MSP-MVS | | | 88.67 1 | 91.62 1 | 85.22 2 | 90.47 16 | 92.36 1 | 90.69 8 | 76.15 2 | 93.08 1 | 82.75 3 | 92.19 4 | 90.71 2 | 80.45 4 | 89.27 4 | 87.91 7 | 90.82 10 | 95.84 1 |
|
DPE-MVS | | | 88.63 2 | 91.29 2 | 85.53 1 | 90.87 8 | 92.20 2 | 91.98 2 | 76.00 4 | 90.55 6 | 82.09 5 | 93.85 1 | 90.75 1 | 81.25 1 | 88.62 6 | 87.59 12 | 90.96 8 | 95.48 2 |
|
DVP-MVS | | | 88.09 3 | 90.84 3 | 84.88 5 | 90.00 22 | 91.80 4 | 91.63 3 | 75.80 5 | 91.99 2 | 81.23 8 | 92.54 2 | 89.18 4 | 80.89 2 | 87.99 13 | 87.91 7 | 89.70 42 | 94.51 6 |
|
APDe-MVS | | | 88.00 4 | 90.50 4 | 85.08 3 | 90.95 7 | 91.58 5 | 92.03 1 | 75.53 11 | 91.15 3 | 80.10 14 | 92.27 3 | 88.34 10 | 80.80 3 | 88.00 12 | 86.99 17 | 91.09 6 | 95.16 5 |
|
SMA-MVS | | | 87.56 5 | 90.17 5 | 84.52 8 | 91.71 2 | 90.57 8 | 90.77 7 | 75.19 12 | 90.67 5 | 80.50 13 | 86.59 16 | 88.86 7 | 78.09 15 | 89.92 1 | 89.41 1 | 90.84 9 | 95.19 4 |
|
xxxxxxxxxxxxxcwj | | | 87.47 6 | 89.70 6 | 84.86 6 | 91.26 5 | 91.10 6 | 90.90 4 | 75.65 6 | 89.21 7 | 81.25 6 | 91.12 6 | 88.93 5 | 78.82 8 | 87.42 18 | 86.23 29 | 91.28 3 | 93.90 12 |
|
SF-MVS | | | 87.47 6 | 89.70 6 | 84.86 6 | 91.26 5 | 91.10 6 | 90.90 4 | 75.65 6 | 89.21 7 | 81.25 6 | 91.12 6 | 88.93 5 | 78.82 8 | 87.42 18 | 86.23 29 | 91.28 3 | 93.90 12 |
|
HPM-MVS++ | | | 87.09 8 | 88.92 12 | 84.95 4 | 92.61 1 | 87.91 39 | 90.23 14 | 76.06 3 | 88.85 11 | 81.20 9 | 87.33 12 | 87.93 11 | 79.47 7 | 88.59 7 | 88.23 5 | 90.15 33 | 93.60 20 |
|
SD-MVS | | | 86.96 9 | 89.45 8 | 84.05 14 | 90.13 19 | 89.23 21 | 89.77 17 | 74.59 13 | 89.17 9 | 80.70 10 | 89.93 10 | 89.67 3 | 78.47 11 | 87.57 17 | 86.79 21 | 90.67 16 | 93.76 16 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 86.88 10 | 89.23 9 | 84.14 12 | 89.78 25 | 88.67 30 | 90.59 9 | 73.46 26 | 88.99 10 | 80.52 12 | 91.26 5 | 88.65 8 | 79.91 6 | 86.96 29 | 86.22 31 | 90.59 17 | 93.83 14 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS | | | 86.84 11 | 88.91 13 | 84.41 9 | 90.66 11 | 90.10 11 | 90.78 6 | 75.64 8 | 87.38 16 | 78.72 18 | 90.68 9 | 86.82 16 | 80.15 5 | 87.13 24 | 86.45 27 | 90.51 19 | 93.83 14 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 86.52 12 | 89.01 10 | 83.62 16 | 90.28 18 | 90.09 12 | 90.32 12 | 74.05 19 | 88.32 13 | 79.74 15 | 87.04 14 | 85.59 23 | 76.97 28 | 89.35 2 | 88.44 4 | 90.35 28 | 94.27 10 |
|
CNVR-MVS | | | 86.36 13 | 88.19 16 | 84.23 11 | 91.33 4 | 89.84 13 | 90.34 10 | 75.56 9 | 87.36 17 | 78.97 17 | 81.19 27 | 86.76 17 | 78.74 10 | 89.30 3 | 88.58 2 | 90.45 25 | 94.33 9 |
|
HFP-MVS | | | 86.15 14 | 87.95 17 | 84.06 13 | 90.80 9 | 89.20 22 | 89.62 19 | 74.26 15 | 87.52 14 | 80.63 11 | 86.82 15 | 84.19 29 | 78.22 13 | 87.58 16 | 87.19 15 | 90.81 11 | 93.13 24 |
|
SteuartSystems-ACMMP | | | 85.99 15 | 88.31 15 | 83.27 20 | 90.73 10 | 89.84 13 | 90.27 13 | 74.31 14 | 84.56 29 | 75.88 29 | 87.32 13 | 85.04 24 | 77.31 23 | 89.01 5 | 88.46 3 | 91.14 5 | 93.96 11 |
Skip Steuart: Steuart Systems R&D Blog. |
zzz-MVS | | | 85.71 16 | 86.88 22 | 84.34 10 | 90.54 15 | 87.11 43 | 89.77 17 | 74.17 17 | 88.54 12 | 83.08 2 | 78.60 31 | 86.10 19 | 78.11 14 | 87.80 15 | 87.46 13 | 90.35 28 | 92.56 26 |
|
ACMMPR | | | 85.52 17 | 87.53 19 | 83.17 21 | 90.13 19 | 89.27 19 | 89.30 20 | 73.97 20 | 86.89 19 | 77.14 24 | 86.09 17 | 83.18 32 | 77.74 19 | 87.42 18 | 87.20 14 | 90.77 12 | 92.63 25 |
|
MP-MVS | | | 85.50 18 | 87.40 20 | 83.28 19 | 90.65 12 | 89.51 18 | 89.16 23 | 74.11 18 | 83.70 33 | 78.06 21 | 85.54 19 | 84.89 27 | 77.31 23 | 87.40 21 | 87.14 16 | 90.41 26 | 93.65 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NCCC | | | 85.34 19 | 86.59 24 | 83.88 15 | 91.48 3 | 88.88 24 | 89.79 16 | 75.54 10 | 86.67 20 | 77.94 22 | 76.55 34 | 84.99 25 | 78.07 16 | 88.04 10 | 87.68 10 | 90.46 24 | 93.31 21 |
|
DeepPCF-MVS | | 79.04 1 | 85.30 20 | 88.93 11 | 81.06 31 | 88.77 35 | 90.48 9 | 85.46 45 | 73.08 28 | 90.97 4 | 73.77 36 | 84.81 21 | 85.95 20 | 77.43 22 | 88.22 9 | 87.73 9 | 87.85 76 | 94.34 8 |
|
CSCG | | | 85.28 21 | 87.68 18 | 82.49 24 | 89.95 23 | 91.99 3 | 88.82 24 | 71.20 37 | 86.41 21 | 79.63 16 | 79.26 28 | 88.36 9 | 73.94 38 | 86.64 31 | 86.67 24 | 91.40 2 | 94.41 7 |
|
MCST-MVS | | | 85.13 22 | 86.62 23 | 83.39 17 | 90.55 14 | 89.82 15 | 89.29 21 | 73.89 22 | 84.38 30 | 76.03 28 | 79.01 30 | 85.90 21 | 78.47 11 | 87.81 14 | 86.11 33 | 92.11 1 | 93.29 22 |
|
TSAR-MVS + ACMM | | | 85.10 23 | 88.81 14 | 80.77 34 | 89.55 28 | 88.53 32 | 88.59 27 | 72.55 30 | 87.39 15 | 71.90 42 | 90.95 8 | 87.55 12 | 74.57 33 | 87.08 26 | 86.54 25 | 87.47 83 | 93.67 17 |
|
train_agg | | | 84.86 24 | 87.21 21 | 82.11 26 | 90.59 13 | 85.47 54 | 89.81 15 | 73.55 25 | 83.95 31 | 73.30 37 | 89.84 11 | 87.23 14 | 75.61 31 | 86.47 33 | 85.46 38 | 89.78 38 | 92.06 32 |
|
DeepC-MVS | | 78.47 2 | 84.81 25 | 86.03 28 | 83.37 18 | 89.29 31 | 90.38 10 | 88.61 26 | 76.50 1 | 86.25 22 | 77.22 23 | 75.12 38 | 80.28 45 | 77.59 21 | 88.39 8 | 88.17 6 | 91.02 7 | 93.66 18 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CP-MVS | | | 84.74 26 | 86.43 26 | 82.77 23 | 89.48 29 | 88.13 38 | 88.64 25 | 73.93 21 | 84.92 24 | 76.77 25 | 81.94 25 | 83.50 30 | 77.29 25 | 86.92 30 | 86.49 26 | 90.49 20 | 93.14 23 |
|
PGM-MVS | | | 84.42 27 | 86.29 27 | 82.23 25 | 90.04 21 | 88.82 26 | 89.23 22 | 71.74 35 | 82.82 36 | 74.61 32 | 84.41 22 | 82.09 35 | 77.03 27 | 87.13 24 | 86.73 23 | 90.73 14 | 92.06 32 |
|
DeepC-MVS_fast | | 78.24 3 | 84.27 28 | 85.50 30 | 82.85 22 | 90.46 17 | 89.24 20 | 87.83 32 | 74.24 16 | 84.88 25 | 76.23 27 | 75.26 37 | 81.05 43 | 77.62 20 | 88.02 11 | 87.62 11 | 90.69 15 | 92.41 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 83.69 29 | 86.58 25 | 80.32 35 | 85.14 54 | 86.96 44 | 84.91 49 | 70.25 41 | 84.71 28 | 73.91 35 | 85.16 20 | 85.63 22 | 77.92 17 | 85.44 40 | 85.71 36 | 89.77 39 | 92.45 27 |
