AdaColmap | | | 97.23 96 | 96.80 99 | 98.51 108 | 99.99 1 | 95.60 155 | 99.09 215 | 98.84 46 | 93.32 139 | 96.74 142 | 99.72 78 | 86.04 197 | 100.00 1 | 98.01 96 | 99.43 105 | 99.94 74 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 3 | 99.98 2 | 99.51 3 | 99.98 8 | 98.69 54 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 18 | 100.00 1 | 99.75 19 | 100.00 1 | 99.99 17 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 2 | 99.97 3 | 99.59 2 | 99.97 16 | 98.64 62 | 98.47 2 | 99.13 70 | 99.92 10 | 96.38 23 | 100.00 1 | 99.74 21 | 100.00 1 | 100.00 1 |
|
mPP-MVS | | | 98.39 51 | 98.20 48 | 98.97 79 | 99.97 3 | 96.92 111 | 99.95 37 | 98.38 134 | 95.04 75 | 98.61 93 | 99.80 56 | 93.39 100 | 100.00 1 | 98.64 74 | 100.00 1 | 99.98 48 |
|
CPTT-MVS | | | 97.64 83 | 97.32 84 | 98.58 101 | 99.97 3 | 95.77 148 | 99.96 23 | 98.35 140 | 89.90 230 | 98.36 103 | 99.79 58 | 91.18 144 | 99.99 34 | 98.37 82 | 99.99 18 | 99.99 17 |
|
DP-MVS Recon | | | 98.41 48 | 98.02 57 | 99.56 19 | 99.97 3 | 98.70 39 | 99.92 62 | 98.44 104 | 92.06 185 | 98.40 102 | 99.84 45 | 95.68 35 | 100.00 1 | 98.19 86 | 99.71 86 | 99.97 59 |
|
PAPR | | | 98.52 40 | 98.16 50 | 99.58 18 | 99.97 3 | 98.77 32 | 99.95 37 | 98.43 112 | 95.35 68 | 98.03 114 | 99.75 73 | 94.03 86 | 99.98 40 | 98.11 91 | 99.83 74 | 99.99 17 |
|
HFP-MVS | | | 98.56 36 | 98.37 39 | 99.14 61 | 99.96 8 | 97.43 93 | 99.95 37 | 98.61 68 | 94.77 82 | 99.31 59 | 99.85 32 | 94.22 79 | 100.00 1 | 98.70 68 | 99.98 31 | 99.98 48 |
|
region2R | | | 98.54 38 | 98.37 39 | 99.05 71 | 99.96 8 | 97.18 101 | 99.96 23 | 98.55 80 | 94.87 80 | 99.45 48 | 99.85 32 | 94.07 85 | 100.00 1 | 98.67 70 | 100.00 1 | 99.98 48 |
|
#test# | | | 98.59 34 | 98.41 31 | 99.14 61 | 99.96 8 | 97.43 93 | 99.95 37 | 98.61 68 | 95.00 76 | 99.31 59 | 99.85 32 | 94.22 79 | 100.00 1 | 98.78 65 | 99.98 31 | 99.98 48 |
|
ACMMPR | | | 98.50 41 | 98.32 43 | 99.05 71 | 99.96 8 | 97.18 101 | 99.95 37 | 98.60 70 | 94.77 82 | 99.31 59 | 99.84 45 | 93.73 94 | 100.00 1 | 98.70 68 | 99.98 31 | 99.98 48 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 8 | 99.96 8 | 99.15 13 | 99.97 16 | 98.62 66 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 12 | 100.00 1 | 99.54 29 | 100.00 1 | 100.00 1 |
|
CP-MVS | | | 98.45 45 | 98.32 43 | 98.87 84 | 99.96 8 | 96.62 118 | 99.97 16 | 98.39 130 | 94.43 94 | 98.90 80 | 99.87 25 | 94.30 77 | 100.00 1 | 99.04 49 | 99.99 18 | 99.99 17 |
|
testtj | | | 98.89 16 | 98.69 16 | 99.52 23 | 99.94 14 | 98.56 49 | 99.90 70 | 98.55 80 | 95.14 74 | 99.72 27 | 99.84 45 | 95.46 41 | 100.00 1 | 99.65 28 | 99.99 18 | 99.99 17 |
|
test_0728_SECOND | | | | | 99.82 4 | 99.94 14 | 99.47 4 | 99.95 37 | 98.43 112 | | | | | 100.00 1 | 99.99 2 | 100.00 1 | 100.00 1 |
|
XVS | | | 98.70 26 | 98.55 23 | 99.15 59 | 99.94 14 | 97.50 89 | 99.94 52 | 98.42 122 | 96.22 46 | 99.41 52 | 99.78 62 | 94.34 72 | 99.96 51 | 98.92 56 | 99.95 47 | 99.99 17 |
|
test_prior3 | | | 98.99 12 | 98.84 13 | 99.43 33 | 99.94 14 | 98.49 53 | 99.95 37 | 98.65 59 | 95.78 55 | 99.73 24 | 99.76 68 | 96.00 26 | 99.80 104 | 99.78 17 | 100.00 1 | 99.99 17 |
|
X-MVStestdata | | | 93.83 182 | 92.06 208 | 99.15 59 | 99.94 14 | 97.50 89 | 99.94 52 | 98.42 122 | 96.22 46 | 99.41 52 | 41.37 350 | 94.34 72 | 99.96 51 | 98.92 56 | 99.95 47 | 99.99 17 |
|
test_prior | | | | | 99.43 33 | 99.94 14 | 98.49 53 | | 98.65 59 | | | | | 99.80 104 | | | 99.99 17 |
|
MSLP-MVS++ | | | 99.13 6 | 99.01 8 | 99.49 29 | 99.94 14 | 98.46 55 | 99.98 8 | 98.86 44 | 97.10 22 | 99.80 15 | 99.94 4 | 95.92 30 | 100.00 1 | 99.51 30 | 100.00 1 | 100.00 1 |
|
APDe-MVS | | | 99.06 9 | 98.91 11 | 99.51 25 | 99.94 14 | 98.76 36 | 99.91 66 | 98.39 130 | 97.20 21 | 99.46 47 | 99.85 32 | 95.53 40 | 99.79 106 | 99.86 9 | 100.00 1 | 99.99 17 |
|
MP-MVS | | | 98.23 60 | 97.97 60 | 99.03 73 | 99.94 14 | 97.17 104 | 99.95 37 | 98.39 130 | 94.70 85 | 98.26 109 | 99.81 55 | 91.84 135 | 100.00 1 | 98.85 60 | 99.97 41 | 99.93 75 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CDPH-MVS | | | 98.65 30 | 98.36 41 | 99.49 29 | 99.94 14 | 98.73 37 | 99.87 84 | 98.33 143 | 93.97 115 | 99.76 22 | 99.87 25 | 94.99 54 | 99.75 114 | 98.55 77 | 100.00 1 | 99.98 48 |
|
PAPM_NR | | | 98.12 63 | 97.93 64 | 98.70 90 | 99.94 14 | 96.13 137 | 99.82 109 | 98.43 112 | 94.56 89 | 97.52 125 | 99.70 82 | 94.40 67 | 99.98 40 | 97.00 124 | 99.98 31 | 99.99 17 |
|
MG-MVS | | | 98.91 15 | 98.65 18 | 99.68 9 | 99.94 14 | 99.07 15 | 99.64 153 | 99.44 18 | 97.33 15 | 99.00 77 | 99.72 78 | 94.03 86 | 99.98 40 | 98.73 67 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 99.93 26 | 99.30 6 | | 98.43 112 | 97.26 19 | 99.80 15 | 99.88 21 | 96.71 19 | 100.00 1 | | | |
|
ETH3 D test6400 | | | 98.81 20 | 98.54 24 | 99.59 16 | 99.93 26 | 98.93 19 | 99.93 58 | 98.46 101 | 94.56 89 | 99.84 8 | 99.92 10 | 94.32 76 | 99.86 88 | 99.96 5 | 99.98 31 | 100.00 1 |
|
DVP-MVS | | | 99.30 4 | 99.16 3 | 99.73 6 | 99.93 26 | 99.29 7 | 99.95 37 | 98.32 145 | 97.28 16 | 99.83 9 | 99.91 12 | 97.22 14 | 100.00 1 | 99.99 2 | 100.00 1 | 99.89 84 |
|
test0726 | | | | | | 99.93 26 | 99.29 7 | 99.96 23 | 98.42 122 | 97.28 16 | 99.86 4 | 99.94 4 | 97.22 14 | | | | |
|
MSP-MVS | | | 99.09 7 | 99.12 5 | 98.98 78 | 99.93 26 | 97.24 98 | 99.95 37 | 98.42 122 | 97.50 12 | 99.52 45 | 99.88 21 | 97.43 11 | 99.71 122 | 99.50 31 | 99.98 31 | 100.00 1 |
|
agg_prior1 | | | 98.88 17 | 98.66 17 | 99.54 21 | 99.93 26 | 98.77 32 | 99.96 23 | 98.43 112 | 94.63 88 | 99.63 33 | 99.85 32 | 95.79 34 | 99.85 92 | 99.72 25 | 99.99 18 | 99.99 17 |
|
agg_prior | | | | | | 99.93 26 | 98.77 32 | | 98.43 112 | | 99.63 33 | | | 99.85 92 | | | |
|
GST-MVS | | | 98.27 56 | 97.97 60 | 99.17 55 | 99.92 33 | 97.57 83 | 99.93 58 | 98.39 130 | 94.04 113 | 98.80 83 | 99.74 75 | 92.98 112 | 100.00 1 | 98.16 88 | 99.76 82 | 99.93 75 |
|
TEST9 | | | | | | 99.92 33 | 98.92 20 | 99.96 23 | 98.43 112 | 93.90 120 | 99.71 28 | 99.86 28 | 95.88 31 | 99.85 92 | | | |
|
train_agg | | | 98.88 17 | 98.65 18 | 99.59 16 | 99.92 33 | 98.92 20 | 99.96 23 | 98.43 112 | 94.35 97 | 99.71 28 | 99.86 28 | 95.94 28 | 99.85 92 | 99.69 27 | 99.98 31 | 99.99 17 |
|
test_8 | | | | | | 99.92 33 | 98.88 23 | 99.96 23 | 98.43 112 | 94.35 97 | 99.69 30 | 99.85 32 | 95.94 28 | 99.85 92 | | | |
|
PGM-MVS | | | 98.34 52 | 98.13 52 | 98.99 77 | 99.92 33 | 97.00 107 | 99.75 127 | 99.50 16 | 93.90 120 | 99.37 56 | 99.76 68 | 93.24 107 | 100.00 1 | 97.75 109 | 99.96 44 | 99.98 48 |
|
ACMMP | | | 97.74 80 | 97.44 78 | 98.66 93 | 99.92 33 | 96.13 137 | 99.18 210 | 99.45 17 | 94.84 81 | 96.41 152 | 99.71 80 | 91.40 138 | 99.99 34 | 97.99 98 | 98.03 137 | 99.87 87 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS++ | | | 99.07 8 | 98.88 12 | 99.63 10 | 99.90 39 | 99.02 16 | 99.95 37 | 98.56 76 | 97.56 11 | 99.44 49 | 99.85 32 | 95.38 43 | 100.00 1 | 99.31 38 | 99.99 18 | 99.87 87 |
|
APD-MVS | | | 98.62 31 | 98.35 42 | 99.41 37 | 99.90 39 | 98.51 52 | 99.87 84 | 98.36 139 | 94.08 108 | 99.74 23 | 99.73 77 | 94.08 84 | 99.74 118 | 99.42 35 | 99.99 18 | 99.99 17 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 96.59 1 | 98.81 20 | 98.54 24 | 99.62 13 | 99.90 39 | 98.85 26 | 99.24 206 | 98.47 99 | 98.14 4 | 99.08 71 | 99.91 12 | 93.09 110 | 100.00 1 | 99.04 49 | 99.99 18 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DPE-MVS | | | 99.26 5 | 99.10 6 | 99.74 5 | 99.89 42 | 99.24 11 | 99.87 84 | 98.44 104 | 97.48 13 | 99.64 32 | 99.94 4 | 96.68 20 | 99.99 34 | 99.99 2 | 100.00 1 | 99.99 17 |
|
test_part2 | | | | | | 99.89 42 | 99.25 10 | | | | 99.49 46 | | | | | | |
|
CSCG | | | 97.10 99 | 97.04 92 | 97.27 162 | 99.89 42 | 91.92 235 | 99.90 70 | 99.07 31 | 88.67 250 | 95.26 171 | 99.82 51 | 93.17 109 | 99.98 40 | 98.15 89 | 99.47 102 | 99.90 83 |
|
ZNCC-MVS | | | 98.31 54 | 98.03 56 | 99.17 55 | 99.88 45 | 97.59 82 | 99.94 52 | 98.44 104 | 94.31 100 | 98.50 97 | 99.82 51 | 93.06 111 | 99.99 34 | 98.30 85 | 99.99 18 | 99.93 75 |
|
SR-MVS | | | 98.46 44 | 98.30 45 | 98.93 82 | 99.88 45 | 97.04 106 | 99.84 102 | 98.35 140 | 94.92 77 | 99.32 58 | 99.80 56 | 93.35 101 | 99.78 108 | 99.30 39 | 99.95 47 | 99.96 64 |
|
9.14 | | | | 98.38 37 | | 99.87 47 | | 99.91 66 | 98.33 143 | 93.22 142 | 99.78 20 | 99.89 18 | 94.57 64 | 99.85 92 | 99.84 10 | 99.97 41 | |
|
SMA-MVS | | | 98.76 24 | 98.48 27 | 99.62 13 | 99.87 47 | 98.87 24 | 99.86 95 | 98.38 134 | 93.19 143 | 99.77 21 | 99.94 4 | 95.54 37 | 100.00 1 | 99.74 21 | 99.99 18 | 100.00 1 |
|
PHI-MVS | | | 98.41 48 | 98.21 47 | 99.03 73 | 99.86 49 | 97.10 105 | 99.98 8 | 98.80 49 | 90.78 217 | 99.62 35 | 99.78 62 | 95.30 44 | 100.00 1 | 99.80 15 | 99.93 59 | 99.99 17 |
|
zzz-MVS | | | 98.33 53 | 98.00 58 | 99.30 45 | 99.85 50 | 97.93 73 | 99.80 115 | 98.28 149 | 95.76 57 | 97.18 132 | 99.88 21 | 92.74 117 | 100.00 1 | 98.67 70 | 99.88 69 | 99.99 17 |
|
MTAPA | | | 98.29 55 | 97.96 63 | 99.30 45 | 99.85 50 | 97.93 73 | 99.39 189 | 98.28 149 | 95.76 57 | 97.18 132 | 99.88 21 | 92.74 117 | 100.00 1 | 98.67 70 | 99.88 69 | 99.99 17 |
|
Regformer-1 | | | 98.79 22 | 98.60 21 | 99.36 43 | 99.85 50 | 98.34 58 | 99.87 84 | 98.52 87 | 96.05 50 | 99.41 52 | 99.79 58 | 94.93 56 | 99.76 111 | 99.07 44 | 99.90 65 | 99.99 17 |
