 3962.75 13795.92 5382.46 6591.30 8691.81 125
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
UA-Net85.08 6684.96 6585.45 7492.07 7668.07 13289.78 8190.86 13082.48 284.60 6193.20 6069.35 7395.22 7971.39 15690.88 9093.07 85
旧先验191.96 7765.79 16986.37 23693.08 6669.31 7592.74 6988.74 232
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7870.24 8190.71 5592.86 5277.46 4484.22 6792.81 7267.16 9292.94 17780.36 7994.35 5790.16 176
LFMVS81.82 10381.23 10483.57 13491.89 7963.43 21689.84 7781.85 28877.04 5583.21 7993.10 6252.26 23393.43 15771.98 15189.95 10393.85 49
PLCcopyleft70.83 1178.05 19076.37 20783.08 15391.88 8067.80 13688.19 13289.46 16764.33 26369.87 27088.38 16553.66 22393.58 14758.86 26182.73 18687.86 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_111021_HR85.14 6484.75 6886.32 6291.65 8172.70 2985.98 19190.33 14476.11 7982.08 9391.61 8871.36 5594.17 12181.02 7292.58 7392.08 118
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7494.37 471.76 15387.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
test22291.50 8368.26 12884.16 23583.20 27554.63 32979.74 11791.63 8758.97 18491.42 8386.77 272
TSAR-MVS + GP.85.71 5585.33 5886.84 5091.34 8472.50 3589.07 9887.28 22476.41 7085.80 4090.22 11974.15 3495.37 7681.82 6791.88 7692.65 100
MAR-MVS81.84 10280.70 11085.27 7991.32 8571.53 5789.82 7890.92 12769.77 18978.50 13486.21 22862.36 14494.52 10765.36 20892.05 7589.77 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6793.94 1577.12 5282.82 8694.23 3772.13 4997.09 1184.83 3395.37 3193.65 62
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5784.47 7188.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17593.37 5760.40 17996.75 2277.20 10593.73 6395.29 2
Anonymous20240521178.25 18277.01 19081.99 18591.03 8860.67 25284.77 21883.90 26170.65 17580.00 11691.20 9841.08 31891.43 22265.21 20985.26 15593.85 49
VDD-MVS83.01 8882.36 9084.96 8991.02 8966.40 15888.91 10188.11 20477.57 3884.39 6593.29 5952.19 23493.91 13377.05 10788.70 11594.57 21
API-MVS81.99 10081.23 10484.26 11390.94 9070.18 8791.10 5089.32 17071.51 16078.66 13288.28 16865.26 10995.10 8664.74 21491.23 8787.51 254
testdata79.97 22790.90 9164.21 19884.71 25059.27 30585.40 4492.91 6762.02 15189.08 26568.95 17991.37 8486.63 276
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2894.07 972.45 14285.22 4891.90 8169.47 7296.42 3583.28 5395.94 1694.35 26
VNet82.21 9582.41 8881.62 19190.82 9360.93 24884.47 22689.78 15876.36 7584.07 7091.88 8264.71 11690.26 24570.68 16188.89 11193.66 57
PVSNet_Blended_VisFu82.62 9181.83 9984.96 8990.80 9469.76 9288.74 11091.70 10569.39 19578.96 12588.46 16365.47 10894.87 9874.42 12888.57 11690.24 174
Anonymous2024052980.19 14178.89 14784.10 11790.60 9564.75 18888.95 10090.90 12865.97 24480.59 11391.17 9949.97 26293.73 14469.16 17782.70 18893.81 53
Anonymous2023121178.97 16877.69 17882.81 16790.54 9664.29 19790.11 7391.51 11065.01 25576.16 19088.13 17650.56 25693.03 17669.68 17277.56 23991.11 143
LS3D76.95 21174.82 22383.37 14090.45 9767.36 14589.15 9686.94 22861.87 28669.52 27390.61 11251.71 24594.53 10646.38 32486.71 14188.21 242
VDDNet81.52 10880.67 11184.05 12090.44 9864.13 20089.73 8385.91 24271.11 16483.18 8093.48 5450.54 25793.49 15373.40 14088.25 12194.54 22
CNLPA78.08 18876.79 19781.97 18690.40 9971.07 6487.59 14784.55 25366.03 24372.38 24389.64 13057.56 19386.04 29459.61 25383.35 17788.79 230
PAPR81.66 10680.89 10983.99 12690.27 10064.00 20186.76 17291.77 10468.84 21377.13 16789.50 13467.63 8694.88 9767.55 18888.52 11893.09 84
Vis-MVSNetpermissive83.46 7982.80 8585.43 7590.25 10168.74 11590.30 6890.13 15076.33 7680.87 11192.89 6861.00 16894.20 11872.45 15090.97 8893.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS84.93 6784.29 7286.84 5090.20 10273.04 2287.12 15893.04 3969.80 18882.85 8591.22 9773.06 4196.02 4876.72 11294.63 4991.46 135
EPP-MVSNet83.40 8183.02 8184.57 10090.13 10364.47 19492.32 2690.73 13174.45 11079.35 12291.10 10069.05 7895.12 8272.78 14787.22 13394.13 34
CANet86.45 4386.10 4987.51 3790.09 10470.94 6989.70 8492.59 6581.78 481.32 10391.43 9470.34 6397.23 984.26 4293.36 6494.37 25
HQP_MVS83.64 7683.14 7885.14 8390.08 10568.71 11791.25 4792.44 6879.12 2378.92 12791.00 10660.42 17795.38 7378.71 8986.32 14691.33 137
plane_prior790.08 10568.51 124
CHOSEN 1792x268877.63 20175.69 21083.44 13689.98 10768.58 12378.70 29587.50 22056.38 32375.80 19586.84 20458.67 18591.40 22361.58 23985.75 15490.34 171
IS-MVSNet83.15 8482.81 8484.18 11589.94 10863.30 21891.59 4088.46 20179.04 2579.49 12092.16 7665.10 11194.28 11267.71 18691.86 7994.95 5
plane_prior189.90 109
canonicalmvs85.91 5185.87 5286.04 6989.84 11069.44 10390.45 6593.00 4376.70 6688.01 2591.23 9673.28 3893.91 13381.50 6988.80 11394.77 14
plane_prior689.84 11068.70 11960.42 177
CS-MVS84.76 7084.61 7085.22 8289.66 11266.43 15790.23 6993.56 2276.52 6982.59 9085.93 23270.41 6295.80 5579.93 8492.68 7193.42 71
NP-MVS89.62 11368.32 12690.24 117
EIA-MVS83.31 8382.80 8584.82 9489.59 11465.59 17288.21 13192.68 5974.66 10578.96 12586.42 22469.06 7795.26 7875.54 12290.09 10093.62 64
HyFIR lowres test77.53 20275.40 21683.94 12989.59 11466.62 15480.36 27788.64 19856.29 32476.45 17885.17 25057.64 19293.28 16061.34 24283.10 18291.91 121
TAPA-MVS73.13 979.15 16277.94 16782.79 17089.59 11462.99 22788.16 13491.51 11065.77 24577.14 16691.09 10160.91 16993.21 16250.26 30487.05 13592.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres100view90076.50 21675.55 21379.33 23989.52 11756.99 29285.83 19783.23 27373.94 12076.32 18387.12 20051.89 24291.95 20748.33 31283.75 17189.07 212