|
ACMMP | | | 83.42 30 | 85.27 31 | 81.26 30 | 88.47 36 | 88.49 33 | 88.31 30 | 72.09 32 | 83.42 34 | 72.77 40 | 82.65 23 | 78.22 49 | 75.18 32 | 86.24 37 | 85.76 35 | 90.74 13 | 92.13 31 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DPM-MVS | | | 83.30 31 | 84.33 34 | 82.11 26 | 89.56 27 | 88.49 33 | 90.33 11 | 73.24 27 | 83.85 32 | 76.46 26 | 72.43 47 | 82.65 33 | 73.02 46 | 86.37 35 | 86.91 18 | 90.03 35 | 89.62 51 |
|
X-MVS | | | 83.23 32 | 85.20 32 | 80.92 33 | 89.71 26 | 88.68 27 | 88.21 31 | 73.60 23 | 82.57 37 | 71.81 45 | 77.07 32 | 81.92 37 | 71.72 57 | 86.98 28 | 86.86 19 | 90.47 21 | 92.36 29 |
|
CDPH-MVS | | | 82.64 33 | 85.03 33 | 79.86 38 | 89.41 30 | 88.31 35 | 88.32 29 | 71.84 34 | 80.11 44 | 67.47 60 | 82.09 24 | 81.44 41 | 71.85 55 | 85.89 39 | 86.15 32 | 90.24 31 | 91.25 38 |
|
3Dnovator+ | | 75.73 4 | 82.40 34 | 82.76 39 | 81.97 28 | 88.02 37 | 89.67 16 | 86.60 36 | 71.48 36 | 81.28 42 | 78.18 20 | 64.78 82 | 77.96 51 | 77.13 26 | 87.32 22 | 86.83 20 | 90.41 26 | 91.48 36 |
|
PHI-MVS | | | 82.36 35 | 85.89 29 | 78.24 48 | 86.40 47 | 89.52 17 | 85.52 43 | 69.52 48 | 82.38 39 | 65.67 67 | 81.35 26 | 82.36 34 | 73.07 44 | 87.31 23 | 86.76 22 | 89.24 49 | 91.56 35 |
|
MSLP-MVS++ | | | 82.09 36 | 82.66 40 | 81.42 29 | 87.03 43 | 87.22 42 | 85.82 41 | 70.04 42 | 80.30 43 | 78.66 19 | 68.67 66 | 81.04 44 | 77.81 18 | 85.19 45 | 84.88 43 | 89.19 52 | 91.31 37 |
|
CPTT-MVS | | | 81.77 37 | 83.10 38 | 80.21 36 | 85.93 50 | 86.45 49 | 87.72 33 | 70.98 38 | 82.54 38 | 71.53 48 | 74.23 43 | 81.49 40 | 76.31 30 | 82.85 63 | 81.87 59 | 88.79 60 | 92.26 30 |
|
MVS_0304 | | | 81.73 38 | 83.86 35 | 79.26 41 | 86.22 49 | 89.18 23 | 86.41 37 | 67.15 62 | 75.28 54 | 70.75 52 | 74.59 40 | 83.49 31 | 74.42 35 | 87.05 27 | 86.34 28 | 90.58 18 | 91.08 40 |
|
CANet | | | 81.62 39 | 83.41 36 | 79.53 40 | 87.06 42 | 88.59 31 | 85.47 44 | 67.96 58 | 76.59 52 | 74.05 33 | 74.69 39 | 81.98 36 | 72.98 47 | 86.14 38 | 85.47 37 | 89.68 43 | 90.42 46 |
|
HQP-MVS | | | 81.19 40 | 83.27 37 | 78.76 45 | 87.40 40 | 85.45 55 | 86.95 34 | 70.47 40 | 81.31 41 | 66.91 63 | 79.24 29 | 76.63 53 | 71.67 58 | 84.43 49 | 83.78 49 | 89.19 52 | 92.05 34 |
|
OMC-MVS | | | 80.26 41 | 82.59 41 | 77.54 51 | 83.04 62 | 85.54 53 | 83.25 56 | 65.05 77 | 87.32 18 | 72.42 41 | 72.04 49 | 78.97 47 | 73.30 42 | 83.86 52 | 81.60 63 | 88.15 67 | 88.83 55 |
|
MVS_111021_HR | | | 80.13 42 | 81.46 44 | 78.58 46 | 85.77 51 | 85.17 58 | 83.45 55 | 69.28 49 | 74.08 60 | 70.31 53 | 74.31 42 | 75.26 58 | 73.13 43 | 86.46 34 | 85.15 41 | 89.53 45 | 89.81 49 |
|
LGP-MVS_train | | | 79.83 43 | 81.22 46 | 78.22 49 | 86.28 48 | 85.36 57 | 86.76 35 | 69.59 46 | 77.34 49 | 65.14 69 | 75.68 36 | 70.79 75 | 71.37 61 | 84.60 47 | 84.01 46 | 90.18 32 | 90.74 42 |
|
ACMP | | 73.23 7 | 79.79 44 | 80.53 49 | 78.94 43 | 85.61 52 | 85.68 52 | 85.61 42 | 69.59 46 | 77.33 50 | 71.00 51 | 74.45 41 | 69.16 87 | 71.88 53 | 83.15 60 | 83.37 52 | 89.92 36 | 90.57 45 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
3Dnovator | | 73.76 5 | 79.75 45 | 80.52 50 | 78.84 44 | 84.94 59 | 87.35 40 | 84.43 51 | 65.54 73 | 78.29 48 | 73.97 34 | 63.00 90 | 75.62 57 | 74.07 37 | 85.00 46 | 85.34 39 | 90.11 34 | 89.04 53 |
|
AdaColmap | | | 79.74 46 | 78.62 58 | 81.05 32 | 89.23 32 | 86.06 51 | 84.95 48 | 71.96 33 | 79.39 47 | 75.51 30 | 63.16 88 | 68.84 92 | 76.51 29 | 83.55 56 | 82.85 54 | 88.13 68 | 86.46 73 |
|
OPM-MVS | | | 79.68 47 | 79.28 56 | 80.15 37 | 87.99 38 | 86.77 46 | 88.52 28 | 72.72 29 | 64.55 91 | 67.65 59 | 67.87 70 | 74.33 61 | 74.31 36 | 86.37 35 | 85.25 40 | 89.73 41 | 89.81 49 |
|
PCF-MVS | | 73.28 6 | 79.42 48 | 80.41 51 | 78.26 47 | 84.88 60 | 88.17 36 | 86.08 38 | 69.85 43 | 75.23 56 | 68.43 55 | 68.03 69 | 78.38 48 | 71.76 56 | 81.26 81 | 80.65 81 | 88.56 63 | 91.18 39 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 79.35 49 | 81.23 45 | 77.16 53 | 85.01 57 | 86.92 45 | 85.87 40 | 60.89 124 | 80.07 46 | 75.35 31 | 72.96 45 | 73.21 65 | 68.43 75 | 85.41 42 | 84.63 44 | 87.41 84 | 85.44 84 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MAR-MVS | | | 79.21 50 | 80.32 52 | 77.92 50 | 87.46 39 | 88.15 37 | 83.95 52 | 67.48 61 | 74.28 58 | 68.25 56 | 64.70 83 | 77.04 52 | 72.17 51 | 85.42 41 | 85.00 42 | 88.22 64 | 87.62 63 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
canonicalmvs | | | 79.16 51 | 82.37 42 | 75.41 61 | 82.33 68 | 86.38 50 | 80.80 61 | 63.18 91 | 82.90 35 | 67.34 61 | 72.79 46 | 76.07 55 | 69.62 67 | 83.46 59 | 84.41 45 | 89.20 51 | 90.60 44 |
|
DELS-MVS | | | 79.15 52 | 81.07 47 | 76.91 54 | 83.54 61 | 87.31 41 | 84.45 50 | 64.92 78 | 69.98 66 | 69.34 54 | 71.62 51 | 76.26 54 | 69.84 66 | 86.57 32 | 85.90 34 | 89.39 47 | 89.88 48 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EPNet | | | 79.08 53 | 80.62 48 | 77.28 52 | 88.90 34 | 83.17 75 | 83.65 53 | 72.41 31 | 74.41 57 | 67.15 62 | 76.78 33 | 74.37 60 | 64.43 93 | 83.70 55 | 83.69 50 | 87.15 87 | 88.19 58 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMM | | 72.26 8 | 78.86 54 | 78.13 60 | 79.71 39 | 86.89 44 | 83.40 72 | 86.02 39 | 70.50 39 | 75.28 54 | 71.49 49 | 63.01 89 | 69.26 86 | 73.57 40 | 84.11 51 | 83.98 47 | 89.76 40 | 87.84 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
QAPM | | | 78.47 55 | 80.22 53 | 76.43 56 | 85.03 56 | 86.75 47 | 80.62 64 | 66.00 70 | 73.77 61 | 65.35 68 | 65.54 78 | 78.02 50 | 72.69 48 | 83.71 54 | 83.36 53 | 88.87 58 | 90.41 47 |
|
TSAR-MVS + COLMAP | | | 78.34 56 | 81.64 43 | 74.48 70 | 80.13 85 | 85.01 59 | 81.73 57 | 65.93 72 | 84.75 27 | 61.68 79 | 85.79 18 | 66.27 100 | 71.39 60 | 82.91 62 | 80.78 72 | 86.01 124 | 85.98 75 |
|