|
Regformer-2 | | | 98.78 23 | 98.59 22 | 99.36 43 | 99.85 50 | 98.32 59 | 99.87 84 | 98.52 87 | 96.04 51 | 99.41 52 | 99.79 58 | 94.92 57 | 99.76 111 | 99.05 45 | 99.90 65 | 99.98 48 |
|
LS3D | | | 95.84 142 | 95.11 151 | 98.02 133 | 99.85 50 | 95.10 169 | 98.74 251 | 98.50 97 | 87.22 270 | 93.66 189 | 99.86 28 | 87.45 184 | 99.95 58 | 90.94 221 | 99.81 80 | 99.02 183 |
|
Regformer-3 | | | 98.58 35 | 98.41 31 | 99.10 67 | 99.84 55 | 97.57 83 | 99.66 146 | 98.52 87 | 95.79 54 | 99.01 75 | 99.77 64 | 94.40 67 | 99.75 114 | 98.82 61 | 99.83 74 | 99.98 48 |
|
Regformer-4 | | | 98.56 36 | 98.39 36 | 99.08 69 | 99.84 55 | 97.52 86 | 99.66 146 | 98.52 87 | 95.76 57 | 99.01 75 | 99.77 64 | 94.33 75 | 99.75 114 | 98.80 64 | 99.83 74 | 99.98 48 |
|
HPM-MVS | | | 97.96 67 | 97.72 68 | 98.68 91 | 99.84 55 | 96.39 126 | 99.90 70 | 98.17 165 | 92.61 166 | 98.62 92 | 99.57 99 | 91.87 134 | 99.67 129 | 98.87 59 | 99.99 18 | 99.99 17 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ETH3D-3000-0.1 | | | 98.68 27 | 98.42 29 | 99.47 32 | 99.83 58 | 98.57 48 | 99.90 70 | 98.37 137 | 93.81 123 | 99.81 11 | 99.90 16 | 94.34 72 | 99.86 88 | 99.84 10 | 99.98 31 | 99.97 59 |
|
EI-MVSNet-Vis-set | | | 98.27 56 | 98.11 53 | 98.75 89 | 99.83 58 | 96.59 120 | 99.40 185 | 98.51 93 | 95.29 70 | 98.51 96 | 99.76 68 | 93.60 98 | 99.71 122 | 98.53 78 | 99.52 99 | 99.95 72 |
|
save fliter | | | | | | 99.82 60 | 98.79 30 | 99.96 23 | 98.40 127 | 97.66 9 | | | | | | | |
|
PLC | | 95.54 3 | 97.93 69 | 97.89 65 | 98.05 132 | 99.82 60 | 94.77 179 | 99.92 62 | 98.46 101 | 93.93 118 | 97.20 131 | 99.27 121 | 95.44 42 | 99.97 49 | 97.41 114 | 99.51 101 | 99.41 154 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
APD-MVS_3200maxsize | | | 98.25 59 | 98.08 54 | 98.78 87 | 99.81 62 | 96.60 119 | 99.82 109 | 98.30 147 | 93.95 117 | 99.37 56 | 99.77 64 | 92.84 114 | 99.76 111 | 98.95 53 | 99.92 63 | 99.97 59 |
|
EI-MVSNet-UG-set | | | 98.14 62 | 97.99 59 | 98.60 98 | 99.80 63 | 96.27 127 | 99.36 194 | 98.50 97 | 95.21 73 | 98.30 106 | 99.75 73 | 93.29 105 | 99.73 121 | 98.37 82 | 99.30 108 | 99.81 92 |
|
HPM-MVS_fast | | | 97.80 77 | 97.50 76 | 98.68 91 | 99.79 64 | 96.42 123 | 99.88 81 | 98.16 168 | 91.75 193 | 98.94 79 | 99.54 102 | 91.82 136 | 99.65 131 | 97.62 111 | 99.99 18 | 99.99 17 |
|
xxxxxxxxxxxxxcwj | | | 98.67 28 | 98.40 33 | 99.50 26 | 99.77 65 | 98.67 40 | 99.90 70 | 98.21 158 | 93.53 133 | 99.81 11 | 99.89 18 | 94.70 61 | 99.86 88 | 99.84 10 | 99.93 59 | 99.96 64 |
|
xxxxxxxxxxxx | | | 98.67 28 | 98.40 33 | 99.50 26 | 99.77 65 | 98.67 40 | 99.90 70 | 98.21 158 | 93.53 133 | 99.81 11 | 99.89 18 | 94.70 61 | 99.86 88 | 99.84 10 | 99.93 59 | 99.96 64 |
|
旧先验1 | | | | | | 99.76 67 | 97.52 86 | | 98.64 62 | | | 99.85 32 | 95.63 36 | | | 99.94 53 | 99.99 17 |
|
OMC-MVS | | | 97.28 93 | 97.23 85 | 97.41 155 | 99.76 67 | 93.36 205 | 99.65 149 | 97.95 187 | 96.03 52 | 97.41 128 | 99.70 82 | 89.61 162 | 99.51 136 | 96.73 131 | 98.25 131 | 99.38 156 |
|
新几何1 | | | | | 99.42 36 | 99.75 69 | 98.27 60 | | 98.63 65 | 92.69 160 | 99.55 40 | 99.82 51 | 94.40 67 | 100.00 1 | 91.21 213 | 99.94 53 | 99.99 17 |
|
MP-MVS-pluss | | | 98.07 65 | 97.64 71 | 99.38 42 | 99.74 70 | 98.41 56 | 99.74 130 | 98.18 164 | 93.35 138 | 96.45 149 | 99.85 32 | 92.64 120 | 99.97 49 | 98.91 58 | 99.89 67 | 99.77 98 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TSAR-MVS + MP. | | | 98.93 13 | 98.77 14 | 99.41 37 | 99.74 70 | 98.67 40 | 99.77 121 | 98.38 134 | 96.73 32 | 99.88 3 | 99.74 75 | 94.89 58 | 99.59 133 | 99.80 15 | 99.98 31 | 99.97 59 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
1121 | | | 98.03 66 | 97.57 75 | 99.40 39 | 99.74 70 | 98.21 61 | 98.31 275 | 98.62 66 | 92.78 155 | 99.53 42 | 99.83 48 | 95.08 48 | 100.00 1 | 94.36 166 | 99.92 63 | 99.99 17 |
|
test12 | | | | | 99.43 33 | 99.74 70 | 98.56 49 | | 98.40 127 | | 99.65 31 | | 94.76 59 | 99.75 114 | | 99.98 31 | 99.99 17 |
|
原ACMM1 | | | | | 98.96 80 | 99.73 74 | 96.99 108 | | 98.51 93 | 94.06 111 | 99.62 35 | 99.85 32 | 94.97 55 | 99.96 51 | 95.11 147 | 99.95 47 | 99.92 81 |
|
TSAR-MVS + GP. | | | 98.60 32 | 98.51 26 | 98.86 85 | 99.73 74 | 96.63 117 | 99.97 16 | 97.92 191 | 98.07 5 | 98.76 85 | 99.55 100 | 95.00 53 | 99.94 66 | 99.91 8 | 97.68 141 | 99.99 17 |
|
CANet | | | 98.27 56 | 97.82 66 | 99.63 10 | 99.72 76 | 99.10 14 | 99.98 8 | 98.51 93 | 97.00 25 | 98.52 95 | 99.71 80 | 87.80 180 | 99.95 58 | 99.75 19 | 99.38 106 | 99.83 90 |
|
F-COLMAP | | | 96.93 106 | 96.95 95 | 96.87 169 | 99.71 77 | 91.74 240 | 99.85 98 | 97.95 187 | 93.11 146 | 95.72 164 | 99.16 130 | 92.35 124 | 99.94 66 | 95.32 145 | 99.35 107 | 98.92 185 |
|
SD-MVS | | | 98.92 14 | 98.70 15 | 99.56 19 | 99.70 78 | 98.73 37 | 99.94 52 | 98.34 142 | 96.38 41 | 99.81 11 | 99.76 68 | 94.59 63 | 99.98 40 | 99.84 10 | 99.96 44 | 99.97 59 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
abl_6 | | | 97.67 82 | 97.34 82 | 98.66 93 | 99.68 79 | 96.11 141 | 99.68 143 | 98.14 171 | 93.80 124 | 99.27 63 | 99.70 82 | 88.65 176 | 99.98 40 | 97.46 113 | 99.72 85 | 99.89 84 |
|
ACMMP_NAP | | | 98.49 42 | 98.14 51 | 99.54 21 | 99.66 80 | 98.62 47 | 99.85 98 | 98.37 137 | 94.68 86 | 99.53 42 | 99.83 48 | 92.87 113 | 100.00 1 | 98.66 73 | 99.84 73 | 99.99 17 |
|
DeepPCF-MVS | | 95.94 2 | 97.71 81 | 98.98 9 | 93.92 256 | 99.63 81 | 81.76 324 | 99.96 23 | 98.56 76 | 99.47 1 | 99.19 68 | 99.99 1 | 94.16 83 | 100.00 1 | 99.92 6 | 99.93 59 | 100.00 1 |
|
EPNet | | | 98.49 42 | 98.40 33 | 98.77 88 | 99.62 82 | 96.80 114 | 99.90 70 | 99.51 15 | 97.60 10 | 99.20 66 | 99.36 117 | 93.71 95 | 99.91 72 | 97.99 98 | 98.71 120 | 99.61 121 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ETH3D cwj APD-0.16 | | | 98.40 50 | 98.07 55 | 99.40 39 | 99.59 83 | 98.41 56 | 99.86 95 | 98.24 154 | 92.18 180 | 99.73 24 | 99.87 25 | 93.47 99 | 99.85 92 | 99.74 21 | 99.95 47 | 99.93 75 |
|
PVSNet_BlendedMVS | | | 96.05 137 | 95.82 134 | 96.72 174 | 99.59 83 | 96.99 108 | 99.95 37 | 99.10 28 | 94.06 111 | 98.27 107 | 95.80 246 | 89.00 171 | 99.95 58 | 99.12 42 | 87.53 244 | 93.24 302 |
|
PVSNet_Blended | | | 97.94 68 | 97.64 71 | 98.83 86 | 99.59 83 | 96.99 108 | 100.00 1 | 99.10 28 | 95.38 67 | 98.27 107 | 99.08 133 | 89.00 171 | 99.95 58 | 99.12 42 | 99.25 109 | 99.57 132 |
|
PatchMatch-RL | | | 96.04 138 | 95.40 141 | 97.95 134 | 99.59 83 | 95.22 167 | 99.52 171 | 99.07 31 | 93.96 116 | 96.49 148 | 98.35 184 | 82.28 223 | 99.82 103 | 90.15 235 | 99.22 110 | 98.81 192 |
|
test222 | | | | | | 99.55 87 | 97.41 96 | 99.34 195 | 98.55 80 | 91.86 189 | 99.27 63 | 99.83 48 | 93.84 92 | | | 99.95 47 | 99.99 17 |
|
CNLPA | | | 97.76 79 | 97.38 79 | 98.92 83 | 99.53 88 | 96.84 112 | 99.87 84 | 98.14 171 | 93.78 125 | 96.55 147 | 99.69 85 | 92.28 126 | 99.98 40 | 97.13 120 | 99.44 104 | 99.93 75 |
|
API-MVS | | | 97.86 71 | 97.66 70 | 98.47 110 | 99.52 89 | 95.41 159 | 99.47 179 | 98.87 43 | 91.68 194 | 98.84 81 | 99.85 32 | 92.34 125 | 99.99 34 | 98.44 80 | 99.96 44 | 100.00 1 |
|
PVSNet | | 91.05 13 | 97.13 98 | 96.69 103 | 98.45 112 | 99.52 89 | 95.81 146 | 99.95 37 | 99.65 10 | 94.73 84 | 99.04 73 | 99.21 128 | 84.48 210 | 99.95 58 | 94.92 150 | 98.74 119 | 99.58 131 |
|
114514_t | | | 97.41 90 | 96.83 97 | 99.14 61 | 99.51 91 | 97.83 75 | 99.89 79 | 98.27 152 | 88.48 254 | 99.06 72 | 99.66 91 | 90.30 155 | 99.64 132 | 96.32 134 | 99.97 41 | 99.96 64 |
|
cl-mvsnet2 | | | 93.77 186 | 93.25 189 | 95.33 204 | 99.49 92 | 94.43 183 | 99.61 158 | 98.09 175 | 90.38 221 | 89.16 245 | 95.61 253 | 90.56 153 | 97.34 240 | 91.93 205 | 84.45 264 | 94.21 247 |
|
testdata | | | | | 98.42 115 | 99.47 93 | 95.33 161 | | 98.56 76 | 93.78 125 | 99.79 19 | 99.85 32 | 93.64 97 | 99.94 66 | 94.97 149 | 99.94 53 | 100.00 1 |
|
MAR-MVS | | | 97.43 86 | 97.19 86 | 98.15 128 | 99.47 93 | 94.79 178 | 99.05 226 | 98.76 50 | 92.65 164 | 98.66 90 | 99.82 51 | 88.52 177 | 99.98 40 | 98.12 90 | 99.63 90 | 99.67 111 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DP-MVS | | | 94.54 170 | 93.42 182 | 97.91 137 | 99.46 95 | 94.04 190 | 98.93 237 | 97.48 233 | 81.15 316 | 90.04 219 | 99.55 100 | 87.02 189 | 99.95 58 | 88.97 244 | 98.11 132 | 99.73 102 |
|
MVS_111021_LR | | | 98.42 47 | 98.38 37 | 98.53 107 | 99.39 96 | 95.79 147 | 99.87 84 | 99.86 2 | 96.70 33 | 98.78 84 | 99.79 58 | 92.03 131 | 99.90 73 | 99.17 41 | 99.86 72 | 99.88 86 |
|
CHOSEN 280x420 | | | 99.01 11 | 99.03 7 | 98.95 81 | 99.38 97 | 98.87 24 | 98.46 268 | 99.42 20 | 97.03 24 | 99.02 74 | 99.09 132 | 99.35 1 | 98.21 209 | 99.73 24 | 99.78 81 | 99.77 98 |
|
MVS_111021_HR | | | 98.72 25 | 98.62 20 | 99.01 76 | 99.36 98 | 97.18 101 | 99.93 58 | 99.90 1 | 96.81 30 | 98.67 89 | 99.77 64 | 93.92 88 | 99.89 77 | 99.27 40 | 99.94 53 | 99.96 64 |
|
DPM-MVS | | | 98.83 19 | 98.46 28 | 99.97 1 | 99.33 99 | 99.92 1 | 99.96 23 | 98.44 104 | 97.96 7 | 99.55 40 | 99.94 4 | 97.18 16 | 100.00 1 | 93.81 180 | 99.94 53 | 99.98 48 |
|