alignmvs85.48 5785.32 5985.96 7089.51 11869.47 9989.74 8292.47 6776.17 7887.73 2891.46 9370.32 6493.78 13881.51 6888.95 11094.63 18
PS-MVSNAJ81.69 10481.02 10883.70 13189.51 11868.21 13084.28 23490.09 15170.79 17081.26 10785.62 24163.15 13194.29 11175.62 12088.87 11288.59 235
ACMP74.13 681.51 11080.57 11284.36 10889.42 12068.69 12089.97 7691.50 11374.46 10975.04 21790.41 11553.82 22294.54 10577.56 10182.91 18389.86 196
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view776.50 21675.44 21479.68 23389.40 12157.16 28985.53 20583.23 27373.79 12476.26 18487.09 20151.89 24291.89 21048.05 31783.72 17490.00 188
ETV-MVS84.90 6984.67 6985.59 7389.39 12268.66 12188.74 11092.64 6479.97 1784.10 6985.71 23769.32 7495.38 7380.82 7591.37 8492.72 95
BH-RMVSNet79.61 14978.44 15583.14 15089.38 12365.93 16584.95 21587.15 22673.56 12878.19 14289.79 12756.67 20393.36 15859.53 25486.74 14090.13 178
Regformer-186.41 4686.33 4286.64 5589.33 12470.93 7088.43 11891.39 11582.14 386.65 3490.09 12174.39 2995.01 8983.97 4790.63 9293.97 43
Regformer-286.63 4286.53 4186.95 4889.33 12471.24 6288.43 11892.05 8682.50 186.88 3290.09 12174.45 2695.61 6084.38 3990.63 9294.01 41
HQP-NCC89.33 12489.17 9276.41 7077.23 162
ACMP_Plane89.33 12489.17 9276.41 7077.23 162
HQP-MVS82.61 9282.02 9584.37 10789.33 12466.98 15089.17 9292.19 8276.41 7077.23 16290.23 11860.17 18095.11 8377.47 10285.99 15191.03 145
ACMM73.20 880.78 12779.84 12583.58 13389.31 12968.37 12589.99 7591.60 10770.28 18077.25 16089.66 12953.37 22593.53 15274.24 13182.85 18488.85 227
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 22075.44 21479.27 24089.28 13058.09 27481.69 26787.07 22759.53 30372.48 24186.67 21461.30 16189.33 26060.81 24680.15 21690.41 168
F-COLMAP76.38 22174.33 23082.50 17789.28 13066.95 15388.41 12189.03 18264.05 26566.83 29588.61 15846.78 28492.89 17857.48 27378.55 22987.67 250
LPG-MVS_test82.08 9781.27 10384.50 10289.23 13268.76 11390.22 7191.94 9475.37 9176.64 17691.51 9054.29 21794.91 9378.44 9283.78 16989.83 197
LGP-MVS_train84.50 10289.23 13268.76 11391.94 9475.37 9176.64 17691.51 9054.29 21794.91 9378.44 9283.78 16989.83 197
BH-untuned79.47 15378.60 15182.05 18389.19 13465.91 16686.07 19088.52 20072.18 14875.42 20387.69 18261.15 16593.54 15160.38 24786.83 13986.70 274
xiu_mvs_v2_base81.69 10481.05 10783.60 13289.15 13568.03 13384.46 22890.02 15270.67 17381.30 10686.53 22263.17 13094.19 11975.60 12188.54 11788.57 236
test_yl81.17 11380.47 11583.24 14589.13 13663.62 20786.21 18689.95 15472.43 14581.78 9989.61 13157.50 19493.58 14770.75 15986.90 13792.52 101
DCV-MVSNet81.17 11380.47 11583.24 14589.13 13663.62 20786.21 18689.95 15472.43 14581.78 9989.61 13157.50 19493.58 14770.75 15986.90 13792.52 101
tfpn200view976.42 21975.37 21879.55 23889.13 13657.65 28485.17 20883.60 26473.41 13376.45 17886.39 22552.12 23591.95 20748.33 31283.75 17189.07 212
thres40076.50 21675.37 21879.86 22989.13 13657.65 28485.17 20883.60 26473.41 13376.45 17886.39 22552.12 23591.95 20748.33 31283.75 17190.00 188
1112_ss77.40 20576.43 20580.32 22289.11 14060.41 25783.65 24487.72 21662.13 28473.05 23586.72 20862.58 14089.97 25062.11 23480.80 20690.59 162
Regformer-385.23 6285.07 6385.70 7288.95 14169.01 10788.29 12889.91 15680.95 885.01 4990.01 12372.45 4594.19 11982.50 6487.57 12593.90 47
Regformer-485.68 5685.45 5686.35 5988.95 14169.67 9488.29 12891.29 11781.73 585.36 4590.01 12372.62 4495.35 7783.28 5387.57 12594.03 39
Fast-Effi-MVS+80.81 12279.92 12383.47 13588.85 14364.51 19185.53 20589.39 16870.79 17078.49 13585.06 25367.54 8793.58 14767.03 19786.58 14292.32 109
PVSNet_BlendedMVS80.60 13080.02 12182.36 18088.85 14365.40 17586.16 18892.00 9069.34 19778.11 14486.09 23166.02 10394.27 11371.52 15382.06 19387.39 256
PVSNet_Blended80.98 11680.34 11782.90 16288.85 14365.40 17584.43 23092.00 9067.62 22378.11 14485.05 25466.02 10394.27 11371.52 15389.50 10689.01 219
MVS_111021_LR82.61 9282.11 9284.11 11688.82 14671.58 5685.15 21086.16 23974.69 10480.47 11491.04 10362.29 14590.55 24380.33 8090.08 10190.20 175
BH-w/o78.21 18477.33 18680.84 21288.81 14765.13 18384.87 21687.85 21469.75 19074.52 22384.74 25761.34 16093.11 17058.24 26885.84 15384.27 303
FIs82.07 9882.42 8781.04 20988.80 14858.34 27288.26 13093.49 2576.93 5778.47 13691.04 10369.92 6892.34 19569.87 17084.97 15792.44 107
OPM-MVS83.50 7882.95 8285.14 8388.79 14970.95 6889.13 9791.52 10977.55 4180.96 11091.75 8360.71 17194.50 10879.67 8586.51 14489.97 192
WR-MVS79.49 15279.22 14180.27 22388.79 14958.35 27185.06 21288.61 19978.56 2977.65 15288.34 16663.81 12390.66 24264.98 21277.22 24291.80 126
OMC-MVS82.69 9081.97 9784.85 9388.75 15167.42 14287.98 13690.87 12974.92 10079.72 11891.65 8562.19 14893.96 12675.26 12586.42 14593.16 83
AUN-MVS79.21 16177.60 18084.05 12088.71 15267.61 13985.84 19687.26 22569.08 20577.23 16288.14 17553.20 22793.47 15475.50 12373.45 29491.06 144
ACMH67.68 1675.89 22673.93 23381.77 18988.71 15266.61 15588.62 11489.01 18469.81 18766.78 29686.70 21341.95 31591.51 22155.64 28378.14 23587.17 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)78.36 18178.45 15478.07 25888.64 15451.78 32686.70 17379.63 30974.14 11775.11 21490.83 10961.29 16289.75 25358.10 26991.60 8092.69 98
PatchMatch-RL72.38 26270.90 26176.80 27688.60 15567.38 14479.53 28576.17 32462.75 27869.36 27582.00 29145.51 29584.89 30153.62 29080.58 20978.12 334