MVS_111021_LR | | | 78.13 57 | 79.85 55 | 76.13 57 | 81.12 74 | 81.50 84 | 80.28 65 | 65.25 75 | 76.09 53 | 71.32 50 | 76.49 35 | 72.87 67 | 72.21 50 | 82.79 64 | 81.29 65 | 86.59 109 | 87.91 60 |
|
TAPA-MVS | | 71.42 9 | 77.69 58 | 80.05 54 | 74.94 64 | 80.68 78 | 84.52 61 | 81.36 58 | 63.14 92 | 84.77 26 | 64.82 71 | 68.72 64 | 75.91 56 | 71.86 54 | 81.62 70 | 79.55 97 | 87.80 78 | 85.24 87 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETV-MVS | | | 77.32 59 | 78.81 57 | 75.58 60 | 82.24 69 | 83.64 69 | 79.98 66 | 64.02 85 | 69.64 70 | 63.90 74 | 70.89 55 | 69.94 82 | 73.41 41 | 85.39 43 | 83.91 48 | 89.92 36 | 88.31 57 |
|
CNLPA | | | 77.20 60 | 77.54 65 | 76.80 55 | 82.63 64 | 84.31 62 | 79.77 70 | 64.64 79 | 85.17 23 | 73.18 38 | 56.37 123 | 69.81 83 | 74.53 34 | 81.12 84 | 78.69 107 | 86.04 123 | 87.29 67 |
|
CS-MVS | | | 76.92 61 | 78.01 61 | 75.64 59 | 81.47 71 | 83.59 70 | 80.68 62 | 62.47 110 | 68.39 72 | 65.83 66 | 67.84 71 | 70.74 76 | 73.07 44 | 85.31 44 | 82.79 55 | 90.33 30 | 87.42 64 |
|
casdiffmvs | | | 76.76 62 | 78.46 59 | 74.77 66 | 80.32 82 | 83.73 68 | 80.65 63 | 63.24 90 | 73.58 62 | 66.11 65 | 69.39 61 | 74.09 62 | 69.49 69 | 82.52 66 | 79.35 101 | 88.84 59 | 86.52 72 |
|
PVSNet_Blended_VisFu | | | 76.57 63 | 77.90 62 | 75.02 63 | 80.56 79 | 86.58 48 | 79.24 75 | 66.18 67 | 64.81 88 | 68.18 57 | 65.61 76 | 71.45 70 | 67.05 77 | 84.16 50 | 81.80 60 | 88.90 56 | 90.92 41 |
|
PVSNet_BlendedMVS | | | 76.21 64 | 77.52 66 | 74.69 67 | 79.46 88 | 83.79 66 | 77.50 92 | 64.34 83 | 69.88 67 | 71.88 43 | 68.54 67 | 70.42 78 | 67.05 77 | 83.48 57 | 79.63 93 | 87.89 74 | 86.87 69 |
|
PVSNet_Blended | | | 76.21 64 | 77.52 66 | 74.69 67 | 79.46 88 | 83.79 66 | 77.50 92 | 64.34 83 | 69.88 67 | 71.88 43 | 68.54 67 | 70.42 78 | 67.05 77 | 83.48 57 | 79.63 93 | 87.89 74 | 86.87 69 |
|
OpenMVS | | 70.44 10 | 76.15 66 | 76.82 74 | 75.37 62 | 85.01 57 | 84.79 60 | 78.99 79 | 62.07 114 | 71.27 65 | 67.88 58 | 57.91 116 | 72.36 68 | 70.15 65 | 82.23 68 | 81.41 64 | 88.12 69 | 87.78 62 |
|
PLC | | 68.99 11 | 75.68 67 | 75.31 79 | 76.12 58 | 82.94 63 | 81.26 87 | 79.94 68 | 66.10 68 | 77.15 51 | 66.86 64 | 59.13 106 | 68.53 93 | 73.73 39 | 80.38 93 | 79.04 102 | 87.13 91 | 81.68 123 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EIA-MVS | | | 75.64 68 | 76.60 75 | 74.53 69 | 82.43 67 | 83.84 65 | 78.32 85 | 62.28 113 | 65.96 81 | 63.28 77 | 68.95 62 | 67.54 96 | 71.61 59 | 82.55 65 | 81.63 62 | 89.24 49 | 85.72 78 |
|
MVS_Test | | | 75.37 69 | 77.13 72 | 73.31 74 | 79.07 91 | 81.32 86 | 79.98 66 | 60.12 135 | 69.72 69 | 64.11 73 | 70.53 56 | 73.22 64 | 68.90 71 | 80.14 99 | 79.48 99 | 87.67 80 | 85.50 82 |
|
Effi-MVS+ | | | 75.28 70 | 76.20 76 | 74.20 71 | 81.15 73 | 83.24 73 | 81.11 59 | 63.13 93 | 66.37 77 | 60.27 83 | 64.30 86 | 68.88 91 | 70.93 64 | 81.56 72 | 81.69 61 | 88.61 61 | 87.35 65 |
|
DI_MVS_plusplus_trai | | | 75.13 71 | 76.12 77 | 73.96 72 | 78.18 96 | 81.55 82 | 80.97 60 | 62.54 107 | 68.59 71 | 65.13 70 | 61.43 92 | 74.81 59 | 69.32 70 | 81.01 86 | 79.59 95 | 87.64 81 | 85.89 76 |
|
diffmvs | | | 74.86 72 | 77.37 69 | 71.93 77 | 75.62 118 | 80.35 98 | 79.42 74 | 60.15 134 | 72.81 64 | 64.63 72 | 71.51 52 | 73.11 66 | 66.53 87 | 79.02 112 | 77.98 115 | 85.25 138 | 86.83 71 |
|
UA-Net | | | 74.47 73 | 77.80 63 | 70.59 87 | 85.33 53 | 85.40 56 | 73.54 134 | 65.98 71 | 60.65 122 | 56.00 104 | 72.11 48 | 79.15 46 | 54.63 159 | 83.13 61 | 82.25 57 | 88.04 70 | 81.92 121 |
|
LS3D | | | 74.08 74 | 73.39 86 | 74.88 65 | 85.05 55 | 82.62 78 | 79.71 71 | 68.66 52 | 72.82 63 | 58.80 87 | 57.61 117 | 61.31 114 | 71.07 63 | 80.32 94 | 78.87 106 | 86.00 125 | 80.18 135 |
|
EPP-MVSNet | | | 74.00 75 | 77.41 68 | 70.02 93 | 80.53 80 | 83.91 64 | 74.99 112 | 62.68 105 | 65.06 86 | 49.77 139 | 68.68 65 | 72.09 69 | 63.06 101 | 82.49 67 | 80.73 73 | 89.12 54 | 88.91 54 |
|
DCV-MVSNet | | | 73.65 76 | 75.78 78 | 71.16 81 | 80.19 83 | 79.27 107 | 77.45 94 | 61.68 120 | 66.73 76 | 58.72 88 | 65.31 79 | 69.96 81 | 62.19 106 | 81.29 80 | 80.97 69 | 86.74 102 | 86.91 68 |
|
IS_MVSNet | | | 73.33 77 | 77.34 70 | 68.65 107 | 81.29 72 | 83.47 71 | 74.45 116 | 63.58 88 | 65.75 83 | 48.49 143 | 67.11 75 | 70.61 77 | 54.63 159 | 84.51 48 | 83.58 51 | 89.48 46 | 86.34 74 |
|
CANet_DTU | | | 73.29 78 | 76.96 73 | 69.00 104 | 77.04 108 | 82.06 80 | 79.49 73 | 56.30 160 | 67.85 74 | 53.29 120 | 71.12 54 | 70.37 80 | 61.81 115 | 81.59 71 | 80.96 70 | 86.09 118 | 84.73 95 |
|
Fast-Effi-MVS+ | | | 73.11 79 | 73.66 84 | 72.48 76 | 77.72 102 | 80.88 93 | 78.55 82 | 58.83 150 | 65.19 85 | 60.36 82 | 59.98 101 | 62.42 112 | 71.22 62 | 81.66 69 | 80.61 83 | 88.20 65 | 84.88 94 |
|
UGNet | | | 72.78 80 | 77.67 64 | 67.07 129 | 71.65 156 | 83.24 73 | 75.20 106 | 63.62 87 | 64.93 87 | 56.72 100 | 71.82 50 | 73.30 63 | 49.02 172 | 81.02 85 | 80.70 79 | 86.22 115 | 88.67 56 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet | | | 72.77 81 | 77.20 71 | 67.59 119 | 74.19 132 | 84.01 63 | 76.61 102 | 61.69 119 | 60.62 123 | 50.61 135 | 70.25 58 | 71.31 73 | 55.57 155 | 83.85 53 | 82.28 56 | 86.90 96 | 88.08 59 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FC-MVSNet-train | | | 72.60 82 | 75.07 80 | 69.71 96 | 81.10 75 | 78.79 113 | 73.74 133 | 65.23 76 | 66.10 80 | 53.34 119 | 70.36 57 | 63.40 109 | 56.92 144 | 81.44 74 | 80.96 70 | 87.93 72 | 84.46 99 |
|
ET-MVSNet_ETH3D | | | 72.46 83 | 74.19 82 | 70.44 88 | 62.50 190 | 81.17 88 | 79.90 69 | 62.46 111 | 64.52 92 | 57.52 96 | 71.49 53 | 59.15 123 | 72.08 52 | 78.61 117 | 81.11 67 | 88.16 66 | 83.29 109 |
|
MVSTER | | | 72.06 84 | 74.24 81 | 69.51 99 | 70.39 167 | 75.97 143 | 76.91 98 | 57.36 157 | 64.64 90 | 61.39 81 | 68.86 63 | 63.76 107 | 63.46 98 | 81.44 74 | 79.70 92 | 87.56 82 | 85.31 86 |