TAPA-MVS | | 92.12 8 | 94.42 174 | 93.60 176 | 96.90 168 | 99.33 99 | 91.78 239 | 99.78 118 | 98.00 181 | 89.89 231 | 94.52 177 | 99.47 106 | 91.97 132 | 99.18 148 | 69.90 328 | 99.52 99 | 99.73 102 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
test_yl | | | 97.83 74 | 97.37 80 | 99.21 49 | 99.18 101 | 97.98 70 | 99.64 153 | 99.27 25 | 91.43 202 | 97.88 118 | 98.99 141 | 95.84 32 | 99.84 101 | 98.82 61 | 95.32 189 | 99.79 94 |
|
DCV-MVSNet | | | 97.83 74 | 97.37 80 | 99.21 49 | 99.18 101 | 97.98 70 | 99.64 153 | 99.27 25 | 91.43 202 | 97.88 118 | 98.99 141 | 95.84 32 | 99.84 101 | 98.82 61 | 95.32 189 | 99.79 94 |
|
DeepC-MVS | | 94.51 4 | 96.92 107 | 96.40 112 | 98.45 112 | 99.16 103 | 95.90 144 | 99.66 146 | 98.06 178 | 96.37 44 | 94.37 180 | 99.49 105 | 83.29 219 | 99.90 73 | 97.63 110 | 99.61 94 | 99.55 134 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DELS-MVS | | | 98.54 38 | 98.22 46 | 99.50 26 | 99.15 104 | 98.65 45 | 100.00 1 | 98.58 72 | 97.70 8 | 98.21 111 | 99.24 126 | 92.58 121 | 99.94 66 | 98.63 75 | 99.94 53 | 99.92 81 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Anonymous202405211 | | | 93.10 199 | 91.99 209 | 96.40 182 | 99.10 105 | 89.65 276 | 98.88 241 | 97.93 189 | 83.71 306 | 94.00 185 | 98.75 164 | 68.79 305 | 99.88 83 | 95.08 148 | 91.71 212 | 99.68 109 |
|
HyFIR lowres test | | | 96.66 120 | 96.43 111 | 97.36 159 | 99.05 106 | 93.91 193 | 99.70 140 | 99.80 3 | 90.54 219 | 96.26 154 | 98.08 189 | 92.15 129 | 98.23 208 | 96.84 130 | 95.46 186 | 99.93 75 |
|
LFMVS | | | 94.75 164 | 93.56 179 | 98.30 121 | 99.03 107 | 95.70 153 | 98.74 251 | 97.98 184 | 87.81 263 | 98.47 98 | 99.39 114 | 67.43 312 | 99.53 134 | 98.01 96 | 95.20 191 | 99.67 111 |
|
AllTest | | | 92.48 212 | 91.64 214 | 95.00 213 | 99.01 108 | 88.43 289 | 98.94 236 | 96.82 291 | 86.50 280 | 88.71 250 | 98.47 182 | 74.73 283 | 99.88 83 | 85.39 278 | 96.18 169 | 96.71 213 |
|
TestCases | | | | | 95.00 213 | 99.01 108 | 88.43 289 | | 96.82 291 | 86.50 280 | 88.71 250 | 98.47 182 | 74.73 283 | 99.88 83 | 85.39 278 | 96.18 169 | 96.71 213 |
|
COLMAP_ROB | | 90.47 14 | 92.18 220 | 91.49 220 | 94.25 243 | 99.00 110 | 88.04 295 | 98.42 273 | 96.70 297 | 82.30 313 | 88.43 257 | 99.01 138 | 76.97 264 | 99.85 92 | 86.11 275 | 96.50 166 | 94.86 220 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
HY-MVS | | 92.50 7 | 97.79 78 | 97.17 88 | 99.63 10 | 98.98 111 | 99.32 5 | 97.49 297 | 99.52 13 | 95.69 61 | 98.32 105 | 97.41 201 | 93.32 103 | 99.77 109 | 98.08 94 | 95.75 182 | 99.81 92 |
|
VNet | | | 97.21 97 | 96.57 107 | 99.13 66 | 98.97 112 | 97.82 76 | 99.03 228 | 99.21 27 | 94.31 100 | 99.18 69 | 98.88 154 | 86.26 196 | 99.89 77 | 98.93 55 | 94.32 197 | 99.69 108 |
|
thres200 | | | 96.96 104 | 96.21 115 | 99.22 48 | 98.97 112 | 98.84 27 | 99.85 98 | 99.71 5 | 93.17 144 | 96.26 154 | 98.88 154 | 89.87 160 | 99.51 136 | 94.26 170 | 94.91 192 | 99.31 164 |
|
tfpn200view9 | | | 96.79 111 | 95.99 120 | 99.19 51 | 98.94 114 | 98.82 28 | 99.78 118 | 99.71 5 | 92.86 149 | 96.02 157 | 98.87 156 | 89.33 165 | 99.50 138 | 93.84 177 | 94.57 193 | 99.27 167 |
|
thres400 | | | 96.78 112 | 95.99 120 | 99.16 57 | 98.94 114 | 98.82 28 | 99.78 118 | 99.71 5 | 92.86 149 | 96.02 157 | 98.87 156 | 89.33 165 | 99.50 138 | 93.84 177 | 94.57 193 | 99.16 174 |
|
Anonymous20231211 | | | 89.86 267 | 88.44 272 | 94.13 247 | 98.93 116 | 90.68 258 | 98.54 265 | 98.26 153 | 76.28 326 | 86.73 278 | 95.54 257 | 70.60 300 | 97.56 233 | 90.82 224 | 80.27 296 | 94.15 255 |
|
canonicalmvs | | | 97.09 101 | 96.32 113 | 99.39 41 | 98.93 116 | 98.95 18 | 99.72 138 | 97.35 244 | 94.45 92 | 97.88 118 | 99.42 110 | 86.71 191 | 99.52 135 | 98.48 79 | 93.97 202 | 99.72 105 |
|
EPNet_dtu | | | 95.71 146 | 95.39 142 | 96.66 176 | 98.92 118 | 93.41 203 | 99.57 163 | 98.90 40 | 96.19 48 | 97.52 125 | 98.56 176 | 92.65 119 | 97.36 238 | 77.89 314 | 98.33 127 | 99.20 172 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
WTY-MVS | | | 98.10 64 | 97.60 73 | 99.60 15 | 98.92 118 | 99.28 9 | 99.89 79 | 99.52 13 | 95.58 64 | 98.24 110 | 99.39 114 | 93.33 102 | 99.74 118 | 97.98 100 | 95.58 185 | 99.78 97 |
|
CHOSEN 1792x2688 | | | 96.81 110 | 96.53 108 | 97.64 147 | 98.91 120 | 93.07 207 | 99.65 149 | 99.80 3 | 95.64 62 | 95.39 168 | 98.86 158 | 84.35 212 | 99.90 73 | 96.98 125 | 99.16 111 | 99.95 72 |
|
thres100view900 | | | 96.74 115 | 95.92 130 | 99.18 52 | 98.90 121 | 98.77 32 | 99.74 130 | 99.71 5 | 92.59 168 | 95.84 160 | 98.86 158 | 89.25 167 | 99.50 138 | 93.84 177 | 94.57 193 | 99.27 167 |
|
thres600view7 | | | 96.69 118 | 95.87 133 | 99.14 61 | 98.90 121 | 98.78 31 | 99.74 130 | 99.71 5 | 92.59 168 | 95.84 160 | 98.86 158 | 89.25 167 | 99.50 138 | 93.44 189 | 94.50 196 | 99.16 174 |
|
MSDG | | | 94.37 175 | 93.36 186 | 97.40 156 | 98.88 123 | 93.95 192 | 99.37 192 | 97.38 242 | 85.75 291 | 90.80 212 | 99.17 129 | 84.11 214 | 99.88 83 | 86.35 272 | 98.43 125 | 98.36 197 |
|
Anonymous20240529 | | | 92.10 221 | 90.65 230 | 96.47 178 | 98.82 124 | 90.61 260 | 98.72 253 | 98.67 58 | 75.54 330 | 93.90 187 | 98.58 174 | 66.23 315 | 99.90 73 | 94.70 160 | 90.67 213 | 98.90 188 |
|
PVSNet_Blended_VisFu | | | 97.27 94 | 96.81 98 | 98.66 93 | 98.81 125 | 96.67 116 | 99.92 62 | 98.64 62 | 94.51 91 | 96.38 153 | 98.49 178 | 89.05 170 | 99.88 83 | 97.10 122 | 98.34 126 | 99.43 152 |
|
PS-MVSNAJ | | | 98.44 46 | 98.20 48 | 99.16 57 | 98.80 126 | 98.92 20 | 99.54 169 | 98.17 165 | 97.34 14 | 99.85 6 | 99.85 32 | 91.20 141 | 99.89 77 | 99.41 36 | 99.67 88 | 98.69 195 |
|
CANet_DTU | | | 96.76 113 | 96.15 116 | 98.60 98 | 98.78 127 | 97.53 85 | 99.84 102 | 97.63 210 | 97.25 20 | 99.20 66 | 99.64 94 | 81.36 231 | 99.98 40 | 92.77 199 | 98.89 115 | 98.28 198 |
|
alignmvs | | | 97.81 76 | 97.33 83 | 99.25 47 | 98.77 128 | 98.66 43 | 99.99 4 | 98.44 104 | 94.40 96 | 98.41 100 | 99.47 106 | 93.65 96 | 99.42 144 | 98.57 76 | 94.26 198 | 99.67 111 |
|
SteuartSystems-ACMMP | | | 99.02 10 | 98.97 10 | 99.18 52 | 98.72 129 | 97.71 78 | 99.98 8 | 98.44 104 | 96.85 26 | 99.80 15 | 99.91 12 | 97.57 6 | 99.85 92 | 99.44 34 | 99.99 18 | 99.99 17 |
Skip Steuart: Steuart Systems R&D Blog. |
xiu_mvs_v2_base | | | 98.23 60 | 97.97 60 | 99.02 75 | 98.69 130 | 98.66 43 | 99.52 171 | 98.08 177 | 97.05 23 | 99.86 4 | 99.86 28 | 90.65 151 | 99.71 122 | 99.39 37 | 98.63 121 | 98.69 195 |
|
miper_enhance_ethall | | | 94.36 177 | 93.98 168 | 95.49 199 | 98.68 131 | 95.24 165 | 99.73 135 | 97.29 249 | 93.28 141 | 89.86 224 | 95.97 244 | 94.37 71 | 97.05 260 | 92.20 203 | 84.45 264 | 94.19 248 |
|
MVSTER | | | 95.53 149 | 95.22 147 | 96.45 180 | 98.56 132 | 97.72 77 | 99.91 66 | 97.67 208 | 92.38 176 | 91.39 207 | 97.14 208 | 97.24 13 | 97.30 243 | 94.80 155 | 87.85 239 | 94.34 238 |
|
VDD-MVS | | | 93.77 186 | 92.94 191 | 96.27 186 | 98.55 133 | 90.22 268 | 98.77 250 | 97.79 202 | 90.85 215 | 96.82 140 | 99.42 110 | 61.18 329 | 99.77 109 | 98.95 53 | 94.13 199 | 98.82 191 |
|
tpmvs | | | 94.28 178 | 93.57 178 | 96.40 182 | 98.55 133 | 91.50 249 | 95.70 320 | 98.55 80 | 87.47 265 | 92.15 202 | 94.26 303 | 91.42 137 | 98.95 156 | 88.15 253 | 95.85 178 | 98.76 194 |
|
UGNet | | | 95.33 153 | 94.57 159 | 97.62 149 | 98.55 133 | 94.85 173 | 98.67 258 | 99.32 24 | 95.75 60 | 96.80 141 | 96.27 237 | 72.18 293 | 99.96 51 | 94.58 163 | 99.05 113 | 98.04 202 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PCF-MVS | | 94.20 5 | 95.18 154 | 94.10 166 | 98.43 114 | 98.55 133 | 95.99 142 | 97.91 291 | 97.31 248 | 90.35 223 | 89.48 235 | 99.22 127 | 85.19 205 | 99.89 77 | 90.40 232 | 98.47 124 | 99.41 154 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
BH-w/o | | | 95.71 146 | 95.38 143 | 96.68 175 | 98.49 137 | 92.28 226 | 99.84 102 | 97.50 231 | 92.12 182 | 92.06 203 | 98.79 163 | 84.69 208 | 98.67 173 | 95.29 146 | 99.66 89 | 99.09 181 |
|
baseline1 | | | 95.78 143 | 94.86 154 | 98.54 105 | 98.47 138 | 98.07 65 | 99.06 222 | 97.99 182 | 92.68 162 | 94.13 184 | 98.62 171 | 93.28 106 | 98.69 172 | 93.79 182 | 85.76 252 | 98.84 190 |
|
EPMVS | | | 96.53 123 | 96.01 119 | 98.09 130 | 98.43 139 | 96.12 140 | 96.36 310 | 99.43 19 | 93.53 133 | 97.64 123 | 95.04 281 | 94.41 66 | 98.38 197 | 91.13 215 | 98.11 132 | 99.75 100 |
|
sss | | | 97.57 84 | 97.03 93 | 99.18 52 | 98.37 140 | 98.04 67 | 99.73 135 | 99.38 21 | 93.46 136 | 98.76 85 | 99.06 134 | 91.21 140 | 99.89 77 | 96.33 133 | 97.01 158 | 99.62 119 |
|
BH-untuned | | | 95.18 154 | 94.83 155 | 96.22 187 | 98.36 141 | 91.22 251 | 99.80 115 | 97.32 247 | 90.91 213 | 91.08 209 | 98.67 167 | 83.51 216 | 98.54 180 | 94.23 171 | 99.61 94 | 98.92 185 |
|
ET-MVSNet_ETH3D | | | 94.37 175 | 93.28 188 | 97.64 147 | 98.30 142 | 97.99 69 | 99.99 4 | 97.61 216 | 94.35 97 | 71.57 331 | 99.45 109 | 96.23 24 | 95.34 315 | 96.91 129 | 85.14 260 | 99.59 125 |
|
FMVSNet3 | | | 92.69 208 | 91.58 216 | 95.99 191 | 98.29 143 | 97.42 95 | 99.26 205 | 97.62 213 | 89.80 232 | 89.68 228 | 95.32 271 | 81.62 229 | 96.27 296 | 87.01 268 | 85.65 253 | 94.29 241 |
|
CS-MVS | | | 97.84 73 | 97.69 69 | 98.31 120 | 98.28 144 | 96.27 127 | 100.00 1 | 97.52 228 | 95.29 70 | 99.25 65 | 99.65 93 | 91.18 144 | 98.94 157 | 98.96 52 | 99.04 114 | 99.73 102 |
|