ACMH+68.96 1476.01 22574.01 23282.03 18488.60 15565.31 17988.86 10387.55 21870.25 18167.75 28487.47 18941.27 31693.19 16558.37 26675.94 26187.60 252
LTVRE_ROB69.57 1376.25 22274.54 22781.41 19688.60 15564.38 19679.24 28889.12 18170.76 17269.79 27287.86 17849.09 27393.20 16456.21 28280.16 21586.65 275
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DELS-MVS85.41 6085.30 6085.77 7188.49 15867.93 13485.52 20793.44 2778.70 2883.63 7889.03 14974.57 2595.71 5980.26 8194.04 6193.66 57
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS82.31 9481.65 10084.29 11288.47 15967.73 13885.81 19892.35 7375.78 8278.33 13986.58 21964.01 12094.35 11076.05 11687.48 13090.79 152
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10181.54 10182.92 16188.46 16063.46 21487.13 15792.37 7280.19 1478.38 13789.14 14471.66 5393.05 17370.05 16776.46 25392.25 112
ab-mvs79.51 15178.97 14581.14 20688.46 16060.91 24983.84 24189.24 17570.36 17879.03 12488.87 15263.23 12990.21 24765.12 21082.57 18992.28 111
FC-MVSNet-test81.52 10882.02 9580.03 22688.42 16255.97 30887.95 13893.42 2977.10 5377.38 15790.98 10869.96 6791.79 21268.46 18284.50 16292.33 108
Effi-MVS+83.62 7783.08 7985.24 8088.38 16367.45 14188.89 10289.15 17875.50 8882.27 9188.28 16869.61 7194.45 10977.81 9987.84 12393.84 51
UniMVSNet (Re)81.60 10781.11 10683.09 15288.38 16364.41 19587.60 14693.02 4278.42 3178.56 13388.16 17169.78 6993.26 16169.58 17376.49 25291.60 128
VPNet78.69 17378.66 15078.76 24788.31 16555.72 31084.45 22986.63 23276.79 6178.26 14090.55 11359.30 18289.70 25566.63 19877.05 24490.88 150
TR-MVS77.44 20376.18 20881.20 20488.24 16663.24 21984.61 22486.40 23567.55 22477.81 14986.48 22354.10 21993.15 16757.75 27282.72 18787.20 262
EI-MVSNet-Vis-set84.19 7183.81 7385.31 7788.18 16767.85 13587.66 14589.73 16180.05 1682.95 8289.59 13370.74 6094.82 9980.66 7884.72 16093.28 77
baseline176.98 21076.75 20077.66 26388.13 16855.66 31185.12 21181.89 28673.04 13876.79 17088.90 15062.43 14387.78 28363.30 22271.18 30889.55 206
test_040272.79 25970.44 26579.84 23088.13 16865.99 16485.93 19384.29 25565.57 24867.40 28985.49 24346.92 28392.61 18535.88 34274.38 28580.94 326
tttt051779.40 15677.91 16883.90 13088.10 17063.84 20488.37 12584.05 25971.45 16176.78 17189.12 14649.93 26594.89 9670.18 16683.18 18092.96 91
VPA-MVSNet80.60 13080.55 11380.76 21488.07 17160.80 25186.86 16691.58 10875.67 8680.24 11589.45 14063.34 12590.25 24670.51 16379.22 22891.23 140
UGNet80.83 12179.59 13184.54 10188.04 17268.09 13189.42 8788.16 20376.95 5676.22 18589.46 13849.30 27193.94 12968.48 18190.31 9591.60 128
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H78.51 17778.49 15378.56 25088.02 17356.38 30388.43 11892.67 6077.14 5173.89 22887.55 18666.25 9989.24 26258.92 26073.55 29390.06 186
QAPM80.88 11779.50 13385.03 8688.01 17468.97 10991.59 4092.00 9066.63 23675.15 21392.16 7657.70 19195.45 6863.52 21888.76 11490.66 157
3Dnovator76.31 583.38 8282.31 9186.59 5787.94 17572.94 2790.64 5692.14 8477.21 4975.47 19992.83 7058.56 18694.72 10373.24 14392.71 7092.13 117
EI-MVSNet-UG-set83.81 7383.38 7685.09 8587.87 17667.53 14087.44 15189.66 16379.74 1882.23 9289.41 14270.24 6594.74 10279.95 8283.92 16892.99 90
TranMVSNet+NR-MVSNet80.84 11980.31 11882.42 17887.85 17762.33 23287.74 14491.33 11680.55 1177.99 14789.86 12565.23 11092.62 18467.05 19675.24 27892.30 110
CP-MVSNet78.22 18378.34 15977.84 26087.83 17854.54 31587.94 13991.17 12277.65 3573.48 23088.49 16262.24 14788.43 27562.19 23174.07 28690.55 163
DU-MVS81.12 11580.52 11482.90 16287.80 17963.46 21487.02 16191.87 9879.01 2678.38 13789.07 14765.02 11293.05 17370.05 16776.46 25392.20 114
NR-MVSNet80.23 13979.38 13682.78 17187.80 17963.34 21786.31 18391.09 12579.01 2672.17 24589.07 14767.20 9192.81 18366.08 20375.65 26492.20 114
TAMVS78.89 17077.51 18283.03 15687.80 17967.79 13784.72 21985.05 24967.63 22276.75 17287.70 18162.25 14690.82 23858.53 26587.13 13490.49 165
thres20075.55 23174.47 22878.82 24687.78 18257.85 28183.07 25583.51 26772.44 14475.84 19484.42 25952.08 23791.75 21347.41 31983.64 17586.86 270
PS-CasMVS78.01 19278.09 16477.77 26287.71 18354.39 31788.02 13591.22 11977.50 4373.26 23288.64 15760.73 17088.41 27661.88 23573.88 29090.53 164
PCF-MVS73.52 780.38 13678.84 14885.01 8787.71 18368.99 10883.65 24491.46 11463.00 27377.77 15190.28 11666.10 10095.09 8761.40 24088.22 12290.94 149
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053079.40 15677.76 17584.31 11187.69 18565.10 18487.36 15284.26 25770.04 18377.42 15688.26 17049.94 26394.79 10170.20 16584.70 16193.03 87
GBi-Net78.40 17877.40 18381.40 19787.60 18663.01 22488.39 12289.28 17171.63 15675.34 20687.28 19254.80 21091.11 22962.72 22579.57 22090.09 182
test178.40 17877.40 18381.40 19787.60 18663.01 22488.39 12289.28 17171.63 15675.34 20687.28 19254.80 21091.11 22962.72 22579.57 22090.09 182
FMVSNet278.20 18577.21 18781.20 20487.60 18662.89 22887.47 15089.02 18371.63 15675.29 21087.28 19254.80 21091.10 23262.38 22979.38 22489.61 204
CDS-MVSNet79.07 16577.70 17783.17 14987.60 18668.23 12984.40 23286.20 23867.49 22576.36 18286.54 22161.54 15690.79 23961.86 23687.33 13190.49 165
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS69.67 1277.95 19377.15 18880.36 22087.57 19060.21 25983.37 25187.78 21566.11 24075.37 20587.06 20363.27 12790.48 24461.38 24182.43 19090.40 169