|
Anonymous20231211 | | | 71.90 85 | 72.48 94 | 71.21 80 | 80.14 84 | 81.53 83 | 76.92 97 | 62.89 96 | 64.46 93 | 58.94 85 | 43.80 182 | 70.98 74 | 62.22 105 | 80.70 88 | 80.19 88 | 86.18 116 | 85.73 77 |
|
Effi-MVS+-dtu | | | 71.82 86 | 71.86 99 | 71.78 78 | 78.77 92 | 80.47 96 | 78.55 82 | 61.67 121 | 60.68 121 | 55.49 105 | 58.48 110 | 65.48 102 | 68.85 72 | 76.92 134 | 75.55 146 | 87.35 85 | 85.46 83 |
|
IterMVS-LS | | | 71.69 87 | 72.82 92 | 70.37 89 | 77.54 104 | 76.34 140 | 75.13 110 | 60.46 130 | 61.53 116 | 57.57 95 | 64.89 81 | 67.33 97 | 66.04 90 | 77.09 133 | 77.37 127 | 85.48 134 | 85.18 88 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 71.52 88 | 69.87 111 | 73.44 73 | 82.21 70 | 79.35 106 | 79.52 72 | 64.59 80 | 66.15 79 | 61.87 78 | 53.21 147 | 56.09 138 | 65.85 91 | 78.94 113 | 78.50 109 | 86.60 108 | 76.85 157 |
|
thisisatest0530 | | | 71.48 89 | 73.01 89 | 69.70 97 | 73.83 137 | 78.62 115 | 74.53 115 | 59.12 144 | 64.13 94 | 58.63 89 | 64.60 84 | 58.63 125 | 64.27 94 | 80.28 96 | 80.17 89 | 87.82 77 | 84.64 97 |
|
tttt0517 | | | 71.41 90 | 72.95 90 | 69.60 98 | 73.70 139 | 78.70 114 | 74.42 119 | 59.12 144 | 63.89 98 | 58.35 92 | 64.56 85 | 58.39 127 | 64.27 94 | 80.29 95 | 80.17 89 | 87.74 79 | 84.69 96 |
|
ACMH+ | | 66.54 13 | 71.36 91 | 70.09 109 | 72.85 75 | 82.59 65 | 81.13 89 | 78.56 81 | 68.04 56 | 61.55 115 | 52.52 126 | 51.50 162 | 54.14 148 | 68.56 74 | 78.85 114 | 79.50 98 | 86.82 99 | 83.94 103 |
|
IB-MVS | | 66.94 12 | 71.21 92 | 71.66 100 | 70.68 84 | 79.18 90 | 82.83 77 | 72.61 140 | 61.77 118 | 59.66 127 | 63.44 76 | 53.26 145 | 59.65 121 | 59.16 128 | 76.78 137 | 82.11 58 | 87.90 73 | 87.33 66 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
GBi-Net | | | 70.78 93 | 73.37 87 | 67.76 112 | 72.95 144 | 78.00 120 | 75.15 107 | 62.72 100 | 64.13 94 | 51.44 128 | 58.37 111 | 69.02 88 | 57.59 136 | 81.33 77 | 80.72 74 | 86.70 103 | 82.02 115 |
|
test1 | | | 70.78 93 | 73.37 87 | 67.76 112 | 72.95 144 | 78.00 120 | 75.15 107 | 62.72 100 | 64.13 94 | 51.44 128 | 58.37 111 | 69.02 88 | 57.59 136 | 81.33 77 | 80.72 74 | 86.70 103 | 82.02 115 |
|
ACMH | | 65.37 14 | 70.71 95 | 70.00 110 | 71.54 79 | 82.51 66 | 82.47 79 | 77.78 89 | 68.13 55 | 56.19 149 | 46.06 158 | 54.30 133 | 51.20 175 | 68.68 73 | 80.66 89 | 80.72 74 | 86.07 119 | 84.45 100 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet_NR-MVSNet | | | 70.59 96 | 72.19 95 | 68.72 105 | 77.72 102 | 80.72 94 | 73.81 131 | 69.65 45 | 61.99 111 | 43.23 167 | 60.54 97 | 57.50 130 | 58.57 129 | 79.56 105 | 81.07 68 | 89.34 48 | 83.97 101 |
|
FMVSNet3 | | | 70.49 97 | 72.90 91 | 67.67 117 | 72.88 147 | 77.98 123 | 74.96 113 | 62.72 100 | 64.13 94 | 51.44 128 | 58.37 111 | 69.02 88 | 57.43 139 | 79.43 107 | 79.57 96 | 86.59 109 | 81.81 122 |
|
baseline | | | 70.45 98 | 74.09 83 | 66.20 137 | 70.95 164 | 75.67 144 | 74.26 123 | 53.57 164 | 68.33 73 | 58.42 90 | 69.87 59 | 71.45 70 | 61.55 116 | 74.84 148 | 74.76 151 | 78.42 170 | 83.72 106 |
|
FMVSNet2 | | | 70.39 99 | 72.67 93 | 67.72 115 | 72.95 144 | 78.00 120 | 75.15 107 | 62.69 104 | 63.29 102 | 51.25 132 | 55.64 125 | 68.49 94 | 57.59 136 | 80.91 87 | 80.35 86 | 86.70 103 | 82.02 115 |
|
v8 | | | 70.23 100 | 69.86 112 | 70.67 85 | 74.69 127 | 79.82 102 | 78.79 80 | 59.18 143 | 58.80 131 | 58.20 93 | 55.00 130 | 57.33 131 | 66.31 89 | 77.51 127 | 76.71 136 | 86.82 99 | 83.88 104 |
|
v10 | | | 70.22 101 | 69.76 114 | 70.74 82 | 74.79 126 | 80.30 100 | 79.22 76 | 59.81 138 | 57.71 138 | 56.58 102 | 54.22 138 | 55.31 141 | 66.95 80 | 78.28 120 | 77.47 124 | 87.12 93 | 85.07 90 |
|
MS-PatchMatch | | | 70.17 102 | 70.49 106 | 69.79 95 | 80.98 76 | 77.97 125 | 77.51 91 | 58.95 147 | 62.33 109 | 55.22 108 | 53.14 148 | 65.90 101 | 62.03 109 | 79.08 111 | 77.11 131 | 84.08 148 | 77.91 149 |
|
baseline1 | | | 70.10 103 | 72.17 96 | 67.69 116 | 79.74 86 | 76.80 135 | 73.91 127 | 64.38 82 | 62.74 107 | 48.30 145 | 64.94 80 | 64.08 106 | 54.17 161 | 81.46 73 | 78.92 104 | 85.66 131 | 76.22 159 |
|
v2v482 | | | 70.05 104 | 69.46 118 | 70.74 82 | 74.62 128 | 80.32 99 | 79.00 78 | 60.62 127 | 57.41 140 | 56.89 99 | 55.43 129 | 55.14 143 | 66.39 88 | 77.25 130 | 77.14 130 | 86.90 96 | 83.57 108 |
|
v1144 | | | 69.93 105 | 69.36 119 | 70.61 86 | 74.89 125 | 80.93 90 | 79.11 77 | 60.64 126 | 55.97 151 | 55.31 107 | 53.85 140 | 54.14 148 | 66.54 86 | 78.10 122 | 77.44 125 | 87.14 90 | 85.09 89 |
|
baseline2 | | | 69.69 106 | 70.27 108 | 69.01 103 | 75.72 117 | 77.13 133 | 73.82 130 | 58.94 148 | 61.35 117 | 57.09 98 | 61.68 91 | 57.17 133 | 61.99 110 | 78.10 122 | 76.58 138 | 86.48 112 | 79.85 137 |
|
DU-MVS | | | 69.63 107 | 70.91 103 | 68.13 111 | 75.99 113 | 79.54 103 | 73.81 131 | 69.20 50 | 61.20 119 | 43.23 167 | 58.52 108 | 53.50 155 | 58.57 129 | 79.22 109 | 80.45 84 | 87.97 71 | 83.97 101 |
|
UniMVSNet (Re) | | | 69.53 108 | 71.90 98 | 66.76 134 | 76.42 111 | 80.93 90 | 72.59 141 | 68.03 57 | 61.75 114 | 41.68 172 | 58.34 114 | 57.23 132 | 53.27 164 | 79.53 106 | 80.62 82 | 88.57 62 | 84.90 93 |
|
v1192 | | | 69.50 109 | 68.83 125 | 70.29 90 | 74.49 129 | 80.92 92 | 78.55 82 | 60.54 128 | 55.04 157 | 54.21 110 | 52.79 154 | 52.33 168 | 66.92 81 | 77.88 124 | 77.35 128 | 87.04 94 | 85.51 81 |
|
HyFIR lowres test | | | 69.47 110 | 68.94 124 | 70.09 92 | 76.77 110 | 82.93 76 | 76.63 101 | 60.17 133 | 59.00 130 | 54.03 113 | 40.54 191 | 65.23 103 | 67.89 76 | 76.54 140 | 78.30 112 | 85.03 141 | 80.07 136 |
|
v144192 | | | 69.34 111 | 68.68 129 | 70.12 91 | 74.06 133 | 80.54 95 | 78.08 88 | 60.54 128 | 54.99 159 | 54.13 112 | 52.92 152 | 52.80 166 | 66.73 84 | 77.13 132 | 76.72 135 | 87.15 87 | 85.63 79 |
|