PMMVS | | | 96.76 113 | 96.76 101 | 96.76 172 | 98.28 144 | 92.10 230 | 99.91 66 | 97.98 184 | 94.12 106 | 99.53 42 | 99.39 114 | 86.93 190 | 98.73 168 | 96.95 127 | 97.73 139 | 99.45 149 |
|
PVSNet_0 | | 88.03 19 | 91.80 228 | 90.27 239 | 96.38 184 | 98.27 146 | 90.46 264 | 99.94 52 | 99.61 11 | 93.99 114 | 86.26 288 | 97.39 203 | 71.13 299 | 99.89 77 | 98.77 66 | 67.05 334 | 98.79 193 |
|
PatchFormer-LS_test | | | 97.01 102 | 96.79 100 | 97.69 145 | 98.26 147 | 94.80 176 | 98.66 261 | 98.13 173 | 93.70 129 | 97.86 121 | 98.80 162 | 95.54 37 | 98.67 173 | 94.12 173 | 96.00 173 | 99.60 123 |
|
DWT-MVSNet_test | | | 97.31 92 | 97.19 86 | 97.66 146 | 98.24 148 | 94.67 180 | 98.86 245 | 98.20 163 | 93.60 132 | 98.09 112 | 98.89 152 | 97.51 7 | 98.78 163 | 94.04 174 | 97.28 150 | 99.55 134 |
|
UA-Net | | | 96.54 122 | 95.96 127 | 98.27 122 | 98.23 149 | 95.71 152 | 98.00 289 | 98.45 103 | 93.72 128 | 98.41 100 | 99.27 121 | 88.71 175 | 99.66 130 | 91.19 214 | 97.69 140 | 99.44 151 |
|
GG-mvs-BLEND | | | | | 98.54 105 | 98.21 150 | 98.01 68 | 93.87 325 | 98.52 87 | | 97.92 116 | 97.92 194 | 99.02 2 | 97.94 223 | 98.17 87 | 99.58 96 | 99.67 111 |
|
mvs_anonymous | | | 95.65 148 | 95.03 152 | 97.53 150 | 98.19 151 | 95.74 150 | 99.33 196 | 97.49 232 | 90.87 214 | 90.47 215 | 97.10 210 | 88.23 178 | 97.16 251 | 95.92 139 | 97.66 142 | 99.68 109 |
|
MVS_Test | | | 96.46 125 | 95.74 135 | 98.61 97 | 98.18 152 | 97.23 99 | 99.31 199 | 97.15 260 | 91.07 210 | 98.84 81 | 97.05 214 | 88.17 179 | 98.97 155 | 94.39 165 | 97.50 144 | 99.61 121 |
|
BH-RMVSNet | | | 95.18 154 | 94.31 163 | 97.80 138 | 98.17 153 | 95.23 166 | 99.76 126 | 97.53 226 | 92.52 172 | 94.27 182 | 99.25 125 | 76.84 266 | 98.80 161 | 90.89 223 | 99.54 98 | 99.35 160 |
|
RPSCF | | | 91.80 228 | 92.79 194 | 88.83 310 | 98.15 154 | 69.87 337 | 98.11 285 | 96.60 300 | 83.93 304 | 94.33 181 | 99.27 121 | 79.60 249 | 99.46 143 | 91.99 204 | 93.16 209 | 97.18 211 |
|
ETV-MVS | | | 97.92 70 | 97.80 67 | 98.25 123 | 98.14 155 | 96.48 121 | 99.98 8 | 97.63 210 | 95.61 63 | 99.29 62 | 99.46 108 | 92.55 122 | 98.82 160 | 99.02 51 | 98.54 122 | 99.46 147 |
|
IS-MVSNet | | | 96.29 133 | 95.90 131 | 97.45 153 | 98.13 156 | 94.80 176 | 99.08 217 | 97.61 216 | 92.02 186 | 95.54 167 | 98.96 147 | 90.64 152 | 98.08 213 | 93.73 185 | 97.41 148 | 99.47 146 |
|
ab-mvs | | | 94.69 165 | 93.42 182 | 98.51 108 | 98.07 157 | 96.26 129 | 96.49 309 | 98.68 55 | 90.31 224 | 94.54 176 | 97.00 216 | 76.30 271 | 99.71 122 | 95.98 138 | 93.38 207 | 99.56 133 |
|
XVG-OURS-SEG-HR | | | 94.79 161 | 94.70 158 | 95.08 210 | 98.05 158 | 89.19 279 | 99.08 217 | 97.54 224 | 93.66 130 | 94.87 174 | 99.58 98 | 78.78 255 | 99.79 106 | 97.31 116 | 93.40 206 | 96.25 215 |
|
EIA-MVS | | | 97.53 85 | 97.46 77 | 97.76 142 | 98.04 159 | 94.84 174 | 99.98 8 | 97.61 216 | 94.41 95 | 97.90 117 | 99.59 97 | 92.40 123 | 98.87 158 | 98.04 95 | 99.13 112 | 99.59 125 |
|
XVG-OURS | | | 94.82 160 | 94.74 157 | 95.06 211 | 98.00 160 | 89.19 279 | 99.08 217 | 97.55 222 | 94.10 107 | 94.71 175 | 99.62 95 | 80.51 242 | 99.74 118 | 96.04 137 | 93.06 210 | 96.25 215 |
|
dp | | | 95.05 157 | 94.43 161 | 96.91 167 | 97.99 161 | 92.73 216 | 96.29 312 | 97.98 184 | 89.70 233 | 95.93 159 | 94.67 294 | 93.83 93 | 98.45 186 | 86.91 271 | 96.53 165 | 99.54 138 |
|
tpmrst | | | 96.27 135 | 95.98 122 | 97.13 163 | 97.96 162 | 93.15 206 | 96.34 311 | 98.17 165 | 92.07 183 | 98.71 88 | 95.12 279 | 93.91 89 | 98.73 168 | 94.91 152 | 96.62 163 | 99.50 144 |
|
TR-MVS | | | 94.54 170 | 93.56 179 | 97.49 152 | 97.96 162 | 94.34 185 | 98.71 254 | 97.51 230 | 90.30 225 | 94.51 178 | 98.69 166 | 75.56 276 | 98.77 165 | 92.82 198 | 95.99 174 | 99.35 160 |
|
Vis-MVSNet (Re-imp) | | | 96.32 130 | 95.98 122 | 97.35 160 | 97.93 164 | 94.82 175 | 99.47 179 | 98.15 170 | 91.83 190 | 95.09 172 | 99.11 131 | 91.37 139 | 97.47 236 | 93.47 188 | 97.43 145 | 99.74 101 |
|
MDTV_nov1_ep13 | | | | 95.69 136 | | 97.90 165 | 94.15 188 | 95.98 316 | 98.44 104 | 93.12 145 | 97.98 115 | 95.74 248 | 95.10 47 | 98.58 177 | 90.02 236 | 96.92 160 | |
|
Fast-Effi-MVS+ | | | 95.02 158 | 94.19 164 | 97.52 151 | 97.88 166 | 94.55 181 | 99.97 16 | 97.08 264 | 88.85 247 | 94.47 179 | 97.96 193 | 84.59 209 | 98.41 189 | 89.84 238 | 97.10 155 | 99.59 125 |
|
ADS-MVSNet2 | | | 93.80 185 | 93.88 171 | 93.55 266 | 97.87 167 | 85.94 304 | 94.24 321 | 96.84 288 | 90.07 227 | 96.43 150 | 94.48 299 | 90.29 156 | 95.37 314 | 87.44 259 | 97.23 152 | 99.36 158 |
|
ADS-MVSNet | | | 94.79 161 | 94.02 167 | 97.11 165 | 97.87 167 | 93.79 194 | 94.24 321 | 98.16 168 | 90.07 227 | 96.43 150 | 94.48 299 | 90.29 156 | 98.19 210 | 87.44 259 | 97.23 152 | 99.36 158 |
|
Effi-MVS+ | | | 96.30 132 | 95.69 136 | 98.16 125 | 97.85 169 | 96.26 129 | 97.41 298 | 97.21 253 | 90.37 222 | 98.65 91 | 98.58 174 | 86.61 193 | 98.70 171 | 97.11 121 | 97.37 149 | 99.52 141 |
|
PatchmatchNet | | | 95.94 140 | 95.45 140 | 97.39 157 | 97.83 170 | 94.41 184 | 96.05 315 | 98.40 127 | 92.86 149 | 97.09 134 | 95.28 276 | 94.21 82 | 98.07 215 | 89.26 242 | 98.11 132 | 99.70 106 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
cascas | | | 94.64 168 | 93.61 174 | 97.74 144 | 97.82 171 | 96.26 129 | 99.96 23 | 97.78 203 | 85.76 289 | 94.00 185 | 97.54 198 | 76.95 265 | 99.21 147 | 97.23 118 | 95.43 187 | 97.76 208 |
|
1112_ss | | | 96.01 139 | 95.20 148 | 98.42 115 | 97.80 172 | 96.41 124 | 99.65 149 | 96.66 298 | 92.71 158 | 92.88 198 | 99.40 112 | 92.16 128 | 99.30 145 | 91.92 206 | 93.66 203 | 99.55 134 |
|
Test_1112_low_res | | | 95.72 144 | 94.83 155 | 98.42 115 | 97.79 173 | 96.41 124 | 99.65 149 | 96.65 299 | 92.70 159 | 92.86 199 | 96.13 241 | 92.15 129 | 99.30 145 | 91.88 207 | 93.64 204 | 99.55 134 |
|
Effi-MVS+-dtu | | | 94.53 172 | 95.30 145 | 92.22 284 | 97.77 174 | 82.54 318 | 99.59 160 | 97.06 266 | 94.92 77 | 95.29 170 | 95.37 269 | 85.81 198 | 97.89 224 | 94.80 155 | 97.07 156 | 96.23 217 |
|
mvs-test1 | | | 95.53 149 | 95.97 125 | 94.20 244 | 97.77 174 | 85.44 308 | 99.95 37 | 97.06 266 | 94.92 77 | 96.58 145 | 98.72 165 | 85.81 198 | 98.98 154 | 94.80 155 | 98.11 132 | 98.18 199 |
|
tpm cat1 | | | 93.51 192 | 92.52 201 | 96.47 178 | 97.77 174 | 91.47 250 | 96.13 313 | 98.06 178 | 80.98 317 | 92.91 197 | 93.78 308 | 89.66 161 | 98.87 158 | 87.03 267 | 96.39 167 | 99.09 181 |
|
xiu_mvs_v1_base_debu | | | 97.43 86 | 97.06 89 | 98.55 102 | 97.74 177 | 98.14 62 | 99.31 199 | 97.86 197 | 96.43 38 | 99.62 35 | 99.69 85 | 85.56 201 | 99.68 126 | 99.05 45 | 98.31 128 | 97.83 204 |
|
xiu_mvs_v1_base | | | 97.43 86 | 97.06 89 | 98.55 102 | 97.74 177 | 98.14 62 | 99.31 199 | 97.86 197 | 96.43 38 | 99.62 35 | 99.69 85 | 85.56 201 | 99.68 126 | 99.05 45 | 98.31 128 | 97.83 204 |
|
xiu_mvs_v1_base_debi | | | 97.43 86 | 97.06 89 | 98.55 102 | 97.74 177 | 98.14 62 | 99.31 199 | 97.86 197 | 96.43 38 | 99.62 35 | 99.69 85 | 85.56 201 | 99.68 126 | 99.05 45 | 98.31 128 | 97.83 204 |
|
EPP-MVSNet | | | 96.69 118 | 96.60 105 | 96.96 166 | 97.74 177 | 93.05 209 | 99.37 192 | 98.56 76 | 88.75 248 | 95.83 162 | 99.01 138 | 96.01 25 | 98.56 178 | 96.92 128 | 97.20 154 | 99.25 169 |
|
gg-mvs-nofinetune | | | 93.51 192 | 91.86 213 | 98.47 110 | 97.72 181 | 97.96 72 | 92.62 329 | 98.51 93 | 74.70 332 | 97.33 129 | 69.59 341 | 98.91 3 | 97.79 226 | 97.77 107 | 99.56 97 | 99.67 111 |
|
IB-MVS | | 92.85 6 | 94.99 159 | 93.94 169 | 98.16 125 | 97.72 181 | 95.69 154 | 99.99 4 | 98.81 47 | 94.28 102 | 92.70 200 | 96.90 218 | 95.08 48 | 99.17 149 | 96.07 136 | 73.88 325 | 99.60 123 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
thisisatest0515 | | | 97.41 90 | 97.02 94 | 98.59 100 | 97.71 183 | 97.52 86 | 99.97 16 | 98.54 84 | 91.83 190 | 97.45 127 | 99.04 135 | 97.50 8 | 99.10 150 | 94.75 158 | 96.37 168 | 99.16 174 |
|
diffmvs | | | 97.00 103 | 96.64 104 | 98.09 130 | 97.64 184 | 96.17 136 | 99.81 111 | 97.19 254 | 94.67 87 | 98.95 78 | 99.28 118 | 86.43 194 | 98.76 166 | 98.37 82 | 97.42 147 | 99.33 162 |
|
Vis-MVSNet | | | 95.72 144 | 95.15 150 | 97.45 153 | 97.62 185 | 94.28 186 | 99.28 203 | 98.24 154 | 94.27 103 | 96.84 139 | 98.94 150 | 79.39 250 | 98.76 166 | 93.25 190 | 98.49 123 | 99.30 165 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
thisisatest0530 | | | 97.10 99 | 96.72 102 | 98.22 124 | 97.60 186 | 96.70 115 | 99.92 62 | 98.54 84 | 91.11 209 | 97.07 135 | 98.97 145 | 97.47 9 | 99.03 152 | 93.73 185 | 96.09 171 | 98.92 185 |
|
miper_ehance_all_eth | | | 93.16 197 | 92.60 197 | 94.82 220 | 97.57 187 | 93.56 199 | 99.50 174 | 97.07 265 | 88.75 248 | 88.85 249 | 95.52 259 | 90.97 148 | 96.74 277 | 90.77 225 | 84.45 264 | 94.17 249 |
|
LCM-MVSNet-Re | | | 92.31 217 | 92.60 197 | 91.43 292 | 97.53 188 | 79.27 332 | 99.02 229 | 91.83 341 | 92.07 183 | 80.31 311 | 94.38 302 | 83.50 217 | 95.48 312 | 97.22 119 | 97.58 143 | 99.54 138 |
|
GBi-Net | | | 90.88 243 | 89.82 247 | 94.08 248 | 97.53 188 | 91.97 231 | 98.43 270 | 96.95 278 | 87.05 271 | 89.68 228 | 94.72 290 | 71.34 296 | 96.11 300 | 87.01 268 | 85.65 253 | 94.17 249 |
|