xiu_mvs_v1_base_debu80.80 12479.72 12884.03 12387.35 19170.19 8485.56 20088.77 19269.06 20681.83 9588.16 17150.91 25192.85 17978.29 9687.56 12789.06 214
xiu_mvs_v1_base80.80 12479.72 12884.03 12387.35 19170.19 8485.56 20088.77 19269.06 20681.83 9588.16 17150.91 25192.85 17978.29 9687.56 12789.06 214
xiu_mvs_v1_base_debi80.80 12479.72 12884.03 12387.35 19170.19 8485.56 20088.77 19269.06 20681.83 9588.16 17150.91 25192.85 17978.29 9687.56 12789.06 214
MVSFormer82.85 8982.05 9485.24 8087.35 19170.21 8290.50 6090.38 14068.55 21781.32 10389.47 13661.68 15393.46 15578.98 8790.26 9792.05 119
lupinMVS81.39 11180.27 12084.76 9787.35 19170.21 8285.55 20386.41 23462.85 27681.32 10388.61 15861.68 15392.24 19878.41 9490.26 9791.83 123
baseline84.93 6784.98 6484.80 9687.30 19665.39 17787.30 15492.88 5177.62 3684.04 7192.26 7571.81 5093.96 12681.31 7090.30 9695.03 4
PAPM77.68 20076.40 20681.51 19487.29 19761.85 23983.78 24289.59 16464.74 25771.23 25388.70 15462.59 13993.66 14652.66 29487.03 13689.01 219
LCM-MVSNet-Re77.05 20876.94 19377.36 26887.20 19851.60 32780.06 28080.46 30175.20 9567.69 28586.72 20862.48 14188.98 26763.44 22089.25 10991.51 131
casdiffmvs85.11 6585.14 6285.01 8787.20 19865.77 17087.75 14392.83 5477.84 3484.36 6692.38 7472.15 4893.93 13281.27 7190.48 9495.33 1
COLMAP_ROBcopyleft66.92 1773.01 25670.41 26680.81 21387.13 20065.63 17188.30 12784.19 25862.96 27463.80 31687.69 18238.04 32992.56 18746.66 32174.91 28084.24 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS77.73 19777.69 17877.84 26087.07 20153.91 31987.91 14191.18 12177.56 4073.14 23488.82 15361.23 16389.17 26359.95 25072.37 29990.43 167
MVS_Test83.15 8483.06 8083.41 13986.86 20263.21 22086.11 18992.00 9074.31 11182.87 8489.44 14170.03 6693.21 16277.39 10488.50 11993.81 53
UniMVSNet_ETH3D79.10 16478.24 16281.70 19086.85 20360.24 25887.28 15588.79 19174.25 11476.84 16890.53 11449.48 26891.56 21867.98 18482.15 19293.29 76
FMVSNet377.88 19576.85 19580.97 21086.84 20462.36 23186.52 17988.77 19271.13 16375.34 20686.66 21554.07 22091.10 23262.72 22579.57 22089.45 207
FMVSNet177.44 20376.12 20981.40 19786.81 20563.01 22488.39 12289.28 17170.49 17774.39 22487.28 19249.06 27491.11 22960.91 24478.52 23090.09 182
nrg03083.88 7283.53 7484.96 8986.77 20669.28 10490.46 6492.67 6074.79 10182.95 8291.33 9572.70 4393.09 17180.79 7779.28 22792.50 103
test_part180.58 13278.97 14585.40 7686.75 20769.46 10192.32 2693.13 3766.72 23176.67 17487.81 17956.73 20295.01 8975.34 12475.27 27691.73 127
ET-MVSNet_ETH3D78.63 17476.63 20384.64 9986.73 20869.47 9985.01 21384.61 25269.54 19366.51 29986.59 21750.16 26091.75 21376.26 11484.24 16692.69 98
jason81.39 11180.29 11984.70 9886.63 20969.90 8985.95 19286.77 23063.24 27081.07 10989.47 13661.08 16792.15 20178.33 9590.07 10292.05 119
jason: jason.
PS-MVSNAJss82.07 9881.31 10284.34 11086.51 21067.27 14689.27 9091.51 11071.75 15479.37 12190.22 11963.15 13194.27 11377.69 10082.36 19191.49 133
WTY-MVS75.65 23075.68 21175.57 28486.40 21156.82 29477.92 30282.40 28265.10 25276.18 18787.72 18063.13 13480.90 31760.31 24881.96 19489.00 221
DTE-MVSNet76.99 20976.80 19677.54 26786.24 21253.06 32387.52 14890.66 13277.08 5472.50 24088.67 15660.48 17689.52 25757.33 27670.74 31090.05 187
PVSNet64.34 1872.08 26470.87 26375.69 28286.21 21356.44 30174.37 32080.73 29662.06 28570.17 26382.23 28842.86 30883.31 30954.77 28684.45 16487.32 259
tfpnnormal74.39 23973.16 24278.08 25786.10 21458.05 27584.65 22387.53 21970.32 17971.22 25485.63 24054.97 20989.86 25143.03 33375.02 27986.32 278
RRT_test8_iter0578.38 18077.40 18381.34 20086.00 21558.86 26786.55 17891.26 11872.13 15175.91 19187.42 19044.97 29793.73 14477.02 10875.30 27491.45 136
IterMVS-LS80.06 14279.38 13682.11 18285.89 21663.20 22186.79 16989.34 16974.19 11575.45 20286.72 20866.62 9492.39 19272.58 14876.86 24790.75 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet78.15 18778.33 16077.61 26585.79 21756.21 30686.78 17085.76 24373.60 12777.93 14887.57 18565.02 11288.99 26667.14 19575.33 27387.63 251
cascas76.72 21474.64 22482.99 15885.78 21865.88 16782.33 26189.21 17660.85 29272.74 23781.02 29747.28 28193.75 14267.48 18985.02 15689.34 209
MVS78.19 18676.99 19281.78 18885.66 21966.99 14984.66 22090.47 13855.08 32872.02 24785.27 24763.83 12294.11 12466.10 20289.80 10484.24 304
XVG-OURS80.41 13579.23 14083.97 12785.64 22069.02 10683.03 25690.39 13971.09 16577.63 15391.49 9254.62 21691.35 22475.71 11883.47 17691.54 130
CANet_DTU80.61 12979.87 12482.83 16585.60 22163.17 22387.36 15288.65 19776.37 7475.88 19388.44 16453.51 22493.07 17273.30 14189.74 10592.25 112
XVG-OURS-SEG-HR80.81 12279.76 12783.96 12885.60 22168.78 11283.54 24990.50 13770.66 17476.71 17391.66 8460.69 17291.26 22676.94 10981.58 19891.83 123
TransMVSNet (Re)75.39 23574.56 22677.86 25985.50 22357.10 29186.78 17086.09 24172.17 14971.53 25187.34 19163.01 13589.31 26156.84 27961.83 33087.17 263
RRT_MVS79.88 14678.38 15784.38 10685.42 22470.60 7888.71 11288.75 19672.30 14778.83 12989.14 14444.44 30092.18 20078.50 9179.33 22690.35 170
MVP-Stereo76.12 22374.46 22981.13 20785.37 22569.79 9184.42 23187.95 21065.03 25467.46 28785.33 24653.28 22691.73 21558.01 27083.27 17881.85 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thisisatest051577.33 20675.38 21783.18 14885.27 22663.80 20582.11 26383.27 27265.06 25375.91 19183.84 26749.54 26794.27 11367.24 19386.19 14891.48 134
OpenMVScopyleft72.83 1079.77 14778.33 16084.09 11885.17 22769.91 8890.57 5890.97 12666.70 23272.17 24591.91 8054.70 21493.96 12661.81 23790.95 8988.41 240