TranMVSNet+NR-MVSNet | | | 69.25 112 | 70.81 104 | 67.43 120 | 77.23 107 | 79.46 105 | 73.48 136 | 69.66 44 | 60.43 124 | 39.56 175 | 58.82 107 | 53.48 157 | 55.74 153 | 79.59 103 | 81.21 66 | 88.89 57 | 82.70 111 |
|
CHOSEN 1792x2688 | | | 69.20 113 | 69.26 120 | 69.13 101 | 76.86 109 | 78.93 109 | 77.27 95 | 60.12 135 | 61.86 113 | 54.42 109 | 42.54 186 | 61.61 113 | 66.91 82 | 78.55 118 | 78.14 114 | 79.23 168 | 83.23 110 |
|
v1921920 | | | 69.03 114 | 68.32 133 | 69.86 94 | 74.03 134 | 80.37 97 | 77.55 90 | 60.25 132 | 54.62 161 | 53.59 118 | 52.36 158 | 51.50 174 | 66.75 83 | 77.17 131 | 76.69 137 | 86.96 95 | 85.56 80 |
|
CostFormer | | | 68.92 115 | 69.58 116 | 68.15 110 | 75.98 115 | 76.17 142 | 78.22 87 | 51.86 176 | 65.80 82 | 61.56 80 | 63.57 87 | 62.83 110 | 61.85 113 | 70.40 180 | 68.67 177 | 79.42 166 | 79.62 140 |
|
FMVSNet1 | | | 68.84 116 | 70.47 107 | 66.94 131 | 71.35 161 | 77.68 128 | 74.71 114 | 62.35 112 | 56.93 142 | 49.94 138 | 50.01 168 | 64.59 104 | 57.07 141 | 81.33 77 | 80.72 74 | 86.25 114 | 82.00 118 |
|
NR-MVSNet | | | 68.79 117 | 70.56 105 | 66.71 136 | 77.48 105 | 79.54 103 | 73.52 135 | 69.20 50 | 61.20 119 | 39.76 174 | 58.52 108 | 50.11 181 | 51.37 168 | 80.26 97 | 80.71 78 | 88.97 55 | 83.59 107 |
|
V42 | | | 68.76 118 | 69.63 115 | 67.74 114 | 64.93 187 | 78.01 119 | 78.30 86 | 56.48 159 | 58.65 132 | 56.30 103 | 54.26 136 | 57.03 134 | 64.85 92 | 77.47 128 | 77.01 132 | 85.60 132 | 84.96 92 |
|
v1240 | | | 68.64 119 | 67.89 138 | 69.51 99 | 73.89 136 | 80.26 101 | 76.73 100 | 59.97 137 | 53.43 168 | 53.08 121 | 51.82 161 | 50.84 177 | 66.62 85 | 76.79 136 | 76.77 134 | 86.78 101 | 85.34 85 |
|
Fast-Effi-MVS+-dtu | | | 68.34 120 | 69.47 117 | 67.01 130 | 75.15 121 | 77.97 125 | 77.12 96 | 55.40 162 | 57.87 133 | 46.68 155 | 56.17 124 | 60.39 115 | 62.36 104 | 76.32 141 | 76.25 142 | 85.35 137 | 81.34 125 |
|
GA-MVS | | | 68.14 121 | 69.17 122 | 66.93 132 | 73.77 138 | 78.50 117 | 74.45 116 | 58.28 152 | 55.11 156 | 48.44 144 | 60.08 99 | 53.99 151 | 61.50 117 | 78.43 119 | 77.57 122 | 85.13 139 | 80.54 131 |
|
tfpn200view9 | | | 68.11 122 | 68.72 128 | 67.40 121 | 77.83 100 | 78.93 109 | 74.28 121 | 62.81 97 | 56.64 144 | 46.82 153 | 52.65 155 | 53.47 158 | 56.59 145 | 80.41 90 | 78.43 110 | 86.11 117 | 80.52 132 |
|
EPNet_dtu | | | 68.08 123 | 71.00 102 | 64.67 145 | 79.64 87 | 68.62 176 | 75.05 111 | 63.30 89 | 66.36 78 | 45.27 162 | 67.40 73 | 66.84 99 | 43.64 181 | 75.37 144 | 74.98 150 | 81.15 160 | 77.44 152 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres200 | | | 67.98 124 | 68.55 131 | 67.30 124 | 77.89 99 | 78.86 111 | 74.18 125 | 62.75 98 | 56.35 147 | 46.48 156 | 52.98 151 | 53.54 154 | 56.46 146 | 80.41 90 | 77.97 116 | 86.05 121 | 79.78 139 |
|
thres400 | | | 67.95 125 | 68.62 130 | 67.17 126 | 77.90 97 | 78.59 116 | 74.27 122 | 62.72 100 | 56.34 148 | 45.77 160 | 53.00 150 | 53.35 161 | 56.46 146 | 80.21 98 | 78.43 110 | 85.91 128 | 80.43 133 |
|
pmmvs4 | | | 67.89 126 | 67.39 143 | 68.48 108 | 71.60 158 | 73.57 158 | 74.45 116 | 60.98 123 | 64.65 89 | 57.97 94 | 54.95 131 | 51.73 173 | 61.88 112 | 73.78 154 | 75.11 148 | 83.99 150 | 77.91 149 |
|
v148 | | | 67.85 127 | 67.53 139 | 68.23 109 | 73.25 142 | 77.57 131 | 74.26 123 | 57.36 157 | 55.70 152 | 57.45 97 | 53.53 141 | 55.42 140 | 61.96 111 | 75.23 145 | 73.92 154 | 85.08 140 | 81.32 126 |
|
Vis-MVSNet (Re-imp) | | | 67.83 128 | 73.52 85 | 61.19 161 | 78.37 95 | 76.72 137 | 66.80 166 | 62.96 94 | 65.50 84 | 34.17 185 | 67.19 74 | 69.68 84 | 39.20 189 | 79.39 108 | 79.44 100 | 85.68 130 | 76.73 158 |
|
PatchMatch-RL | | | 67.78 129 | 66.65 148 | 69.10 102 | 73.01 143 | 72.69 161 | 68.49 156 | 61.85 117 | 62.93 105 | 60.20 84 | 56.83 122 | 50.42 179 | 69.52 68 | 75.62 143 | 74.46 153 | 81.51 158 | 73.62 176 |
|
thres600view7 | | | 67.68 130 | 68.43 132 | 66.80 133 | 77.90 97 | 78.86 111 | 73.84 129 | 62.75 98 | 56.07 150 | 44.70 165 | 52.85 153 | 52.81 165 | 55.58 154 | 80.41 90 | 77.77 118 | 86.05 121 | 80.28 134 |
|
COLMAP_ROB | | 62.73 15 | 67.66 131 | 66.76 147 | 68.70 106 | 80.49 81 | 77.98 123 | 75.29 105 | 62.95 95 | 63.62 100 | 49.96 137 | 47.32 177 | 50.72 178 | 58.57 129 | 76.87 135 | 75.50 147 | 84.94 143 | 75.33 168 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CDS-MVSNet | | | 67.65 132 | 69.83 113 | 65.09 141 | 75.39 120 | 76.55 138 | 74.42 119 | 63.75 86 | 53.55 167 | 49.37 141 | 59.41 104 | 62.45 111 | 44.44 179 | 79.71 102 | 79.82 91 | 83.17 154 | 77.36 153 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RPSCF | | | 67.64 133 | 71.25 101 | 63.43 154 | 61.86 192 | 70.73 168 | 67.26 161 | 50.86 181 | 74.20 59 | 58.91 86 | 67.49 72 | 69.33 85 | 64.10 96 | 71.41 167 | 68.45 181 | 77.61 172 | 77.17 154 |
|
thres100view900 | | | 67.60 134 | 68.02 135 | 67.12 128 | 77.83 100 | 77.75 127 | 73.90 128 | 62.52 108 | 56.64 144 | 46.82 153 | 52.65 155 | 53.47 158 | 55.92 150 | 78.77 115 | 77.62 121 | 85.72 129 | 79.23 142 |
|
Baseline_NR-MVSNet | | | 67.53 135 | 68.77 127 | 66.09 138 | 75.99 113 | 74.75 154 | 72.43 142 | 68.41 53 | 61.33 118 | 38.33 178 | 51.31 163 | 54.13 150 | 56.03 149 | 79.22 109 | 78.19 113 | 85.37 136 | 82.45 113 |
|
thisisatest0515 | | | 67.40 136 | 68.78 126 | 65.80 139 | 70.02 169 | 75.24 150 | 69.36 153 | 57.37 156 | 54.94 160 | 53.67 117 | 55.53 128 | 54.85 144 | 58.00 134 | 78.19 121 | 78.91 105 | 86.39 113 | 83.78 105 |
|
USDC | | | 67.36 137 | 67.90 137 | 66.74 135 | 71.72 154 | 75.23 151 | 71.58 144 | 60.28 131 | 67.45 75 | 50.54 136 | 60.93 93 | 45.20 194 | 62.08 107 | 76.56 139 | 74.50 152 | 84.25 147 | 75.38 167 |
|
EG-PatchMatch MVS | | | 67.24 138 | 66.94 145 | 67.60 118 | 78.73 93 | 81.35 85 | 73.28 138 | 59.49 140 | 46.89 190 | 51.42 131 | 43.65 183 | 53.49 156 | 55.50 156 | 81.38 76 | 80.66 80 | 87.15 87 | 81.17 127 |