test1 | | | 90.88 243 | 89.82 247 | 94.08 248 | 97.53 188 | 91.97 231 | 98.43 270 | 96.95 278 | 87.05 271 | 89.68 228 | 94.72 290 | 71.34 296 | 96.11 300 | 87.01 268 | 85.65 253 | 94.17 249 |
|
FMVSNet2 | | | 91.02 240 | 89.56 251 | 95.41 203 | 97.53 188 | 95.74 150 | 98.98 231 | 97.41 240 | 87.05 271 | 88.43 257 | 95.00 284 | 71.34 296 | 96.24 298 | 85.12 280 | 85.21 258 | 94.25 244 |
|
tttt0517 | | | 96.85 108 | 96.49 109 | 97.92 136 | 97.48 192 | 95.89 145 | 99.85 98 | 98.54 84 | 90.72 218 | 96.63 144 | 98.93 151 | 97.47 9 | 99.02 153 | 93.03 197 | 95.76 181 | 98.85 189 |
|
cl_fuxian | | | 92.53 211 | 91.87 212 | 94.52 231 | 97.40 193 | 92.99 210 | 99.40 185 | 96.93 282 | 87.86 261 | 88.69 252 | 95.44 263 | 89.95 159 | 96.44 288 | 90.45 229 | 80.69 292 | 94.14 258 |
|
CDS-MVSNet | | | 96.34 129 | 96.07 117 | 97.13 163 | 97.37 194 | 94.96 171 | 99.53 170 | 97.91 192 | 91.55 197 | 95.37 169 | 98.32 185 | 95.05 50 | 97.13 254 | 93.80 181 | 95.75 182 | 99.30 165 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TESTMET0.1,1 | | | 96.74 115 | 96.26 114 | 98.16 125 | 97.36 195 | 96.48 121 | 99.96 23 | 98.29 148 | 91.93 187 | 95.77 163 | 98.07 190 | 95.54 37 | 98.29 203 | 90.55 227 | 98.89 115 | 99.70 106 |
|
miper_lstm_enhance | | | 91.81 225 | 91.39 222 | 93.06 276 | 97.34 196 | 89.18 281 | 99.38 190 | 96.79 293 | 86.70 278 | 87.47 270 | 95.22 277 | 90.00 158 | 95.86 310 | 88.26 251 | 81.37 283 | 94.15 255 |
|
baseline | | | 96.43 126 | 95.98 122 | 97.76 142 | 97.34 196 | 95.17 168 | 99.51 173 | 97.17 257 | 93.92 119 | 96.90 138 | 99.28 118 | 85.37 204 | 98.64 175 | 97.50 112 | 96.86 162 | 99.46 147 |
|
cl-mvsnet_ | | | 92.31 217 | 91.58 216 | 94.52 231 | 97.33 198 | 92.77 212 | 99.57 163 | 96.78 294 | 86.97 275 | 87.56 268 | 95.51 260 | 89.43 164 | 96.62 282 | 88.60 246 | 82.44 275 | 94.16 254 |
|
cl-mvsnet1 | | | 92.32 216 | 91.60 215 | 94.47 235 | 97.31 199 | 92.74 214 | 99.58 161 | 96.75 295 | 86.99 274 | 87.64 266 | 95.54 257 | 89.55 163 | 96.50 286 | 88.58 247 | 82.44 275 | 94.17 249 |
|
casdiffmvs | | | 96.42 127 | 95.97 125 | 97.77 141 | 97.30 200 | 94.98 170 | 99.84 102 | 97.09 263 | 93.75 127 | 96.58 145 | 99.26 124 | 85.07 206 | 98.78 163 | 97.77 107 | 97.04 157 | 99.54 138 |
|
eth_miper_zixun_eth | | | 92.41 215 | 91.93 210 | 93.84 259 | 97.28 201 | 90.68 258 | 98.83 247 | 96.97 277 | 88.57 253 | 89.19 244 | 95.73 250 | 89.24 169 | 96.69 280 | 89.97 237 | 81.55 281 | 94.15 255 |
|
MVSFormer | | | 96.94 105 | 96.60 105 | 97.95 134 | 97.28 201 | 97.70 80 | 99.55 167 | 97.27 250 | 91.17 206 | 99.43 50 | 99.54 102 | 90.92 149 | 96.89 270 | 94.67 161 | 99.62 91 | 99.25 169 |
|
lupinMVS | | | 97.85 72 | 97.60 73 | 98.62 96 | 97.28 201 | 97.70 80 | 99.99 4 | 97.55 222 | 95.50 66 | 99.43 50 | 99.67 89 | 90.92 149 | 98.71 170 | 98.40 81 | 99.62 91 | 99.45 149 |
|
SCA | | | 94.69 165 | 93.81 173 | 97.33 161 | 97.10 204 | 94.44 182 | 98.86 245 | 98.32 145 | 93.30 140 | 96.17 156 | 95.59 255 | 76.48 269 | 97.95 221 | 91.06 217 | 97.43 145 | 99.59 125 |
|
TAMVS | | | 95.85 141 | 95.58 138 | 96.65 177 | 97.07 205 | 93.50 200 | 99.17 211 | 97.82 201 | 91.39 205 | 95.02 173 | 98.01 191 | 92.20 127 | 97.30 243 | 93.75 184 | 95.83 179 | 99.14 177 |
|
Fast-Effi-MVS+-dtu | | | 93.72 189 | 93.86 172 | 93.29 269 | 97.06 206 | 86.16 302 | 99.80 115 | 96.83 289 | 92.66 163 | 92.58 201 | 97.83 195 | 81.39 230 | 97.67 230 | 89.75 239 | 96.87 161 | 96.05 219 |
|
MVS_0304 | | | 89.28 276 | 88.31 274 | 92.21 285 | 97.05 207 | 86.53 301 | 97.76 294 | 99.57 12 | 85.58 294 | 93.86 188 | 92.71 316 | 51.04 339 | 96.30 295 | 84.49 284 | 92.72 211 | 93.79 285 |
|
CostFormer | | | 96.10 136 | 95.88 132 | 96.78 171 | 97.03 208 | 92.55 222 | 97.08 302 | 97.83 200 | 90.04 229 | 98.72 87 | 94.89 288 | 95.01 52 | 98.29 203 | 96.54 132 | 95.77 180 | 99.50 144 |
|
test-LLR | | | 96.47 124 | 96.04 118 | 97.78 139 | 97.02 209 | 95.44 157 | 99.96 23 | 98.21 158 | 94.07 109 | 95.55 165 | 96.38 233 | 93.90 90 | 98.27 206 | 90.42 230 | 98.83 117 | 99.64 117 |
|
test-mter | | | 96.39 128 | 95.93 129 | 97.78 139 | 97.02 209 | 95.44 157 | 99.96 23 | 98.21 158 | 91.81 192 | 95.55 165 | 96.38 233 | 95.17 45 | 98.27 206 | 90.42 230 | 98.83 117 | 99.64 117 |
|
gm-plane-assit | | | | | | 96.97 211 | 93.76 196 | | | 91.47 200 | | 98.96 147 | | 98.79 162 | 94.92 150 | | |
|
QAPM | | | 95.40 152 | 94.17 165 | 99.10 67 | 96.92 212 | 97.71 78 | 99.40 185 | 98.68 55 | 89.31 235 | 88.94 248 | 98.89 152 | 82.48 222 | 99.96 51 | 93.12 196 | 99.83 74 | 99.62 119 |
|
tpm2 | | | 95.47 151 | 95.18 149 | 96.35 185 | 96.91 213 | 91.70 244 | 96.96 305 | 97.93 189 | 88.04 260 | 98.44 99 | 95.40 265 | 93.32 103 | 97.97 218 | 94.00 175 | 95.61 184 | 99.38 156 |
|
FMVSNet5 | | | 88.32 281 | 87.47 282 | 90.88 295 | 96.90 214 | 88.39 291 | 97.28 300 | 95.68 317 | 82.60 312 | 84.67 297 | 92.40 319 | 79.83 248 | 91.16 335 | 76.39 321 | 81.51 282 | 93.09 304 |
|
3Dnovator+ | | 91.53 11 | 96.31 131 | 95.24 146 | 99.52 23 | 96.88 215 | 98.64 46 | 99.72 138 | 98.24 154 | 95.27 72 | 88.42 259 | 98.98 143 | 82.76 221 | 99.94 66 | 97.10 122 | 99.83 74 | 99.96 64 |
|
Patchmatch-test | | | 92.65 210 | 91.50 219 | 96.10 190 | 96.85 216 | 90.49 263 | 91.50 334 | 97.19 254 | 82.76 311 | 90.23 216 | 95.59 255 | 95.02 51 | 98.00 217 | 77.41 316 | 96.98 159 | 99.82 91 |
|
MVS | | | 96.60 121 | 95.56 139 | 99.72 7 | 96.85 216 | 99.22 12 | 98.31 275 | 98.94 36 | 91.57 196 | 90.90 211 | 99.61 96 | 86.66 192 | 99.96 51 | 97.36 115 | 99.88 69 | 99.99 17 |
|
3Dnovator | | 91.47 12 | 96.28 134 | 95.34 144 | 99.08 69 | 96.82 218 | 97.47 92 | 99.45 182 | 98.81 47 | 95.52 65 | 89.39 236 | 99.00 140 | 81.97 224 | 99.95 58 | 97.27 117 | 99.83 74 | 99.84 89 |
|
EI-MVSNet | | | 93.73 188 | 93.40 185 | 94.74 221 | 96.80 219 | 92.69 217 | 99.06 222 | 97.67 208 | 88.96 243 | 91.39 207 | 99.02 136 | 88.75 174 | 97.30 243 | 91.07 216 | 87.85 239 | 94.22 245 |
|
CVMVSNet | | | 94.68 167 | 94.94 153 | 93.89 258 | 96.80 219 | 86.92 300 | 99.06 222 | 98.98 34 | 94.45 92 | 94.23 183 | 99.02 136 | 85.60 200 | 95.31 316 | 90.91 222 | 95.39 188 | 99.43 152 |
|
IterMVS-LS | | | 92.69 208 | 92.11 206 | 94.43 239 | 96.80 219 | 92.74 214 | 99.45 182 | 96.89 285 | 88.98 241 | 89.65 231 | 95.38 268 | 88.77 173 | 96.34 292 | 90.98 220 | 82.04 278 | 94.22 245 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS | | | 90.91 242 | 90.17 242 | 93.12 273 | 96.78 222 | 90.42 266 | 98.89 239 | 97.05 268 | 89.03 239 | 86.49 283 | 95.42 264 | 76.59 268 | 95.02 318 | 87.22 264 | 84.09 267 | 93.93 275 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
1314 | | | 96.84 109 | 95.96 127 | 99.48 31 | 96.74 223 | 98.52 51 | 98.31 275 | 98.86 44 | 95.82 53 | 89.91 222 | 98.98 143 | 87.49 183 | 99.96 51 | 97.80 104 | 99.73 84 | 99.96 64 |
|
IterMVS-SCA-FT | | | 90.85 245 | 90.16 243 | 92.93 277 | 96.72 224 | 89.96 271 | 98.89 239 | 96.99 273 | 88.95 244 | 86.63 280 | 95.67 251 | 76.48 269 | 95.00 319 | 87.04 266 | 84.04 270 | 93.84 282 |
|
MVS-HIRNet | | | 86.22 288 | 83.19 298 | 95.31 205 | 96.71 225 | 90.29 267 | 92.12 331 | 97.33 246 | 62.85 338 | 86.82 277 | 70.37 340 | 69.37 304 | 97.49 235 | 75.12 323 | 97.99 138 | 98.15 200 |
|
VDDNet | | | 93.12 198 | 91.91 211 | 96.76 172 | 96.67 226 | 92.65 220 | 98.69 256 | 98.21 158 | 82.81 310 | 97.75 122 | 99.28 118 | 61.57 327 | 99.48 142 | 98.09 93 | 94.09 200 | 98.15 200 |
|
MIMVSNet | | | 90.30 258 | 88.67 269 | 95.17 209 | 96.45 227 | 91.64 246 | 92.39 330 | 97.15 260 | 85.99 286 | 90.50 214 | 93.19 314 | 66.95 313 | 94.86 322 | 82.01 300 | 93.43 205 | 99.01 184 |
|
CR-MVSNet | | | 93.45 195 | 92.62 196 | 95.94 192 | 96.29 228 | 92.66 218 | 92.01 332 | 96.23 307 | 92.62 165 | 96.94 136 | 93.31 312 | 91.04 146 | 96.03 305 | 79.23 310 | 95.96 175 | 99.13 179 |
|
RPMNet | | | 89.39 273 | 87.20 284 | 95.94 192 | 96.29 228 | 92.66 218 | 92.01 332 | 97.63 210 | 70.19 337 | 96.94 136 | 85.87 334 | 87.25 186 | 96.03 305 | 62.69 337 | 95.96 175 | 99.13 179 |
|
Patchmtry | | | 89.70 269 | 88.49 271 | 93.33 268 | 96.24 230 | 89.94 274 | 91.37 335 | 96.23 307 | 78.22 323 | 87.69 265 | 93.31 312 | 91.04 146 | 96.03 305 | 80.18 309 | 82.10 277 | 94.02 265 |
|
JIA-IIPM | | | 91.76 231 | 90.70 229 | 94.94 215 | 96.11 231 | 87.51 297 | 93.16 328 | 98.13 173 | 75.79 329 | 97.58 124 | 77.68 338 | 92.84 114 | 97.97 218 | 88.47 250 | 96.54 164 | 99.33 162 |
|
OpenMVS | | 90.15 15 | 94.77 163 | 93.59 177 | 98.33 119 | 96.07 232 | 97.48 91 | 99.56 165 | 98.57 74 | 90.46 220 | 86.51 282 | 98.95 149 | 78.57 257 | 99.94 66 | 93.86 176 | 99.74 83 | 97.57 209 |
|
PAPM | | | 98.60 32 | 98.42 29 | 99.14 61 | 96.05 233 | 98.96 17 | 99.90 70 | 99.35 23 | 96.68 34 | 98.35 104 | 99.66 91 | 96.45 22 | 98.51 181 | 99.45 33 | 99.89 67 | 99.96 64 |
|
CLD-MVS | | | 94.06 180 | 93.90 170 | 94.55 230 | 96.02 234 | 90.69 257 | 99.98 8 | 97.72 205 | 96.62 36 | 91.05 210 | 98.85 161 | 77.21 262 | 98.47 182 | 98.11 91 | 89.51 219 | 94.48 225 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
PatchT | | | 90.38 255 | 88.75 268 | 95.25 206 | 95.99 235 | 90.16 269 | 91.22 336 | 97.54 224 | 76.80 325 | 97.26 130 | 86.01 333 | 91.88 133 | 96.07 304 | 66.16 334 | 95.91 177 | 99.51 142 |