AllTest70.96 26968.09 28179.58 23685.15 22863.62 20784.58 22579.83 30762.31 28260.32 32686.73 20632.02 34088.96 26950.28 30271.57 30686.15 282
TestCases79.58 23685.15 22863.62 20779.83 30762.31 28260.32 32686.73 20632.02 34088.96 26950.28 30271.57 30686.15 282
Effi-MVS+-dtu80.03 14378.57 15284.42 10585.13 23068.74 11588.77 10788.10 20574.99 9874.97 21883.49 27357.27 19793.36 15873.53 13680.88 20491.18 141
mvs-test180.88 11779.40 13585.29 7885.13 23069.75 9389.28 8988.10 20574.99 9876.44 18186.72 20857.27 19794.26 11773.53 13683.18 18091.87 122
SixPastTwentyTwo73.37 25071.26 25979.70 23285.08 23257.89 28085.57 19983.56 26671.03 16665.66 30385.88 23442.10 31392.57 18659.11 25863.34 32988.65 234
EG-PatchMatch MVS74.04 24471.82 25380.71 21584.92 23367.42 14285.86 19588.08 20766.04 24264.22 31383.85 26635.10 33792.56 18757.44 27480.83 20582.16 322
IB-MVS68.01 1575.85 22773.36 23983.31 14184.76 23466.03 16283.38 25085.06 24870.21 18269.40 27481.05 29645.76 29394.66 10465.10 21175.49 26789.25 211
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets79.13 16377.77 17483.22 14784.70 23566.37 15989.17 9290.19 14869.38 19675.40 20489.46 13844.17 30293.15 16776.78 11180.70 20890.14 177
jajsoiax79.29 15977.96 16683.27 14384.68 23666.57 15689.25 9190.16 14969.20 20275.46 20189.49 13545.75 29493.13 16976.84 11080.80 20690.11 180
MIMVSNet70.69 27169.30 27074.88 29084.52 23756.35 30475.87 31279.42 31064.59 25867.76 28382.41 28441.10 31781.54 31646.64 32381.34 19986.75 273
MSDG73.36 25270.99 26080.49 21884.51 23865.80 16880.71 27486.13 24065.70 24665.46 30483.74 27044.60 29890.91 23751.13 29976.89 24684.74 299
mvs_anonymous79.42 15579.11 14280.34 22184.45 23957.97 27882.59 25887.62 21767.40 22676.17 18988.56 16168.47 8089.59 25670.65 16286.05 15093.47 70
EI-MVSNet80.52 13479.98 12282.12 18184.28 24063.19 22286.41 18088.95 18874.18 11678.69 13087.54 18766.62 9492.43 19072.57 14980.57 21090.74 155
CVMVSNet72.99 25772.58 24674.25 29684.28 24050.85 33286.41 18083.45 27044.56 33973.23 23387.54 18749.38 26985.70 29665.90 20478.44 23286.19 281
pm-mvs177.25 20776.68 20278.93 24584.22 24258.62 27086.41 18088.36 20271.37 16273.31 23188.01 17761.22 16489.15 26464.24 21673.01 29689.03 218
EPNet83.72 7582.92 8386.14 6684.22 24269.48 9891.05 5185.27 24681.30 776.83 16991.65 8566.09 10195.56 6276.00 11793.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v879.97 14579.02 14482.80 16884.09 24464.50 19387.96 13790.29 14774.13 11875.24 21186.81 20562.88 13693.89 13574.39 12975.40 27190.00 188
v1079.74 14878.67 14982.97 16084.06 24564.95 18587.88 14290.62 13373.11 13675.11 21486.56 22061.46 15794.05 12573.68 13475.55 26689.90 194
SCA74.22 24272.33 24979.91 22884.05 24662.17 23579.96 28279.29 31166.30 23972.38 24380.13 30551.95 24088.60 27359.25 25677.67 23888.96 223
test_djsdf80.30 13879.32 13883.27 14383.98 24765.37 17890.50 6090.38 14068.55 21776.19 18688.70 15456.44 20493.46 15578.98 8780.14 21790.97 148
131476.53 21575.30 22080.21 22483.93 24862.32 23384.66 22088.81 19060.23 29670.16 26484.07 26455.30 20890.73 24167.37 19083.21 17987.59 253
MS-PatchMatch73.83 24672.67 24577.30 27083.87 24966.02 16381.82 26484.66 25161.37 29068.61 28082.82 28047.29 28088.21 27759.27 25584.32 16577.68 335
v114480.03 14379.03 14383.01 15783.78 25064.51 19187.11 15990.57 13571.96 15278.08 14686.20 22961.41 15893.94 12974.93 12677.23 24190.60 160
OurMVSNet-221017-074.26 24172.42 24879.80 23183.76 25159.59 26385.92 19486.64 23166.39 23866.96 29287.58 18439.46 32391.60 21665.76 20669.27 31488.22 241
v2v48280.23 13979.29 13983.05 15583.62 25264.14 19987.04 16089.97 15373.61 12678.18 14387.22 19661.10 16693.82 13676.11 11576.78 25091.18 141
XXY-MVS75.41 23475.56 21274.96 28983.59 25357.82 28280.59 27683.87 26266.54 23774.93 21988.31 16763.24 12880.09 32062.16 23276.85 24886.97 268
v119279.59 15078.43 15683.07 15483.55 25464.52 19086.93 16490.58 13470.83 16877.78 15085.90 23359.15 18393.94 12973.96 13377.19 24390.76 153
v7n78.97 16877.58 18183.14 15083.45 25565.51 17388.32 12691.21 12073.69 12572.41 24286.32 22757.93 18993.81 13769.18 17675.65 26490.11 180
v14419279.47 15378.37 15882.78 17183.35 25663.96 20286.96 16290.36 14369.99 18477.50 15485.67 23960.66 17393.77 14074.27 13076.58 25190.62 158
tpm273.26 25371.46 25578.63 24883.34 25756.71 29780.65 27580.40 30256.63 32273.55 22982.02 29051.80 24491.24 22756.35 28178.42 23387.95 244
v192192079.22 16078.03 16582.80 16883.30 25863.94 20386.80 16890.33 14469.91 18677.48 15585.53 24258.44 18793.75 14273.60 13576.85 24890.71 156
baseline275.70 22973.83 23681.30 20183.26 25961.79 24182.57 25980.65 29766.81 22866.88 29383.42 27457.86 19092.19 19963.47 21979.57 22089.91 193
v124078.99 16777.78 17382.64 17483.21 26063.54 21186.62 17590.30 14669.74 19277.33 15885.68 23857.04 20093.76 14173.13 14476.92 24590.62 158
XVG-ACMP-BASELINE76.11 22474.27 23181.62 19183.20 26164.67 18983.60 24789.75 16069.75 19071.85 24887.09 20132.78 33992.11 20269.99 16980.43 21388.09 243
MDTV_nov1_ep1369.97 26983.18 26253.48 32177.10 30680.18 30660.45 29369.33 27680.44 30248.89 27586.90 28851.60 29778.51 231
PatchmatchNetpermissive73.12 25571.33 25778.49 25383.18 26260.85 25079.63 28478.57 31364.13 26471.73 24979.81 31051.20 24985.97 29557.40 27576.36 25888.66 233
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+-dtu78.02 19176.49 20482.62 17583.16 26466.96 15286.94 16387.45 22272.45 14271.49 25284.17 26254.79 21391.58 21767.61 18780.31 21489.30 210