|
UniMVSNet_ETH3D | | | 67.18 139 | 67.03 144 | 67.36 122 | 74.44 130 | 78.12 118 | 74.07 126 | 66.38 65 | 52.22 173 | 46.87 152 | 48.64 172 | 51.84 172 | 56.96 142 | 77.29 129 | 78.53 108 | 85.42 135 | 82.59 112 |
|
v7n | | | 67.05 140 | 66.94 145 | 67.17 126 | 72.35 149 | 78.97 108 | 73.26 139 | 58.88 149 | 51.16 179 | 50.90 133 | 48.21 174 | 50.11 181 | 60.96 120 | 77.70 125 | 77.38 126 | 86.68 106 | 85.05 91 |
|
IterMVS-SCA-FT | | | 66.89 141 | 69.22 121 | 64.17 147 | 71.30 162 | 75.64 145 | 71.33 145 | 53.17 168 | 57.63 139 | 49.08 142 | 60.72 95 | 60.05 119 | 63.09 100 | 74.99 147 | 73.92 154 | 77.07 176 | 81.57 124 |
|
IterMVS | | | 66.36 142 | 68.30 134 | 64.10 148 | 69.48 174 | 74.61 155 | 73.41 137 | 50.79 182 | 57.30 141 | 48.28 146 | 60.64 96 | 59.92 120 | 60.85 124 | 74.14 152 | 72.66 161 | 81.80 157 | 78.82 145 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TDRefinement | | | 66.09 143 | 65.03 160 | 67.31 123 | 69.73 171 | 76.75 136 | 75.33 103 | 64.55 81 | 60.28 125 | 49.72 140 | 45.63 180 | 42.83 197 | 60.46 125 | 75.75 142 | 75.95 143 | 84.08 148 | 78.04 148 |
|
pm-mvs1 | | | 65.62 144 | 67.42 141 | 63.53 153 | 73.66 140 | 76.39 139 | 69.66 150 | 60.87 125 | 49.73 183 | 43.97 166 | 51.24 164 | 57.00 135 | 48.16 173 | 79.89 100 | 77.84 117 | 84.85 145 | 79.82 138 |
|
tpm cat1 | | | 65.41 145 | 63.81 168 | 67.28 125 | 75.61 119 | 72.88 160 | 75.32 104 | 52.85 170 | 62.97 104 | 63.66 75 | 53.24 146 | 53.29 163 | 61.83 114 | 65.54 191 | 64.14 193 | 74.43 188 | 74.60 170 |
|
SCA | | | 65.40 146 | 66.58 149 | 64.02 149 | 70.65 165 | 73.37 159 | 67.35 160 | 53.46 166 | 63.66 99 | 54.14 111 | 60.84 94 | 60.20 118 | 61.50 117 | 69.96 181 | 68.14 182 | 77.01 177 | 69.91 182 |
|
anonymousdsp | | | 65.28 147 | 67.98 136 | 62.13 157 | 58.73 198 | 73.98 157 | 67.10 163 | 50.69 183 | 48.41 186 | 47.66 151 | 54.27 134 | 52.75 167 | 61.45 119 | 76.71 138 | 80.20 87 | 87.13 91 | 89.53 52 |
|
PMMVS | | | 65.06 148 | 69.17 122 | 60.26 166 | 55.25 204 | 63.43 192 | 66.71 167 | 43.01 200 | 62.41 108 | 50.64 134 | 69.44 60 | 67.04 98 | 63.29 99 | 74.36 151 | 73.54 157 | 82.68 155 | 73.99 175 |
|
CR-MVSNet | | | 64.83 149 | 65.54 154 | 64.01 150 | 70.64 166 | 69.41 171 | 65.97 171 | 52.74 171 | 57.81 135 | 52.65 123 | 54.27 134 | 56.31 137 | 60.92 121 | 72.20 163 | 73.09 159 | 81.12 161 | 75.69 164 |
|
TransMVSNet (Re) | | | 64.74 150 | 65.66 153 | 63.66 152 | 77.40 106 | 75.33 149 | 69.86 149 | 62.67 106 | 47.63 188 | 41.21 173 | 50.01 168 | 52.33 168 | 45.31 178 | 79.57 104 | 77.69 120 | 85.49 133 | 77.07 156 |
|
test-LLR | | | 64.42 151 | 64.36 164 | 64.49 146 | 75.02 123 | 63.93 189 | 66.61 168 | 61.96 115 | 54.41 162 | 47.77 148 | 57.46 118 | 60.25 116 | 55.20 157 | 70.80 174 | 69.33 172 | 80.40 164 | 74.38 172 |
|
MDTV_nov1_ep13 | | | 64.37 152 | 65.24 156 | 63.37 155 | 68.94 176 | 70.81 167 | 72.40 143 | 50.29 185 | 60.10 126 | 53.91 115 | 60.07 100 | 59.15 123 | 57.21 140 | 69.43 184 | 67.30 184 | 77.47 173 | 69.78 184 |
|
tfpnnormal | | | 64.27 153 | 63.64 169 | 65.02 142 | 75.84 116 | 75.61 146 | 71.24 147 | 62.52 108 | 47.79 187 | 42.97 169 | 42.65 185 | 44.49 195 | 52.66 166 | 78.77 115 | 76.86 133 | 84.88 144 | 79.29 141 |
|
PatchmatchNet | | | 64.21 154 | 64.65 162 | 63.69 151 | 71.29 163 | 68.66 175 | 69.63 151 | 51.70 178 | 63.04 103 | 53.77 116 | 59.83 103 | 58.34 128 | 60.23 126 | 68.54 187 | 66.06 189 | 75.56 183 | 68.08 188 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 64.00 155 | 62.99 171 | 65.18 140 | 73.29 141 | 72.07 163 | 68.98 155 | 53.07 169 | 57.74 137 | 58.41 91 | 55.55 127 | 47.74 188 | 60.89 123 | 69.53 183 | 67.14 186 | 76.44 180 | 71.19 180 |
|
pmmvs-eth3d | | | 63.52 156 | 62.44 178 | 64.77 144 | 66.82 182 | 70.12 170 | 69.41 152 | 59.48 141 | 54.34 165 | 52.71 122 | 46.24 179 | 44.35 196 | 56.93 143 | 72.37 158 | 73.77 156 | 83.30 152 | 75.91 161 |
|
WR-MVS | | | 63.03 157 | 67.40 142 | 57.92 176 | 75.14 122 | 77.60 130 | 60.56 189 | 66.10 68 | 54.11 166 | 23.88 196 | 53.94 139 | 53.58 153 | 34.50 193 | 73.93 153 | 77.71 119 | 87.35 85 | 80.94 128 |
|
PEN-MVS | | | 62.96 158 | 65.77 152 | 59.70 169 | 73.98 135 | 75.45 147 | 63.39 182 | 67.61 60 | 52.49 171 | 25.49 195 | 53.39 142 | 49.12 184 | 40.85 187 | 71.94 165 | 77.26 129 | 86.86 98 | 80.72 130 |
|
TinyColmap | | | 62.84 159 | 61.03 184 | 64.96 143 | 69.61 172 | 71.69 164 | 68.48 157 | 59.76 139 | 55.41 153 | 47.69 150 | 47.33 176 | 34.20 205 | 62.76 103 | 74.52 149 | 72.59 162 | 81.44 159 | 71.47 179 |
|
CP-MVSNet | | | 62.68 160 | 65.49 155 | 59.40 172 | 71.84 152 | 75.34 148 | 62.87 184 | 67.04 63 | 52.64 170 | 27.19 193 | 53.38 143 | 48.15 186 | 41.40 185 | 71.26 168 | 75.68 144 | 86.07 119 | 82.00 118 |
|
gg-mvs-nofinetune | | | 62.55 161 | 65.05 159 | 59.62 170 | 78.72 94 | 77.61 129 | 70.83 148 | 53.63 163 | 39.71 202 | 22.04 202 | 36.36 195 | 64.32 105 | 47.53 174 | 81.16 82 | 79.03 103 | 85.00 142 | 77.17 154 |
|
CVMVSNet | | | 62.55 161 | 65.89 150 | 58.64 174 | 66.95 180 | 69.15 173 | 66.49 170 | 56.29 161 | 52.46 172 | 32.70 186 | 59.27 105 | 58.21 129 | 50.09 170 | 71.77 166 | 71.39 166 | 79.31 167 | 78.99 144 |
|
CMPMVS | | 47.78 17 | 62.49 163 | 62.52 176 | 62.46 156 | 70.01 170 | 70.66 169 | 62.97 183 | 51.84 177 | 51.98 175 | 56.71 101 | 42.87 184 | 53.62 152 | 57.80 135 | 72.23 161 | 70.37 169 | 75.45 185 | 75.91 161 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs6 | | | 62.41 164 | 62.88 172 | 61.87 158 | 71.38 160 | 75.18 153 | 67.76 159 | 59.45 142 | 41.64 198 | 42.52 171 | 37.33 193 | 52.91 164 | 46.87 175 | 77.67 126 | 76.26 141 | 83.23 153 | 79.18 143 |
|
tpm | | | 62.41 164 | 63.15 170 | 61.55 160 | 72.24 150 | 63.79 191 | 71.31 146 | 46.12 198 | 57.82 134 | 55.33 106 | 59.90 102 | 54.74 145 | 53.63 162 | 67.24 190 | 64.29 192 | 70.65 198 | 74.25 174 |