|
ACMH+ | | 89.98 16 | 90.35 256 | 89.54 252 | 92.78 280 | 95.99 235 | 86.12 303 | 98.81 248 | 97.18 256 | 89.38 234 | 83.14 303 | 97.76 196 | 68.42 309 | 98.43 187 | 89.11 243 | 86.05 251 | 93.78 286 |
|
DeepMVS_CX | | | | | 82.92 321 | 95.98 237 | 58.66 342 | | 96.01 312 | 92.72 157 | 78.34 318 | 95.51 260 | 58.29 332 | 98.08 213 | 82.57 296 | 85.29 256 | 92.03 315 |
|
ACMP | | 92.05 9 | 92.74 206 | 92.42 203 | 93.73 260 | 95.91 238 | 88.72 284 | 99.81 111 | 97.53 226 | 94.13 105 | 87.00 276 | 98.23 186 | 74.07 287 | 98.47 182 | 96.22 135 | 88.86 226 | 93.99 270 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
HQP-NCC | | | | | | 95.78 239 | | 99.87 84 | | 96.82 27 | 93.37 190 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 239 | | 99.87 84 | | 96.82 27 | 93.37 190 | | | | | | |
|
HQP-MVS | | | 94.61 169 | 94.50 160 | 94.92 216 | 95.78 239 | 91.85 236 | 99.87 84 | 97.89 193 | 96.82 27 | 93.37 190 | 98.65 168 | 80.65 240 | 98.39 193 | 97.92 102 | 89.60 214 | 94.53 221 |
|
NP-MVS | | | | | | 95.77 242 | 91.79 238 | | | | | 98.65 168 | | | | | |
|
plane_prior6 | | | | | | 95.76 243 | 91.72 243 | | | | | | 80.47 244 | | | | |
|
ACMM | | 91.95 10 | 92.88 203 | 92.52 201 | 93.98 255 | 95.75 244 | 89.08 282 | 99.77 121 | 97.52 228 | 93.00 147 | 89.95 221 | 97.99 192 | 76.17 273 | 98.46 185 | 93.63 187 | 88.87 225 | 94.39 233 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GA-MVS | | | 93.83 182 | 92.84 192 | 96.80 170 | 95.73 245 | 93.57 198 | 99.88 81 | 97.24 252 | 92.57 170 | 92.92 196 | 96.66 226 | 78.73 256 | 97.67 230 | 87.75 257 | 94.06 201 | 99.17 173 |
|
plane_prior1 | | | | | | 95.73 245 | | | | | | | | | | | |
|
jason | | | 97.24 95 | 96.86 96 | 98.38 118 | 95.73 245 | 97.32 97 | 99.97 16 | 97.40 241 | 95.34 69 | 98.60 94 | 99.54 102 | 87.70 181 | 98.56 178 | 97.94 101 | 99.47 102 | 99.25 169 |
jason: jason. |
HQP_MVS | | | 94.49 173 | 94.36 162 | 94.87 217 | 95.71 248 | 91.74 240 | 99.84 102 | 97.87 195 | 96.38 41 | 93.01 194 | 98.59 172 | 80.47 244 | 98.37 198 | 97.79 105 | 89.55 217 | 94.52 223 |
|
plane_prior7 | | | | | | 95.71 248 | 91.59 248 | | | | | | | | | | |
|
ITE_SJBPF | | | | | 92.38 282 | 95.69 250 | 85.14 309 | | 95.71 316 | 92.81 152 | 89.33 239 | 98.11 188 | 70.23 302 | 98.42 188 | 85.91 276 | 88.16 237 | 93.59 294 |
|
ACMH | | 89.72 17 | 90.64 249 | 89.63 249 | 93.66 264 | 95.64 251 | 88.64 287 | 98.55 263 | 97.45 234 | 89.03 239 | 81.62 307 | 97.61 197 | 69.75 303 | 98.41 189 | 89.37 240 | 87.62 243 | 93.92 276 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
baseline2 | | | 96.71 117 | 96.49 109 | 97.37 158 | 95.63 252 | 95.96 143 | 99.74 130 | 98.88 42 | 92.94 148 | 91.61 205 | 98.97 145 | 97.72 5 | 98.62 176 | 94.83 154 | 98.08 136 | 97.53 210 |
|
FMVSNet1 | | | 88.50 280 | 86.64 285 | 94.08 248 | 95.62 253 | 91.97 231 | 98.43 270 | 96.95 278 | 83.00 309 | 86.08 290 | 94.72 290 | 59.09 331 | 96.11 300 | 81.82 302 | 84.07 268 | 94.17 249 |
|
LPG-MVS_test | | | 92.96 201 | 92.71 195 | 93.71 262 | 95.43 254 | 88.67 285 | 99.75 127 | 97.62 213 | 92.81 152 | 90.05 217 | 98.49 178 | 75.24 279 | 98.40 191 | 95.84 142 | 89.12 221 | 94.07 262 |
|
LGP-MVS_train | | | | | 93.71 262 | 95.43 254 | 88.67 285 | | 97.62 213 | 92.81 152 | 90.05 217 | 98.49 178 | 75.24 279 | 98.40 191 | 95.84 142 | 89.12 221 | 94.07 262 |
|
tpm | | | 93.70 190 | 93.41 184 | 94.58 228 | 95.36 256 | 87.41 298 | 97.01 303 | 96.90 284 | 90.85 215 | 96.72 143 | 94.14 304 | 90.40 154 | 96.84 273 | 90.75 226 | 88.54 233 | 99.51 142 |
|
D2MVS | | | 92.76 205 | 92.59 199 | 93.27 270 | 95.13 257 | 89.54 278 | 99.69 141 | 99.38 21 | 92.26 178 | 87.59 267 | 94.61 296 | 85.05 207 | 97.79 226 | 91.59 210 | 88.01 238 | 92.47 311 |
|
VPA-MVSNet | | | 92.70 207 | 91.55 218 | 96.16 188 | 95.09 258 | 96.20 134 | 98.88 241 | 99.00 33 | 91.02 212 | 91.82 204 | 95.29 275 | 76.05 275 | 97.96 220 | 95.62 144 | 81.19 284 | 94.30 240 |
|
LTVRE_ROB | | 88.28 18 | 90.29 259 | 89.05 263 | 94.02 251 | 95.08 259 | 90.15 270 | 97.19 301 | 97.43 236 | 84.91 299 | 83.99 300 | 97.06 213 | 74.00 288 | 98.28 205 | 84.08 286 | 87.71 241 | 93.62 293 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TinyColmap | | | 87.87 284 | 86.51 286 | 91.94 288 | 95.05 260 | 85.57 306 | 97.65 295 | 94.08 335 | 84.40 302 | 81.82 306 | 96.85 222 | 62.14 326 | 98.33 200 | 80.25 308 | 86.37 250 | 91.91 317 |
|
test0.0.03 1 | | | 93.86 181 | 93.61 174 | 94.64 225 | 95.02 261 | 92.18 229 | 99.93 58 | 98.58 72 | 94.07 109 | 87.96 263 | 98.50 177 | 93.90 90 | 94.96 320 | 81.33 303 | 93.17 208 | 96.78 212 |
|
UniMVSNet (Re) | | | 93.07 200 | 92.13 205 | 95.88 194 | 94.84 262 | 96.24 133 | 99.88 81 | 98.98 34 | 92.49 174 | 89.25 240 | 95.40 265 | 87.09 188 | 97.14 253 | 93.13 195 | 78.16 307 | 94.26 242 |
|
USDC | | | 90.00 266 | 88.96 264 | 93.10 275 | 94.81 263 | 88.16 293 | 98.71 254 | 95.54 321 | 93.66 130 | 83.75 302 | 97.20 207 | 65.58 317 | 98.31 202 | 83.96 289 | 87.49 245 | 92.85 308 |
|
VPNet | | | 91.81 225 | 90.46 233 | 95.85 196 | 94.74 264 | 95.54 156 | 98.98 231 | 98.59 71 | 92.14 181 | 90.77 213 | 97.44 200 | 68.73 307 | 97.54 234 | 94.89 153 | 77.89 309 | 94.46 226 |
|
FIs | | | 94.10 179 | 93.43 181 | 96.11 189 | 94.70 265 | 96.82 113 | 99.58 161 | 98.93 39 | 92.54 171 | 89.34 238 | 97.31 204 | 87.62 182 | 97.10 257 | 94.22 172 | 86.58 248 | 94.40 232 |
|
UniMVSNet_ETH3D | | | 90.06 265 | 88.58 270 | 94.49 234 | 94.67 266 | 88.09 294 | 97.81 293 | 97.57 221 | 83.91 305 | 88.44 255 | 97.41 201 | 57.44 333 | 97.62 232 | 91.41 211 | 88.59 232 | 97.77 207 |
|
UniMVSNet_NR-MVSNet | | | 92.95 202 | 92.11 206 | 95.49 199 | 94.61 267 | 95.28 163 | 99.83 108 | 99.08 30 | 91.49 198 | 89.21 242 | 96.86 221 | 87.14 187 | 96.73 278 | 93.20 191 | 77.52 312 | 94.46 226 |
|
WR-MVS | | | 92.31 217 | 91.25 223 | 95.48 202 | 94.45 268 | 95.29 162 | 99.60 159 | 98.68 55 | 90.10 226 | 88.07 262 | 96.89 219 | 80.68 239 | 96.80 276 | 93.14 194 | 79.67 299 | 94.36 234 |
|
nrg030 | | | 93.51 192 | 92.53 200 | 96.45 180 | 94.36 269 | 97.20 100 | 99.81 111 | 97.16 259 | 91.60 195 | 89.86 224 | 97.46 199 | 86.37 195 | 97.68 229 | 95.88 140 | 80.31 295 | 94.46 226 |
|
tfpnnormal | | | 89.29 275 | 87.61 281 | 94.34 241 | 94.35 270 | 94.13 189 | 98.95 235 | 98.94 36 | 83.94 303 | 84.47 298 | 95.51 260 | 74.84 282 | 97.39 237 | 77.05 319 | 80.41 293 | 91.48 320 |
|
FC-MVSNet-test | | | 93.81 184 | 93.15 190 | 95.80 197 | 94.30 271 | 96.20 134 | 99.42 184 | 98.89 41 | 92.33 177 | 89.03 247 | 97.27 206 | 87.39 185 | 96.83 274 | 93.20 191 | 86.48 249 | 94.36 234 |
|
MS-PatchMatch | | | 90.65 248 | 90.30 238 | 91.71 291 | 94.22 272 | 85.50 307 | 98.24 279 | 97.70 206 | 88.67 250 | 86.42 285 | 96.37 235 | 67.82 311 | 98.03 216 | 83.62 291 | 99.62 91 | 91.60 319 |
|
WR-MVS_H | | | 91.30 234 | 90.35 236 | 94.15 245 | 94.17 273 | 92.62 221 | 99.17 211 | 98.94 36 | 88.87 246 | 86.48 284 | 94.46 301 | 84.36 211 | 96.61 283 | 88.19 252 | 78.51 305 | 93.21 303 |
|
DU-MVS | | | 92.46 214 | 91.45 221 | 95.49 199 | 94.05 274 | 95.28 163 | 99.81 111 | 98.74 51 | 92.25 179 | 89.21 242 | 96.64 228 | 81.66 227 | 96.73 278 | 93.20 191 | 77.52 312 | 94.46 226 |
|
NR-MVSNet | | | 91.56 233 | 90.22 240 | 95.60 198 | 94.05 274 | 95.76 149 | 98.25 278 | 98.70 53 | 91.16 208 | 80.78 310 | 96.64 228 | 83.23 220 | 96.57 284 | 91.41 211 | 77.73 311 | 94.46 226 |
|
CP-MVSNet | | | 91.23 237 | 90.22 240 | 94.26 242 | 93.96 276 | 92.39 225 | 99.09 215 | 98.57 74 | 88.95 244 | 86.42 285 | 96.57 230 | 79.19 252 | 96.37 290 | 90.29 233 | 78.95 302 | 94.02 265 |
|
XXY-MVS | | | 91.82 224 | 90.46 233 | 95.88 194 | 93.91 277 | 95.40 160 | 98.87 244 | 97.69 207 | 88.63 252 | 87.87 264 | 97.08 211 | 74.38 286 | 97.89 224 | 91.66 209 | 84.07 268 | 94.35 237 |
|
PS-CasMVS | | | 90.63 250 | 89.51 254 | 93.99 254 | 93.83 278 | 91.70 244 | 98.98 231 | 98.52 87 | 88.48 254 | 86.15 289 | 96.53 232 | 75.46 277 | 96.31 294 | 88.83 245 | 78.86 304 | 93.95 273 |
|
test_0402 | | | 85.58 290 | 83.94 293 | 90.50 299 | 93.81 279 | 85.04 310 | 98.55 263 | 95.20 327 | 76.01 327 | 79.72 314 | 95.13 278 | 64.15 322 | 96.26 297 | 66.04 335 | 86.88 247 | 90.21 328 |
|
XVG-ACMP-BASELINE | | | 91.22 238 | 90.75 228 | 92.63 281 | 93.73 280 | 85.61 305 | 98.52 267 | 97.44 235 | 92.77 156 | 89.90 223 | 96.85 222 | 66.64 314 | 98.39 193 | 92.29 201 | 88.61 230 | 93.89 278 |
|
TranMVSNet+NR-MVSNet | | | 91.68 232 | 90.61 231 | 94.87 217 | 93.69 281 | 93.98 191 | 99.69 141 | 98.65 59 | 91.03 211 | 88.44 255 | 96.83 225 | 80.05 247 | 96.18 299 | 90.26 234 | 76.89 319 | 94.45 231 |
|
TransMVSNet (Re) | | | 87.25 285 | 85.28 289 | 93.16 272 | 93.56 282 | 91.03 252 | 98.54 265 | 94.05 336 | 83.69 307 | 81.09 309 | 96.16 239 | 75.32 278 | 96.40 289 | 76.69 320 | 68.41 331 | 92.06 314 |
|
v10 | | | 90.25 260 | 88.82 266 | 94.57 229 | 93.53 283 | 93.43 202 | 99.08 217 | 96.87 287 | 85.00 298 | 87.34 274 | 94.51 297 | 80.93 236 | 97.02 266 | 82.85 295 | 79.23 300 | 93.26 301 |
|
testgi | | | 89.01 278 | 88.04 278 | 91.90 289 | 93.49 284 | 84.89 311 | 99.73 135 | 95.66 318 | 93.89 122 | 85.14 295 | 98.17 187 | 59.68 330 | 94.66 324 | 77.73 315 | 88.88 224 | 96.16 218 |