gg-mvs-nofinetune69.95 27967.96 28275.94 28083.07 26554.51 31677.23 30570.29 33763.11 27170.32 26062.33 34043.62 30488.69 27253.88 28987.76 12484.62 302
MVSTER79.01 16677.88 17082.38 17983.07 26564.80 18784.08 24088.95 18869.01 20978.69 13087.17 19954.70 21492.43 19074.69 12780.57 21089.89 195
K. test v371.19 26768.51 27579.21 24283.04 26757.78 28384.35 23376.91 32272.90 14162.99 31982.86 27939.27 32491.09 23461.65 23852.66 34288.75 231
eth_miper_zixun_eth77.92 19476.69 20181.61 19383.00 26861.98 23783.15 25289.20 17769.52 19474.86 22084.35 26061.76 15292.56 18771.50 15572.89 29790.28 173
diffmvs82.10 9681.88 9882.76 17383.00 26863.78 20683.68 24389.76 15972.94 14082.02 9489.85 12665.96 10590.79 23982.38 6687.30 13293.71 56
FMVSNet569.50 28167.96 28274.15 29782.97 27055.35 31280.01 28182.12 28562.56 28063.02 31781.53 29236.92 33281.92 31448.42 31174.06 28785.17 295
DWT-MVSNet_test73.70 24771.86 25279.21 24282.91 27158.94 26682.34 26082.17 28365.21 25071.05 25678.31 31644.21 30190.17 24863.29 22377.28 24088.53 237
cl_fuxian78.75 17177.91 16881.26 20282.89 27261.56 24384.09 23989.13 18069.97 18575.56 19784.29 26166.36 9892.09 20373.47 13975.48 26890.12 179
sss73.60 24873.64 23773.51 29982.80 27355.01 31376.12 30881.69 28962.47 28174.68 22285.85 23657.32 19678.11 32760.86 24580.93 20387.39 256
GA-MVS76.87 21275.17 22181.97 18682.75 27462.58 22981.44 27186.35 23772.16 15074.74 22182.89 27846.20 28992.02 20568.85 18081.09 20291.30 139
v14878.72 17277.80 17281.47 19582.73 27561.96 23886.30 18488.08 20773.26 13576.18 18785.47 24462.46 14292.36 19471.92 15273.82 29190.09 182
IterMVS-SCA-FT75.43 23373.87 23580.11 22582.69 27664.85 18681.57 26983.47 26969.16 20370.49 25884.15 26351.95 24088.15 27869.23 17572.14 30287.34 258
miper_ehance_all_eth78.59 17677.76 17581.08 20882.66 27761.56 24383.65 24489.15 17868.87 21275.55 19883.79 26966.49 9692.03 20473.25 14276.39 25589.64 203
CostFormer75.24 23673.90 23479.27 24082.65 27858.27 27380.80 27282.73 28061.57 28775.33 20983.13 27655.52 20691.07 23564.98 21278.34 23488.45 238
EPNet_dtu75.46 23274.86 22277.23 27282.57 27954.60 31486.89 16583.09 27671.64 15566.25 30185.86 23555.99 20588.04 28054.92 28586.55 14389.05 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF73.23 25471.46 25578.54 25182.50 28059.85 26082.18 26282.84 27958.96 30771.15 25589.41 14245.48 29684.77 30258.82 26271.83 30491.02 147
cl-mvsnet_77.72 19876.76 19880.58 21682.49 28160.48 25583.09 25387.87 21269.22 20074.38 22585.22 24962.10 14991.53 21971.09 15775.41 27089.73 202
cl-mvsnet177.72 19876.76 19880.58 21682.48 28260.48 25583.09 25387.86 21369.22 20074.38 22585.24 24862.10 14991.53 21971.09 15775.40 27189.74 201
tpm cat170.57 27268.31 27777.35 26982.41 28357.95 27978.08 30080.22 30552.04 33468.54 28177.66 32252.00 23987.84 28251.77 29572.07 30386.25 279
cl-mvsnet278.07 18977.01 19081.23 20382.37 28461.83 24083.55 24887.98 20968.96 21075.06 21683.87 26561.40 15991.88 21173.53 13676.39 25589.98 191
MVS_030472.48 26070.89 26277.24 27182.20 28559.68 26184.11 23783.49 26867.10 22766.87 29480.59 30135.00 33887.40 28559.07 25979.58 21984.63 301
tpm72.37 26371.71 25474.35 29582.19 28652.00 32479.22 28977.29 32064.56 25972.95 23683.68 27251.35 24783.26 31058.33 26775.80 26287.81 248
tpmvs71.09 26869.29 27176.49 27782.04 28756.04 30778.92 29381.37 29264.05 26567.18 29178.28 31749.74 26689.77 25249.67 30772.37 29983.67 309
pmmvs474.03 24571.91 25180.39 21981.96 28868.32 12681.45 27082.14 28459.32 30469.87 27085.13 25152.40 23188.13 27960.21 24974.74 28284.73 300
TinyColmap67.30 29364.81 29774.76 29281.92 28956.68 29880.29 27981.49 29160.33 29456.27 33883.22 27524.77 34587.66 28445.52 32769.47 31379.95 330
ITE_SJBPF78.22 25581.77 29060.57 25383.30 27169.25 19967.54 28687.20 19736.33 33487.28 28754.34 28774.62 28386.80 271
miper_enhance_ethall77.87 19676.86 19480.92 21181.65 29161.38 24582.68 25788.98 18565.52 24975.47 19982.30 28665.76 10792.00 20672.95 14576.39 25589.39 208
MVS-HIRNet59.14 30957.67 31263.57 32481.65 29143.50 34571.73 32565.06 34739.59 34451.43 34257.73 34438.34 32882.58 31339.53 33973.95 28864.62 343
GG-mvs-BLEND75.38 28781.59 29355.80 30979.32 28769.63 33967.19 29073.67 33343.24 30588.90 27150.41 30184.50 16281.45 325
IterMVS74.29 24072.94 24478.35 25481.53 29463.49 21381.58 26882.49 28168.06 22169.99 26783.69 27151.66 24685.54 29765.85 20571.64 30586.01 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42066.51 29764.71 29871.90 30381.45 29563.52 21257.98 34568.95 34353.57 33062.59 32176.70 32546.22 28875.29 33955.25 28479.68 21876.88 337
gm-plane-assit81.40 29653.83 32062.72 27980.94 29992.39 19263.40 221
pmmvs674.69 23873.39 23878.61 24981.38 29757.48 28786.64 17487.95 21064.99 25670.18 26286.61 21650.43 25889.52 25762.12 23370.18 31288.83 228
test-LLR72.94 25872.43 24774.48 29381.35 29858.04 27678.38 29677.46 31866.66 23369.95 26879.00 31448.06 27779.24 32166.13 20084.83 15886.15 282
test-mter71.41 26670.39 26774.48 29381.35 29858.04 27678.38 29677.46 31860.32 29569.95 26879.00 31436.08 33579.24 32166.13 20084.83 15886.15 282
CR-MVSNet73.37 25071.27 25879.67 23481.32 30065.19 18175.92 31080.30 30359.92 29972.73 23881.19 29352.50 22986.69 28959.84 25177.71 23687.11 266
RPMNet73.51 24970.49 26482.58 17681.32 30065.19 18175.92 31092.27 7657.60 31672.73 23876.45 32752.30 23295.43 7048.14 31677.71 23687.11 266