|
PS-CasMVS | | | 62.38 166 | 65.06 158 | 59.25 173 | 71.73 153 | 75.21 152 | 62.77 185 | 66.99 64 | 51.94 177 | 26.96 194 | 52.00 160 | 47.52 189 | 41.06 186 | 71.16 171 | 75.60 145 | 85.97 126 | 81.97 120 |
|
pmmvs5 | | | 62.37 167 | 64.04 166 | 60.42 164 | 65.03 185 | 71.67 165 | 67.17 162 | 52.70 173 | 50.30 180 | 44.80 163 | 54.23 137 | 51.19 176 | 49.37 171 | 72.88 157 | 73.48 158 | 83.45 151 | 74.55 171 |
|
tpmrst | | | 62.00 168 | 62.35 179 | 61.58 159 | 71.62 157 | 64.14 188 | 69.07 154 | 48.22 194 | 62.21 110 | 53.93 114 | 58.26 115 | 55.30 142 | 55.81 152 | 63.22 195 | 62.62 195 | 70.85 197 | 70.70 181 |
|
PatchT | | | 61.97 169 | 64.04 166 | 59.55 171 | 60.49 194 | 67.40 179 | 56.54 195 | 48.65 190 | 56.69 143 | 52.65 123 | 51.10 165 | 52.14 171 | 60.92 121 | 72.20 163 | 73.09 159 | 78.03 171 | 75.69 164 |
|
DTE-MVSNet | | | 61.85 170 | 64.96 161 | 58.22 175 | 74.32 131 | 74.39 156 | 61.01 188 | 67.85 59 | 51.76 178 | 21.91 203 | 53.28 144 | 48.17 185 | 37.74 190 | 72.22 162 | 76.44 139 | 86.52 111 | 78.49 146 |
|
SixPastTwentyTwo | | | 61.84 171 | 62.45 177 | 61.12 162 | 69.20 175 | 72.20 162 | 62.03 186 | 57.40 155 | 46.54 191 | 38.03 180 | 57.14 121 | 41.72 199 | 58.12 133 | 69.67 182 | 71.58 165 | 81.94 156 | 78.30 147 |
|
WR-MVS_H | | | 61.83 172 | 65.87 151 | 57.12 179 | 71.72 154 | 76.87 134 | 61.45 187 | 66.19 66 | 51.97 176 | 22.92 200 | 53.13 149 | 52.30 170 | 33.80 194 | 71.03 172 | 75.00 149 | 86.65 107 | 80.78 129 |
|
LTVRE_ROB | | 59.44 16 | 61.82 173 | 62.64 175 | 60.87 163 | 72.83 148 | 77.19 132 | 64.37 178 | 58.97 146 | 33.56 206 | 28.00 192 | 52.59 157 | 42.21 198 | 63.93 97 | 74.52 149 | 76.28 140 | 77.15 175 | 82.13 114 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
RPMNet | | | 61.71 174 | 62.88 172 | 60.34 165 | 69.51 173 | 69.41 171 | 63.48 181 | 49.23 186 | 57.81 135 | 45.64 161 | 50.51 166 | 50.12 180 | 53.13 165 | 68.17 189 | 68.49 180 | 81.07 162 | 75.62 166 |
|
TESTMET0.1,1 | | | 61.10 175 | 64.36 164 | 57.29 178 | 57.53 199 | 63.93 189 | 66.61 168 | 36.22 204 | 54.41 162 | 47.77 148 | 57.46 118 | 60.25 116 | 55.20 157 | 70.80 174 | 69.33 172 | 80.40 164 | 74.38 172 |
|
test-mter | | | 60.84 176 | 64.62 163 | 56.42 181 | 55.99 202 | 64.18 187 | 65.39 173 | 34.23 205 | 54.39 164 | 46.21 157 | 57.40 120 | 59.49 122 | 55.86 151 | 71.02 173 | 69.65 171 | 80.87 163 | 76.20 160 |
|
PM-MVS | | | 60.48 177 | 60.94 185 | 59.94 167 | 58.85 197 | 66.83 182 | 64.27 179 | 51.39 179 | 55.03 158 | 48.03 147 | 50.00 170 | 40.79 201 | 58.26 132 | 69.20 185 | 67.13 187 | 78.84 169 | 77.60 151 |
|
MDTV_nov1_ep13_2view | | | 60.16 178 | 60.51 186 | 59.75 168 | 65.39 184 | 69.05 174 | 68.00 158 | 48.29 192 | 51.99 174 | 45.95 159 | 48.01 175 | 49.64 183 | 53.39 163 | 68.83 186 | 66.52 188 | 77.47 173 | 69.55 185 |
|
EPMVS | | | 60.00 179 | 61.97 180 | 57.71 177 | 68.46 177 | 63.17 195 | 64.54 177 | 48.23 193 | 63.30 101 | 44.72 164 | 60.19 98 | 56.05 139 | 50.85 169 | 65.27 193 | 62.02 196 | 69.44 200 | 63.81 194 |
|
TAMVS | | | 59.58 180 | 62.81 174 | 55.81 183 | 66.03 183 | 65.64 186 | 63.86 180 | 48.74 189 | 49.95 182 | 37.07 182 | 54.77 132 | 58.54 126 | 44.44 179 | 72.29 160 | 71.79 163 | 74.70 187 | 66.66 190 |
|
test0.0.03 1 | | | 58.80 181 | 61.58 182 | 55.56 184 | 75.02 123 | 68.45 177 | 59.58 193 | 61.96 115 | 52.74 169 | 29.57 189 | 49.75 171 | 54.56 146 | 31.46 196 | 71.19 169 | 69.77 170 | 75.75 181 | 64.57 192 |
|
CHOSEN 280x420 | | | 58.70 182 | 61.88 181 | 54.98 186 | 55.45 203 | 50.55 206 | 64.92 175 | 40.36 201 | 55.21 154 | 38.13 179 | 48.31 173 | 63.76 107 | 63.03 102 | 73.73 155 | 68.58 179 | 68.00 202 | 73.04 177 |
|
MIMVSNet | | | 58.52 183 | 61.34 183 | 55.22 185 | 60.76 193 | 67.01 181 | 66.81 165 | 49.02 188 | 56.43 146 | 38.90 177 | 40.59 190 | 54.54 147 | 40.57 188 | 73.16 156 | 71.65 164 | 75.30 186 | 66.00 191 |
|
FMVSNet5 | | | 57.24 184 | 60.02 187 | 53.99 189 | 56.45 201 | 62.74 196 | 65.27 174 | 47.03 195 | 55.14 155 | 39.55 176 | 40.88 188 | 53.42 160 | 41.83 182 | 72.35 159 | 71.10 168 | 73.79 190 | 64.50 193 |
|
gm-plane-assit | | | 57.00 185 | 57.62 192 | 56.28 182 | 76.10 112 | 62.43 198 | 47.62 205 | 46.57 196 | 33.84 205 | 23.24 198 | 37.52 192 | 40.19 202 | 59.61 127 | 79.81 101 | 77.55 123 | 84.55 146 | 72.03 178 |
|
FC-MVSNet-test | | | 56.90 186 | 65.20 157 | 47.21 196 | 66.98 179 | 63.20 194 | 49.11 204 | 58.60 151 | 59.38 129 | 11.50 209 | 65.60 77 | 56.68 136 | 24.66 203 | 71.17 170 | 71.36 167 | 72.38 194 | 69.02 186 |
|
Anonymous20231206 | | | 56.36 187 | 57.80 191 | 54.67 187 | 70.08 168 | 66.39 183 | 60.46 190 | 57.54 154 | 49.50 185 | 29.30 190 | 33.86 198 | 46.64 190 | 35.18 192 | 70.44 178 | 68.88 176 | 75.47 184 | 68.88 187 |
|
ADS-MVSNet | | | 55.94 188 | 58.01 189 | 53.54 191 | 62.48 191 | 58.48 200 | 59.12 194 | 46.20 197 | 59.65 128 | 42.88 170 | 52.34 159 | 53.31 162 | 46.31 176 | 62.00 197 | 60.02 198 | 64.23 204 | 60.24 201 |
|
EU-MVSNet | | | 54.63 189 | 58.69 188 | 49.90 194 | 56.99 200 | 62.70 197 | 56.41 196 | 50.64 184 | 45.95 193 | 23.14 199 | 50.42 167 | 46.51 191 | 36.63 191 | 65.51 192 | 64.85 191 | 75.57 182 | 74.91 169 |
|
MVS-HIRNet | | | 54.41 190 | 52.10 197 | 57.11 180 | 58.99 196 | 56.10 203 | 49.68 203 | 49.10 187 | 46.18 192 | 52.15 127 | 33.18 199 | 46.11 192 | 56.10 148 | 63.19 196 | 59.70 199 | 76.64 179 | 60.25 200 |
|
testgi | | | 54.39 191 | 57.86 190 | 50.35 193 | 71.59 159 | 67.24 180 | 54.95 197 | 53.25 167 | 43.36 195 | 23.78 197 | 44.64 181 | 47.87 187 | 24.96 201 | 70.45 177 | 68.66 178 | 73.60 191 | 62.78 197 |
|