|
v8 | | | 90.54 252 | 89.17 259 | 94.66 224 | 93.43 285 | 93.40 204 | 99.20 208 | 96.94 281 | 85.76 289 | 87.56 268 | 94.51 297 | 81.96 225 | 97.19 249 | 84.94 282 | 78.25 306 | 93.38 299 |
|
V42 | | | 91.28 236 | 90.12 244 | 94.74 221 | 93.42 286 | 93.46 201 | 99.68 143 | 97.02 269 | 87.36 267 | 89.85 226 | 95.05 280 | 81.31 232 | 97.34 240 | 87.34 262 | 80.07 297 | 93.40 297 |
|
pm-mvs1 | | | 89.36 274 | 87.81 280 | 94.01 252 | 93.40 287 | 91.93 234 | 98.62 262 | 96.48 305 | 86.25 284 | 83.86 301 | 96.14 240 | 73.68 289 | 97.04 262 | 86.16 274 | 75.73 323 | 93.04 306 |
|
v1144 | | | 91.09 239 | 89.83 246 | 94.87 217 | 93.25 288 | 93.69 197 | 99.62 157 | 96.98 275 | 86.83 277 | 89.64 232 | 94.99 285 | 80.94 235 | 97.05 260 | 85.08 281 | 81.16 285 | 93.87 280 |
|
v1192 | | | 90.62 251 | 89.25 258 | 94.72 223 | 93.13 289 | 93.07 207 | 99.50 174 | 97.02 269 | 86.33 283 | 89.56 234 | 95.01 282 | 79.22 251 | 97.09 259 | 82.34 298 | 81.16 285 | 94.01 267 |
|
v2v482 | | | 91.30 234 | 90.07 245 | 95.01 212 | 93.13 289 | 93.79 194 | 99.77 121 | 97.02 269 | 88.05 259 | 89.25 240 | 95.37 269 | 80.73 238 | 97.15 252 | 87.28 263 | 80.04 298 | 94.09 261 |
|
OPM-MVS | | | 93.21 196 | 92.80 193 | 94.44 237 | 93.12 291 | 90.85 256 | 99.77 121 | 97.61 216 | 96.19 48 | 91.56 206 | 98.65 168 | 75.16 281 | 98.47 182 | 93.78 183 | 89.39 220 | 93.99 270 |
|
v144192 | | | 90.79 246 | 89.52 253 | 94.59 227 | 93.11 292 | 92.77 212 | 99.56 165 | 96.99 273 | 86.38 282 | 89.82 227 | 94.95 287 | 80.50 243 | 97.10 257 | 83.98 288 | 80.41 293 | 93.90 277 |
|
PEN-MVS | | | 90.19 262 | 89.06 262 | 93.57 265 | 93.06 293 | 90.90 255 | 99.06 222 | 98.47 99 | 88.11 258 | 85.91 291 | 96.30 236 | 76.67 267 | 95.94 309 | 87.07 265 | 76.91 318 | 93.89 278 |
|
v1240 | | | 90.20 261 | 88.79 267 | 94.44 237 | 93.05 294 | 92.27 227 | 99.38 190 | 96.92 283 | 85.89 287 | 89.36 237 | 94.87 289 | 77.89 261 | 97.03 264 | 80.66 306 | 81.08 287 | 94.01 267 |
|
v148 | | | 90.70 247 | 89.63 249 | 93.92 256 | 92.97 295 | 90.97 253 | 99.75 127 | 96.89 285 | 87.51 264 | 88.27 260 | 95.01 282 | 81.67 226 | 97.04 262 | 87.40 261 | 77.17 316 | 93.75 287 |
|
v1921920 | | | 90.46 253 | 89.12 260 | 94.50 233 | 92.96 296 | 92.46 223 | 99.49 176 | 96.98 275 | 86.10 285 | 89.61 233 | 95.30 272 | 78.55 258 | 97.03 264 | 82.17 299 | 80.89 291 | 94.01 267 |
|
Baseline_NR-MVSNet | | | 90.33 257 | 89.51 254 | 92.81 279 | 92.84 297 | 89.95 272 | 99.77 121 | 93.94 337 | 84.69 301 | 89.04 246 | 95.66 252 | 81.66 227 | 96.52 285 | 90.99 219 | 76.98 317 | 91.97 316 |
|
pmmvs4 | | | 92.10 221 | 91.07 226 | 95.18 208 | 92.82 298 | 94.96 171 | 99.48 178 | 96.83 289 | 87.45 266 | 88.66 253 | 96.56 231 | 83.78 215 | 96.83 274 | 89.29 241 | 84.77 262 | 93.75 287 |
|
LF4IMVS | | | 89.25 277 | 88.85 265 | 90.45 301 | 92.81 299 | 81.19 326 | 98.12 284 | 94.79 330 | 91.44 201 | 86.29 287 | 97.11 209 | 65.30 319 | 98.11 212 | 88.53 249 | 85.25 257 | 92.07 313 |
|
DTE-MVSNet | | | 89.40 272 | 88.24 276 | 92.88 278 | 92.66 300 | 89.95 272 | 99.10 214 | 98.22 157 | 87.29 268 | 85.12 296 | 96.22 238 | 76.27 272 | 95.30 317 | 83.56 292 | 75.74 322 | 93.41 296 |
|
EU-MVSNet | | | 90.14 264 | 90.34 237 | 89.54 307 | 92.55 301 | 81.06 327 | 98.69 256 | 98.04 180 | 91.41 204 | 86.59 281 | 96.84 224 | 80.83 237 | 93.31 333 | 86.20 273 | 81.91 279 | 94.26 242 |
|
our_test_3 | | | 90.39 254 | 89.48 256 | 93.12 273 | 92.40 302 | 89.57 277 | 99.33 196 | 96.35 306 | 87.84 262 | 85.30 294 | 94.99 285 | 84.14 213 | 96.09 303 | 80.38 307 | 84.56 263 | 93.71 292 |
|
ppachtmachnet_test | | | 89.58 271 | 88.35 273 | 93.25 271 | 92.40 302 | 90.44 265 | 99.33 196 | 96.73 296 | 85.49 295 | 85.90 292 | 95.77 247 | 81.09 234 | 96.00 308 | 76.00 322 | 82.49 274 | 93.30 300 |
|
v7n | | | 89.65 270 | 88.29 275 | 93.72 261 | 92.22 304 | 90.56 262 | 99.07 221 | 97.10 262 | 85.42 297 | 86.73 278 | 94.72 290 | 80.06 246 | 97.13 254 | 81.14 304 | 78.12 308 | 93.49 295 |
|
PS-MVSNAJss | | | 93.64 191 | 93.31 187 | 94.61 226 | 92.11 305 | 92.19 228 | 99.12 213 | 97.38 242 | 92.51 173 | 88.45 254 | 96.99 217 | 91.20 141 | 97.29 246 | 94.36 166 | 87.71 241 | 94.36 234 |
|
pmmvs5 | | | 90.17 263 | 89.09 261 | 93.40 267 | 92.10 306 | 89.77 275 | 99.74 130 | 95.58 320 | 85.88 288 | 87.24 275 | 95.74 248 | 73.41 290 | 96.48 287 | 88.54 248 | 83.56 271 | 93.95 273 |
|
N_pmnet | | | 80.06 307 | 80.78 305 | 77.89 322 | 91.94 307 | 45.28 348 | 98.80 249 | 56.82 353 | 78.10 324 | 80.08 313 | 93.33 310 | 77.03 263 | 95.76 311 | 68.14 331 | 82.81 273 | 92.64 309 |
|
test_djsdf | | | 92.83 204 | 92.29 204 | 94.47 235 | 91.90 308 | 92.46 223 | 99.55 167 | 97.27 250 | 91.17 206 | 89.96 220 | 96.07 243 | 81.10 233 | 96.89 270 | 94.67 161 | 88.91 223 | 94.05 264 |
|
DI_MVS_plusplus_test | | | 92.48 212 | 90.60 232 | 98.11 129 | 91.88 309 | 96.13 137 | 99.64 153 | 97.73 204 | 92.69 160 | 76.02 324 | 93.79 307 | 70.49 301 | 99.07 151 | 95.88 140 | 97.26 151 | 99.14 177 |
|
SixPastTwentyTwo | | | 88.73 279 | 88.01 279 | 90.88 295 | 91.85 310 | 82.24 320 | 98.22 281 | 95.18 328 | 88.97 242 | 82.26 305 | 96.89 219 | 71.75 295 | 96.67 281 | 84.00 287 | 82.98 272 | 93.72 291 |
|
K. test v3 | | | 88.05 283 | 87.24 283 | 90.47 300 | 91.82 311 | 82.23 321 | 98.96 234 | 97.42 238 | 89.05 238 | 76.93 321 | 95.60 254 | 68.49 308 | 95.42 313 | 85.87 277 | 81.01 289 | 93.75 287 |
|
OurMVSNet-221017-0 | | | 89.81 268 | 89.48 256 | 90.83 297 | 91.64 312 | 81.21 325 | 98.17 283 | 95.38 323 | 91.48 199 | 85.65 293 | 97.31 204 | 72.66 291 | 97.29 246 | 88.15 253 | 84.83 261 | 93.97 272 |
|
mvs_tets | | | 91.81 225 | 91.08 225 | 94.00 253 | 91.63 313 | 90.58 261 | 98.67 258 | 97.43 236 | 92.43 175 | 87.37 273 | 97.05 214 | 71.76 294 | 97.32 242 | 94.75 158 | 88.68 229 | 94.11 260 |
|
Gipuma | | | 66.95 313 | 65.00 313 | 72.79 325 | 91.52 314 | 67.96 338 | 66.16 344 | 95.15 329 | 47.89 341 | 58.54 338 | 67.99 342 | 29.74 345 | 87.54 340 | 50.20 341 | 77.83 310 | 62.87 342 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
jajsoiax | | | 91.92 223 | 91.18 224 | 94.15 245 | 91.35 315 | 90.95 254 | 99.00 230 | 97.42 238 | 92.61 166 | 87.38 272 | 97.08 211 | 72.46 292 | 97.36 238 | 94.53 164 | 88.77 227 | 94.13 259 |
|
MDA-MVSNet-bldmvs | | | 84.09 300 | 81.52 304 | 91.81 290 | 91.32 316 | 88.00 296 | 98.67 258 | 95.92 314 | 80.22 319 | 55.60 341 | 93.32 311 | 68.29 310 | 93.60 331 | 73.76 324 | 76.61 320 | 93.82 284 |
|
MVP-Stereo | | | 90.93 241 | 90.45 235 | 92.37 283 | 91.25 317 | 88.76 283 | 98.05 288 | 96.17 309 | 87.27 269 | 84.04 299 | 95.30 272 | 78.46 259 | 97.27 248 | 83.78 290 | 99.70 87 | 91.09 321 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MDA-MVSNet_test_wron | | | 85.51 292 | 83.32 297 | 92.10 286 | 90.96 318 | 88.58 288 | 99.20 208 | 96.52 302 | 79.70 320 | 57.12 340 | 92.69 317 | 79.11 253 | 93.86 328 | 77.10 318 | 77.46 314 | 93.86 281 |
|
YYNet1 | | | 85.50 293 | 83.33 296 | 92.00 287 | 90.89 319 | 88.38 292 | 99.22 207 | 96.55 301 | 79.60 321 | 57.26 339 | 92.72 315 | 79.09 254 | 93.78 329 | 77.25 317 | 77.37 315 | 93.84 282 |
|
anonymousdsp | | | 91.79 230 | 90.92 227 | 94.41 240 | 90.76 320 | 92.93 211 | 98.93 237 | 97.17 257 | 89.08 237 | 87.46 271 | 95.30 272 | 78.43 260 | 96.92 269 | 92.38 200 | 88.73 228 | 93.39 298 |
|
lessismore_v0 | | | | | 90.53 298 | 90.58 321 | 80.90 328 | | 95.80 315 | | 77.01 320 | 95.84 245 | 66.15 316 | 96.95 267 | 83.03 294 | 75.05 324 | 93.74 290 |
|
EG-PatchMatch MVS | | | 85.35 294 | 83.81 295 | 89.99 305 | 90.39 322 | 81.89 323 | 98.21 282 | 96.09 311 | 81.78 315 | 74.73 328 | 93.72 309 | 51.56 338 | 97.12 256 | 79.16 311 | 88.61 230 | 90.96 323 |
|
CMPMVS | | 61.59 21 | 84.75 297 | 85.14 290 | 83.57 319 | 90.32 323 | 62.54 340 | 96.98 304 | 97.59 220 | 74.33 333 | 69.95 333 | 96.66 226 | 64.17 321 | 98.32 201 | 87.88 256 | 88.41 235 | 89.84 330 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
new_pmnet | | | 84.49 299 | 82.92 299 | 89.21 308 | 90.03 324 | 82.60 317 | 96.89 306 | 95.62 319 | 80.59 318 | 75.77 327 | 89.17 325 | 65.04 320 | 94.79 323 | 72.12 325 | 81.02 288 | 90.23 327 |
|
pmmvs6 | | | 85.69 289 | 83.84 294 | 91.26 294 | 90.00 325 | 84.41 313 | 97.82 292 | 96.15 310 | 75.86 328 | 81.29 308 | 95.39 267 | 61.21 328 | 96.87 272 | 83.52 293 | 73.29 326 | 92.50 310 |
|
DSMNet-mixed | | | 88.28 282 | 88.24 276 | 88.42 313 | 89.64 326 | 75.38 334 | 98.06 287 | 89.86 344 | 85.59 293 | 88.20 261 | 92.14 320 | 76.15 274 | 91.95 334 | 78.46 312 | 96.05 172 | 97.92 203 |
|
UnsupCasMVSNet_eth | | | 85.52 291 | 83.99 291 | 90.10 303 | 89.36 327 | 83.51 315 | 96.65 307 | 97.99 182 | 89.14 236 | 75.89 326 | 93.83 306 | 63.25 324 | 93.92 326 | 81.92 301 | 67.90 333 | 92.88 307 |
|
Anonymous20231206 | | | 86.32 287 | 85.42 288 | 89.02 309 | 89.11 328 | 80.53 330 | 99.05 226 | 95.28 324 | 85.43 296 | 82.82 304 | 93.92 305 | 74.40 285 | 93.44 332 | 66.99 332 | 81.83 280 | 93.08 305 |
|
OpenMVS_ROB | | 79.82 20 | 83.77 302 | 81.68 303 | 90.03 304 | 88.30 329 | 82.82 316 | 98.46 268 | 95.22 326 | 73.92 334 | 76.00 325 | 91.29 322 | 55.00 335 | 96.94 268 | 68.40 330 | 88.51 234 | 90.34 326 |