V4279.38 15878.24 16282.83 16581.10 30265.50 17485.55 20389.82 15771.57 15978.21 14186.12 23060.66 17393.18 16675.64 11975.46 26989.81 199
lessismore_v078.97 24481.01 30357.15 29065.99 34561.16 32382.82 28039.12 32591.34 22559.67 25246.92 34588.43 239
Patchmtry70.74 27069.16 27275.49 28680.72 30454.07 31874.94 31980.30 30358.34 31170.01 26581.19 29352.50 22986.54 29053.37 29171.09 30985.87 289
PatchT68.46 28867.85 28470.29 31280.70 30543.93 34472.47 32374.88 32760.15 29770.55 25776.57 32649.94 26381.59 31550.58 30074.83 28185.34 292
USDC70.33 27568.37 27676.21 27980.60 30656.23 30579.19 29086.49 23360.89 29161.29 32285.47 24431.78 34289.47 25953.37 29176.21 25982.94 319
tpmrst72.39 26172.13 25073.18 30180.54 30749.91 33579.91 28379.08 31263.11 27171.69 25079.95 30755.32 20782.77 31265.66 20773.89 28986.87 269
anonymousdsp78.60 17577.15 18882.98 15980.51 30867.08 14887.24 15689.53 16565.66 24775.16 21287.19 19852.52 22892.25 19777.17 10679.34 22589.61 204
OpenMVS_ROBcopyleft64.09 1970.56 27368.19 27877.65 26480.26 30959.41 26585.01 21382.96 27858.76 30965.43 30582.33 28537.63 33191.23 22845.34 32976.03 26082.32 320
Anonymous2023120668.60 28567.80 28671.02 31080.23 31050.75 33378.30 29980.47 30056.79 32166.11 30282.63 28346.35 28778.95 32343.62 33275.70 26383.36 312
miper_lstm_enhance74.11 24373.11 24377.13 27380.11 31159.62 26272.23 32486.92 22966.76 23070.40 25982.92 27756.93 20182.92 31169.06 17872.63 29888.87 226
MIMVSNet168.58 28666.78 29373.98 29880.07 31251.82 32580.77 27384.37 25464.40 26159.75 32982.16 28936.47 33383.63 30742.73 33470.33 31186.48 277
ADS-MVSNet266.20 30063.33 30274.82 29179.92 31358.75 26967.55 33775.19 32653.37 33165.25 30775.86 32842.32 31180.53 31941.57 33668.91 31685.18 293
ADS-MVSNet64.36 30462.88 30668.78 31979.92 31347.17 34067.55 33771.18 33553.37 33165.25 30775.86 32842.32 31173.99 34341.57 33668.91 31685.18 293
D2MVS74.82 23773.21 24179.64 23579.81 31562.56 23080.34 27887.35 22364.37 26268.86 27782.66 28246.37 28690.10 24967.91 18581.24 20186.25 279
our_test_369.14 28367.00 29175.57 28479.80 31658.80 26877.96 30177.81 31659.55 30262.90 32078.25 31847.43 27983.97 30451.71 29667.58 32083.93 308
ppachtmachnet_test70.04 27867.34 29078.14 25679.80 31661.13 24679.19 29080.59 29859.16 30665.27 30679.29 31146.75 28587.29 28649.33 30866.72 32186.00 288
dp66.80 29465.43 29670.90 31179.74 31848.82 33875.12 31774.77 32859.61 30164.08 31477.23 32342.89 30780.72 31848.86 31066.58 32383.16 314
EPMVS69.02 28468.16 27971.59 30479.61 31949.80 33777.40 30466.93 34462.82 27770.01 26579.05 31245.79 29277.86 32956.58 28075.26 27787.13 265
PVSNet_057.27 2061.67 30859.27 31168.85 31879.61 31957.44 28868.01 33673.44 33355.93 32558.54 33170.41 33744.58 29977.55 33047.01 32035.91 34671.55 340
Patchmatch-test64.82 30363.24 30369.57 31479.42 32149.82 33663.49 34369.05 34251.98 33559.95 32880.13 30550.91 25170.98 34540.66 33873.57 29287.90 246
MDA-MVSNet-bldmvs66.68 29563.66 30175.75 28179.28 32260.56 25473.92 32178.35 31464.43 26050.13 34379.87 30944.02 30383.67 30646.10 32556.86 33783.03 317
TESTMET0.1,169.89 28069.00 27372.55 30279.27 32356.85 29378.38 29674.71 33057.64 31568.09 28277.19 32437.75 33076.70 33263.92 21784.09 16784.10 307
N_pmnet52.79 31453.26 31551.40 33178.99 3247.68 36069.52 3303.89 35951.63 33657.01 33574.98 33140.83 31965.96 34837.78 34164.67 32780.56 329
EU-MVSNet68.53 28767.61 28971.31 30978.51 32547.01 34184.47 22684.27 25642.27 34066.44 30084.79 25640.44 32183.76 30558.76 26368.54 31983.17 313
pmmvs571.55 26570.20 26875.61 28377.83 32656.39 30281.74 26680.89 29357.76 31467.46 28784.49 25849.26 27285.32 30057.08 27875.29 27585.11 296
test0.0.03 168.00 28967.69 28868.90 31777.55 32747.43 33975.70 31372.95 33466.66 23366.56 29782.29 28748.06 27775.87 33644.97 33074.51 28483.41 311
Patchmatch-RL test70.24 27667.78 28777.61 26577.43 32859.57 26471.16 32670.33 33662.94 27568.65 27972.77 33450.62 25585.49 29869.58 17366.58 32387.77 249
pmmvs-eth3d70.50 27467.83 28578.52 25277.37 32966.18 16181.82 26481.51 29058.90 30863.90 31580.42 30342.69 30986.28 29358.56 26465.30 32683.11 315
testing_275.73 22873.34 24082.89 16477.37 32965.22 18084.10 23890.54 13669.09 20460.46 32581.15 29540.48 32092.84 18276.36 11380.54 21290.60 160
JIA-IIPM66.32 29962.82 30776.82 27577.09 33161.72 24265.34 34075.38 32558.04 31364.51 31162.32 34142.05 31486.51 29151.45 29869.22 31582.21 321
Gipumacopyleft45.18 31741.86 32055.16 32977.03 33251.52 32832.50 35180.52 29932.46 34827.12 34935.02 3499.52 35675.50 33722.31 34860.21 33538.45 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet_test_wron65.03 30162.92 30471.37 30675.93 33356.73 29569.09 33574.73 32957.28 31954.03 34077.89 31945.88 29074.39 34249.89 30661.55 33182.99 318
YYNet165.03 30162.91 30571.38 30575.85 33456.60 29969.12 33474.66 33157.28 31954.12 33977.87 32045.85 29174.48 34149.95 30561.52 33283.05 316
PMMVS69.34 28268.67 27471.35 30875.67 33562.03 23675.17 31473.46 33250.00 33768.68 27879.05 31252.07 23878.13 32661.16 24382.77 18573.90 338
testgi66.67 29666.53 29467.08 32275.62 33641.69 34775.93 30976.50 32366.11 24065.20 30986.59 21735.72 33674.71 34043.71 33173.38 29584.84 298
test20.0367.45 29166.95 29268.94 31675.48 33744.84 34377.50 30377.67 31766.66 23363.01 31883.80 26847.02 28278.40 32542.53 33568.86 31883.58 310
PM-MVS66.41 29864.14 30073.20 30073.92 33856.45 30078.97 29264.96 34863.88 26964.72 31080.24 30419.84 34983.44 30866.24 19964.52 32879.71 331