test20.03 | | | 53.93 192 | 56.28 193 | 51.19 192 | 72.19 151 | 65.83 184 | 53.20 199 | 61.08 122 | 42.74 196 | 22.08 201 | 37.07 194 | 45.76 193 | 24.29 204 | 70.44 178 | 69.04 174 | 74.31 189 | 63.05 196 |
|
MDA-MVSNet-bldmvs | | | 53.37 193 | 53.01 196 | 53.79 190 | 43.67 208 | 67.95 178 | 59.69 192 | 57.92 153 | 43.69 194 | 32.41 187 | 41.47 187 | 27.89 210 | 52.38 167 | 56.97 203 | 65.99 190 | 76.68 178 | 67.13 189 |
|
FPMVS | | | 51.87 194 | 50.00 199 | 54.07 188 | 66.83 181 | 57.25 201 | 60.25 191 | 50.91 180 | 50.25 181 | 34.36 184 | 36.04 196 | 32.02 207 | 41.49 184 | 58.98 201 | 56.07 200 | 70.56 199 | 59.36 202 |
|
MIMVSNet1 | | | 49.27 195 | 53.25 195 | 44.62 198 | 44.61 206 | 61.52 199 | 53.61 198 | 52.18 174 | 41.62 199 | 18.68 205 | 28.14 204 | 41.58 200 | 25.50 199 | 68.46 188 | 69.04 174 | 73.15 192 | 62.37 198 |
|
pmmvs3 | | | 47.65 196 | 49.08 201 | 45.99 197 | 44.61 206 | 54.79 204 | 50.04 201 | 31.95 208 | 33.91 204 | 29.90 188 | 30.37 200 | 33.53 206 | 46.31 176 | 63.50 194 | 63.67 194 | 73.14 193 | 63.77 195 |
|
N_pmnet | | | 47.35 197 | 50.13 198 | 44.11 199 | 59.98 195 | 51.64 205 | 51.86 200 | 44.80 199 | 49.58 184 | 20.76 204 | 40.65 189 | 40.05 203 | 29.64 197 | 59.84 199 | 55.15 201 | 57.63 205 | 54.00 204 |
|
new-patchmatchnet | | | 46.97 198 | 49.47 200 | 44.05 200 | 62.82 189 | 56.55 202 | 45.35 206 | 52.01 175 | 42.47 197 | 17.04 207 | 35.73 197 | 35.21 204 | 21.84 207 | 61.27 198 | 54.83 202 | 65.26 203 | 60.26 199 |
|
GG-mvs-BLEND | | | 46.86 199 | 67.51 140 | 22.75 205 | 0.05 215 | 76.21 141 | 64.69 176 | 0.04 212 | 61.90 112 | 0.09 215 | 55.57 126 | 71.32 72 | 0.08 211 | 70.54 176 | 67.19 185 | 71.58 195 | 69.86 183 |
|
PMVS | | 39.38 18 | 46.06 200 | 43.30 202 | 49.28 195 | 62.93 188 | 38.75 208 | 41.88 207 | 53.50 165 | 33.33 207 | 35.46 183 | 28.90 203 | 31.01 208 | 33.04 195 | 58.61 202 | 54.63 203 | 68.86 201 | 57.88 203 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 38.40 201 | 42.64 203 | 33.44 202 | 37.54 211 | 45.00 207 | 36.60 208 | 32.72 207 | 40.27 200 | 12.72 208 | 29.89 201 | 28.90 209 | 24.78 202 | 53.17 204 | 52.90 204 | 56.31 206 | 48.34 205 |
|
Gipuma | | | 36.38 202 | 35.80 204 | 37.07 201 | 45.76 205 | 33.90 209 | 29.81 209 | 48.47 191 | 39.91 201 | 18.02 206 | 8.00 211 | 8.14 215 | 25.14 200 | 59.29 200 | 61.02 197 | 55.19 207 | 40.31 206 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 25.60 203 | 29.75 205 | 20.76 206 | 28.00 212 | 30.93 210 | 23.10 210 | 29.18 209 | 23.14 209 | 1.46 214 | 18.23 207 | 16.54 212 | 5.08 209 | 40.22 205 | 41.40 206 | 37.76 208 | 37.79 208 |
|
E-PMN | | | 21.77 204 | 18.24 207 | 25.89 203 | 40.22 209 | 19.58 212 | 12.46 213 | 39.87 202 | 18.68 211 | 6.71 211 | 9.57 208 | 4.31 218 | 22.36 206 | 19.89 209 | 27.28 208 | 33.73 209 | 28.34 210 |
|
EMVS | | | 20.98 205 | 17.15 208 | 25.44 204 | 39.51 210 | 19.37 213 | 12.66 212 | 39.59 203 | 19.10 210 | 6.62 212 | 9.27 209 | 4.40 217 | 22.43 205 | 17.99 210 | 24.40 209 | 31.81 210 | 25.53 211 |
|
MVE | | 19.12 19 | 20.47 206 | 23.27 206 | 17.20 207 | 12.66 214 | 25.41 211 | 10.52 214 | 34.14 206 | 14.79 212 | 6.53 213 | 8.79 210 | 4.68 216 | 16.64 208 | 29.49 207 | 41.63 205 | 22.73 212 | 38.11 207 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.09 207 | 0.15 209 | 0.02 209 | 0.01 216 | 0.02 216 | 0.05 217 | 0.01 213 | 0.11 213 | 0.01 216 | 0.26 213 | 0.01 219 | 0.06 213 | 0.10 211 | 0.10 210 | 0.01 214 | 0.43 213 |
|
test123 | | | 0.09 207 | 0.14 210 | 0.02 209 | 0.00 217 | 0.02 216 | 0.02 218 | 0.01 213 | 0.09 214 | 0.00 217 | 0.30 212 | 0.00 220 | 0.08 211 | 0.03 212 | 0.09 211 | 0.01 214 | 0.45 212 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 217 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 217 | 0.00 214 | 0.00 220 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 217 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 217 | 0.00 214 | 0.00 220 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 217 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 217 | 0.00 214 | 0.00 220 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
9.14 | | | | | | | | | | | | | 86.88 15 | | | | | |
|
SR-MVS | | | | | | 88.99 33 | | | 73.57 24 | | | | 87.54 13 | | | | | |
|
Anonymous202405211 | | | | 72.16 97 | | 80.85 77 | 81.85 81 | 76.88 99 | 65.40 74 | 62.89 106 | | 46.35 178 | 67.99 95 | 62.05 108 | 81.15 83 | 80.38 85 | 85.97 126 | 84.50 98 |
|
our_test_3 | | | | | | 67.93 178 | 70.99 166 | 66.89 164 | | | | | | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 95.35 3 |
|
ambc | | | | 53.42 194 | | 64.99 186 | 63.36 193 | 49.96 202 | | 47.07 189 | 37.12 181 | 28.97 202 | 16.36 213 | 41.82 183 | 75.10 146 | 67.34 183 | 71.55 196 | 75.72 163 |
|
MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 18 | | | | | |
|
MTMP | | | | | | | | | | | 82.66 4 | | 84.91 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.85 216 | | | | | | | | | | |
|
tmp_tt | | | | | 14.50 208 | 14.68 213 | 7.17 215 | 10.46 215 | 2.21 211 | 37.73 203 | 28.71 191 | 25.26 205 | 16.98 211 | 4.37 210 | 31.49 206 | 29.77 207 | 26.56 211 | |
|
XVS | | | | | | 86.63 45 | 88.68 27 | 85.00 46 | | | 71.81 45 | | 81.92 37 | | | | 90.47 21 | |
|
X-MVStestdata | | | | | | 86.63 45 | 88.68 27 | 85.00 46 | | | 71.81 45 | | 81.92 37 | | | | 90.47 21 | |
|
abl_6 | | | | | 79.05 42 | 87.27 41 | 88.85 25 | 83.62 54 | 68.25 54 | 81.68 40 | 72.94 39 | 73.79 44 | 84.45 28 | 72.55 49 | | | 89.66 44 | 90.64 43 |
|
mPP-MVS | | | | | | 89.90 24 | | | | | | | 81.29 42 | | | | | |
|
NP-MVS | | | | | | | | | | 80.10 45 | | | | | | | | |
|
Patchmtry | | | | | | | 65.80 185 | 65.97 171 | 52.74 171 | | 52.65 123 | | | | | | | |
|
DeepMVS_CX | | | | | | | 18.74 214 | 18.55 211 | 8.02 210 | 26.96 208 | 7.33 210 | 23.81 206 | 13.05 214 | 25.99 198 | 25.17 208 | | 22.45 213 | 36.25 209 |
|