|
test20.03 | | | 84.72 298 | 83.99 291 | 86.91 315 | 88.19 330 | 80.62 329 | 98.88 241 | 95.94 313 | 88.36 256 | 78.87 315 | 94.62 295 | 68.75 306 | 89.11 339 | 66.52 333 | 75.82 321 | 91.00 322 |
|
MIMVSNet1 | | | 82.58 303 | 80.51 306 | 88.78 311 | 86.68 331 | 84.20 314 | 96.65 307 | 95.41 322 | 78.75 322 | 78.59 317 | 92.44 318 | 51.88 337 | 89.76 338 | 65.26 336 | 78.95 302 | 92.38 312 |
|
UnsupCasMVSNet_bld | | | 79.97 308 | 77.03 310 | 88.78 311 | 85.62 332 | 81.98 322 | 93.66 326 | 97.35 244 | 75.51 331 | 70.79 332 | 83.05 335 | 48.70 340 | 94.91 321 | 78.31 313 | 60.29 338 | 89.46 333 |
|
Patchmatch-RL test | | | 86.90 286 | 85.98 287 | 89.67 306 | 84.45 333 | 75.59 333 | 89.71 337 | 92.43 339 | 86.89 276 | 77.83 319 | 90.94 323 | 94.22 79 | 93.63 330 | 87.75 257 | 69.61 328 | 99.79 94 |
|
pmmvs-eth3d | | | 84.03 301 | 81.97 301 | 90.20 302 | 84.15 334 | 87.09 299 | 98.10 286 | 94.73 332 | 83.05 308 | 74.10 329 | 87.77 328 | 65.56 318 | 94.01 325 | 81.08 305 | 69.24 330 | 89.49 332 |
|
PM-MVS | | | 80.47 305 | 78.88 308 | 85.26 318 | 83.79 335 | 72.22 335 | 95.89 318 | 91.08 342 | 85.71 292 | 76.56 323 | 88.30 326 | 36.64 342 | 93.90 327 | 82.39 297 | 69.57 329 | 89.66 331 |
|
new-patchmatchnet | | | 81.19 304 | 79.34 307 | 86.76 316 | 82.86 336 | 80.36 331 | 97.92 290 | 95.27 325 | 82.09 314 | 72.02 330 | 86.87 330 | 62.81 325 | 90.74 337 | 71.10 326 | 63.08 336 | 89.19 334 |
|
testing_2 | | | 85.10 295 | 81.72 302 | 95.22 207 | 82.25 337 | 94.16 187 | 97.54 296 | 97.01 272 | 88.15 257 | 62.23 335 | 86.43 332 | 44.43 341 | 97.18 250 | 92.28 202 | 85.20 259 | 94.31 239 |
|
pmmvs3 | | | 80.27 306 | 77.77 309 | 87.76 314 | 80.32 338 | 82.43 319 | 98.23 280 | 91.97 340 | 72.74 335 | 78.75 316 | 87.97 327 | 57.30 334 | 90.99 336 | 70.31 327 | 62.37 337 | 89.87 329 |
|
test_normal | | | 73.75 309 | 69.52 311 | 86.45 317 | 78.71 339 | 71.20 336 | 52.76 345 | 96.50 303 | 86.56 279 | 46.73 345 | 66.99 343 | 34.02 343 | 96.33 293 | 84.42 285 | 78.96 301 | 91.81 318 |
|
ambc | | | | | 83.23 320 | 77.17 340 | 62.61 339 | 87.38 339 | 94.55 334 | | 76.72 322 | 86.65 331 | 30.16 344 | 96.36 291 | 84.85 283 | 69.86 327 | 90.73 325 |
|
TDRefinement | | | 84.76 296 | 82.56 300 | 91.38 293 | 74.58 341 | 84.80 312 | 97.36 299 | 94.56 333 | 84.73 300 | 80.21 312 | 96.12 242 | 63.56 323 | 98.39 193 | 87.92 255 | 63.97 335 | 90.95 324 |
|
E-PMN | | | 52.30 317 | 52.18 318 | 52.67 331 | 71.51 342 | 45.40 347 | 93.62 327 | 76.60 351 | 36.01 345 | 43.50 346 | 64.13 345 | 27.11 347 | 67.31 348 | 31.06 346 | 26.06 342 | 45.30 346 |
|
EMVS | | | 51.44 319 | 51.22 320 | 52.11 332 | 70.71 343 | 44.97 349 | 94.04 323 | 75.66 352 | 35.34 347 | 42.40 347 | 61.56 348 | 28.93 346 | 65.87 349 | 27.64 347 | 24.73 343 | 45.49 345 |
|
PMMVS2 | | | 67.15 312 | 64.15 315 | 76.14 324 | 70.56 344 | 62.07 341 | 93.89 324 | 87.52 348 | 58.09 339 | 60.02 337 | 78.32 337 | 22.38 349 | 84.54 342 | 59.56 339 | 47.03 340 | 81.80 337 |
|
FPMVS | | | 68.72 310 | 68.72 312 | 68.71 327 | 65.95 345 | 44.27 350 | 95.97 317 | 94.74 331 | 51.13 340 | 53.26 342 | 90.50 324 | 25.11 348 | 83.00 343 | 60.80 338 | 80.97 290 | 78.87 338 |
|
wuyk23d | | | 20.37 323 | 20.84 325 | 18.99 335 | 65.34 346 | 27.73 352 | 50.43 346 | 7.67 356 | 9.50 350 | 8.01 351 | 6.34 351 | 6.13 355 | 26.24 350 | 23.40 348 | 10.69 347 | 2.99 347 |
|
LCM-MVSNet | | | 67.77 311 | 64.73 314 | 76.87 323 | 62.95 347 | 56.25 344 | 89.37 338 | 93.74 338 | 44.53 342 | 61.99 336 | 80.74 336 | 20.42 350 | 86.53 341 | 69.37 329 | 59.50 339 | 87.84 335 |
|
MVE | | 53.74 22 | 51.54 318 | 47.86 321 | 62.60 329 | 59.56 348 | 50.93 345 | 79.41 342 | 77.69 350 | 35.69 346 | 36.27 348 | 61.76 347 | 5.79 356 | 69.63 346 | 37.97 345 | 36.61 341 | 67.24 340 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 56.10 315 | 52.24 317 | 67.66 328 | 49.27 349 | 56.82 343 | 83.94 340 | 82.02 349 | 70.47 336 | 33.28 349 | 64.54 344 | 17.23 352 | 69.16 347 | 45.59 343 | 23.85 344 | 77.02 339 |
|
tmp_tt | | | 65.23 314 | 62.94 316 | 72.13 326 | 44.90 350 | 50.03 346 | 81.05 341 | 89.42 347 | 38.45 343 | 48.51 344 | 99.90 16 | 54.09 336 | 78.70 345 | 91.84 208 | 18.26 345 | 87.64 336 |
|
PMVS | | 49.05 23 | 53.75 316 | 51.34 319 | 60.97 330 | 40.80 351 | 34.68 351 | 74.82 343 | 89.62 346 | 37.55 344 | 28.67 350 | 72.12 339 | 7.09 354 | 81.63 344 | 43.17 344 | 68.21 332 | 66.59 341 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test123 | | | 37.68 321 | 39.14 323 | 33.31 333 | 19.94 352 | 24.83 353 | 98.36 274 | 9.75 355 | 15.53 349 | 51.31 343 | 87.14 329 | 19.62 351 | 17.74 351 | 47.10 342 | 3.47 348 | 57.36 343 |
|
testmvs | | | 40.60 320 | 44.45 322 | 29.05 334 | 19.49 353 | 14.11 354 | 99.68 143 | 18.47 354 | 20.74 348 | 64.59 334 | 98.48 181 | 10.95 353 | 17.09 352 | 56.66 340 | 11.01 346 | 55.94 344 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 336 | 0.00 354 | 0.00 355 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
cdsmvs_eth3d_5k | | | 23.43 322 | 31.24 324 | 0.00 336 | 0.00 354 | 0.00 355 | 0.00 347 | 98.09 175 | 0.00 351 | 0.00 352 | 99.67 89 | 83.37 218 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
pcd_1.5k_mvsjas | | | 7.60 325 | 10.13 327 | 0.00 336 | 0.00 354 | 0.00 355 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 91.20 141 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 336 | 0.00 354 | 0.00 355 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 336 | 0.00 354 | 0.00 355 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 336 | 0.00 354 | 0.00 355 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 336 | 0.00 354 | 0.00 355 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
ab-mvs-re | | | 8.28 324 | 11.04 326 | 0.00 336 | 0.00 354 | 0.00 355 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 99.40 112 | 0.00 357 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 336 | 0.00 354 | 0.00 355 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
test_241102_TWO | | | | | | | | | 98.43 112 | 97.27 18 | 99.80 15 | 99.94 4 | 97.18 16 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_0728_THIRD | | | | | | | | | | 96.48 37 | 99.83 9 | 99.91 12 | 97.87 4 | 100.00 1 | 99.92 6 | 100.00 1 | 100.00 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 125 |
|
test_part1 | | | | | 0.00 336 | | 0.00 355 | 0.00 347 | 98.41 126 | | | | 0.00 357 | 0.00 353 | 0.00 349 | 0.00 349 | 0.00 348 |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 60 | | | | 99.59 125 |
|
sam_mvs | | | | | | | | | | | | | 94.25 78 | | | | |
|
MTGPA | | | | | | | | | 98.28 149 | | | | | | | | |
|
test_post1 | | | | | | | | 95.78 319 | | | | 59.23 349 | 93.20 108 | 97.74 228 | 91.06 217 | | |
|
test_post | | | | | | | | | | | | 63.35 346 | 94.43 65 | 98.13 211 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 321 | 95.12 46 | 97.95 221 | | | |
|
MTMP | | | | | | | | 99.87 84 | 96.49 304 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 99.71 26 | 99.99 18 | 100.00 1 |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 32 | 100.00 1 | 100.00 1 |
|
test_prior4 | | | | | | | 98.05 66 | 99.94 52 | | | | | | | | | |
|
test_prior2 | | | | | | | | 99.95 37 | | 95.78 55 | 99.73 24 | 99.76 68 | 96.00 26 | | 99.78 17 | 100.00 1 | |
|
旧先验2 | | | | | | | | 99.46 181 | | 94.21 104 | 99.85 6 | | | 99.95 58 | 96.96 126 | | |
|
新几何2 | | | | | | | | 99.40 185 | | | | | | | | | |
|
无先验 | | | | | | | | 99.49 176 | 98.71 52 | 93.46 136 | | | | 100.00 1 | 94.36 166 | | 99.99 17 |
|
原ACMM2 | | | | | | | | 99.90 70 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.99 34 | 90.54 228 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 20 | | | | |
|
testdata1 | | | | | | | | 99.28 203 | | 96.35 45 | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.87 195 | | | | | 98.37 198 | 97.79 105 | 89.55 217 | 94.52 223 |
|
plane_prior4 | | | | | | | | | | | | 98.59 172 | | | | | |
|
plane_prior3 | | | | | | | 91.64 246 | | | 96.63 35 | 93.01 194 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 102 | | 96.38 41 | | | | | | | |
|
plane_prior | | | | | | | 91.74 240 | 99.86 95 | | 96.76 31 | | | | | | 89.59 216 | |
|
n2 | | | | | | | | | 0.00 357 | | | | | | | | |
|
nn | | | | | | | | | 0.00 357 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 345 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 104 | | | | | | | | |
|
door | | | | | | | | | 90.31 343 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 236 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 102 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 190 | | | 98.39 193 | | | 94.53 221 |
|
HQP3-MVS | | | | | | | | | 97.89 193 | | | | | | | 89.60 214 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 240 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 129 | 96.11 314 | | 91.89 188 | 98.06 113 | | 94.40 67 | | 94.30 169 | | 99.67 111 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 246 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 236 | |
|
Test By Simon | | | | | | | | | | | | | 92.82 116 | | | | |
|