UnsupCasMVSNet_bld63.70 30661.53 31070.21 31373.69 33951.39 33072.82 32281.89 28655.63 32657.81 33371.80 33638.67 32678.61 32449.26 30952.21 34380.63 327
UnsupCasMVSNet_eth67.33 29265.99 29571.37 30673.48 34051.47 32975.16 31585.19 24765.20 25160.78 32480.93 30042.35 31077.20 33157.12 27753.69 34185.44 291
TDRefinement67.49 29064.34 29976.92 27473.47 34161.07 24784.86 21782.98 27759.77 30058.30 33285.13 25126.06 34487.89 28147.92 31860.59 33481.81 324
ambc75.24 28873.16 34250.51 33463.05 34487.47 22164.28 31277.81 32117.80 35089.73 25457.88 27160.64 33385.49 290
CMPMVSbinary51.72 2170.19 27768.16 27976.28 27873.15 34357.55 28679.47 28683.92 26048.02 33856.48 33784.81 25543.13 30686.42 29262.67 22881.81 19784.89 297
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet61.73 30761.73 30961.70 32572.74 34424.50 35769.16 33378.03 31561.40 28856.72 33675.53 33038.42 32776.48 33445.95 32657.67 33684.13 306
LF4IMVS64.02 30562.19 30869.50 31570.90 34553.29 32276.13 30777.18 32152.65 33358.59 33080.98 29823.55 34676.52 33353.06 29366.66 32278.68 333
new_pmnet50.91 31550.29 31752.78 33068.58 34634.94 35263.71 34256.63 35039.73 34344.95 34465.47 33921.93 34758.48 34934.98 34356.62 33864.92 342
DSMNet-mixed57.77 31156.90 31360.38 32667.70 34735.61 35069.18 33253.97 35132.30 34957.49 33479.88 30840.39 32268.57 34738.78 34072.37 29976.97 336
FPMVS53.68 31351.64 31659.81 32765.08 34851.03 33169.48 33169.58 34041.46 34140.67 34572.32 33516.46 35270.00 34624.24 34765.42 32558.40 344
pmmvs357.79 31054.26 31468.37 32064.02 34956.72 29675.12 31765.17 34640.20 34252.93 34169.86 33820.36 34875.48 33845.45 32855.25 34072.90 339
wuyk23d16.82 32515.94 32819.46 33758.74 35031.45 35339.22 3493.74 3606.84 3546.04 3562.70 3561.27 36124.29 35510.54 35414.40 3542.63 352
PMMVS240.82 31938.86 32246.69 33253.84 35116.45 35848.61 34849.92 35237.49 34531.67 34760.97 3438.14 35856.42 35028.42 34530.72 34767.19 341
LCM-MVSNet54.25 31249.68 31867.97 32153.73 35245.28 34266.85 33980.78 29535.96 34639.45 34662.23 3428.70 35778.06 32848.24 31551.20 34480.57 328
E-PMN31.77 32030.64 32335.15 33452.87 35327.67 35457.09 34647.86 35324.64 35016.40 35433.05 35011.23 35454.90 35114.46 35218.15 35022.87 349
EMVS30.81 32129.65 32434.27 33550.96 35425.95 35656.58 34746.80 35424.01 35115.53 35530.68 35112.47 35354.43 35212.81 35317.05 35122.43 350
ANet_high50.57 31646.10 31963.99 32348.67 35539.13 34870.99 32880.85 29461.39 28931.18 34857.70 34517.02 35173.65 34431.22 34415.89 35279.18 332
MVEpermissive26.22 2330.37 32225.89 32643.81 33344.55 35635.46 35128.87 35239.07 35518.20 35218.58 35340.18 3482.68 36047.37 35317.07 35123.78 34948.60 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft37.38 2244.16 31840.28 32155.82 32840.82 35742.54 34665.12 34163.99 34934.43 34724.48 35057.12 3463.92 35976.17 33517.10 35055.52 33948.75 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 33640.17 35826.90 35524.59 35817.44 35323.95 35148.61 3479.77 35526.48 35418.06 34924.47 34828.83 348
tmp_tt18.61 32421.40 32710.23 3384.82 35910.11 35934.70 35030.74 3571.48 35523.91 35226.07 35228.42 34313.41 35627.12 34615.35 3537.17 351
testmvs6.04 3288.02 3310.10 3400.08 3600.03 36269.74 3290.04 3610.05 3560.31 3571.68 3570.02 3630.04 3570.24 3550.02 3550.25 354
test1236.12 3278.11 3300.14 3390.06 3610.09 36171.05 3270.03 3620.04 3570.25 3581.30 3580.05 3620.03 3580.21 3560.01 3560.29 353
uanet_test0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
cdsmvs_eth3d_5k19.96 32326.61 3250.00 3410.00 3620.00 3630.00 35389.26 1740.00 3580.00 35988.61 15861.62 1550.00 3590.00 3570.00 3570.00 355
pcd_1.5k_mvsjas5.26 3297.02 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 35963.15 1310.00 3590.00 3570.00 3570.00 355
sosnet-low-res0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
sosnet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uncertanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
Regformer0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
ab-mvs-re7.23 3269.64 3290.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35986.72 2080.00 3640.00 3590.00 3570.00 3570.00 355
uanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
test_241102_TWO94.06 1077.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
GSMVS88.96 223
sam_mvs151.32 24888.96 223
sam_mvs50.01 261
MTGPAbinary92.02 87
test_post178.90 2945.43 35548.81 27685.44 29959.25 256
test_post5.46 35450.36 25984.24 303
patchmatchnet-post74.00 33251.12 25088.60 273
MTMP92.18 3132.83 356
test9_res84.90 3095.70 2792.87 93
agg_prior282.91 5895.45 2992.70 96
test_prior472.60 3389.01 99
test_prior288.85 10475.41 8984.91 5293.54 5174.28 3183.31 5095.86 18
旧先验286.56 17758.10 31287.04 3188.98 26774.07 132
新几何286.29 185
无先验87.48 14988.98 18560.00 29894.12 12267.28 19188.97 222
原ACMM286.86 166
testdata291.01 23662.37 230
segment_acmp73.08 40
testdata184.14 23675.71 83
plane_prior592.44 6895.38 7378.71 8986.32 14691.33 137
plane_prior491.00 106
plane_prior368.60 12278.44 3078.92 127
plane_prior291.25 4779.12 23
plane_prior68.71 11790.38 6677.62 3686.16 149
n20.00 363
nn0.00 363
door-mid69.98 338
test1192.23 79
door69.44 341
HQP5-MVS66.98 150
BP-MVS77.47 102
HQP4-MVS77.24 16195.11 8391.03 145
HQP3-MVS92.19 8285.99 151
HQP2-MVS60.17 180
MDTV_nov1_ep13_2view37.79 34975.16 31555.10 32766.53 29849.34 27053.98 28887.94 245
ACMMP++_ref81.95 195
ACMMP++81.25 200
Test By Simon64.33 117