This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
pmmvs699.74 299.75 299.73 1199.92 699.67 1599.76 1099.84 1199.59 199.52 2599.87 1199.91 199.43 2799.87 199.81 399.89 699.52 11
test_part199.72 399.79 199.64 1299.95 299.88 199.71 1699.83 1299.58 299.48 2999.79 2199.78 1098.98 7299.86 299.85 199.88 899.82 1
LTVRE_ROB98.82 199.76 199.75 299.77 799.87 1899.71 1099.77 899.76 2099.52 399.80 399.79 2199.91 199.56 1399.83 499.75 599.86 1099.75 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Gipumacopyleft99.22 2798.86 3999.64 1299.70 6899.24 5699.17 8699.63 4299.52 399.89 196.54 17699.14 9299.93 199.42 3299.15 4199.52 4799.04 52
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TDRefinement99.54 999.50 899.60 1999.70 6899.35 4599.77 899.58 5199.40 599.28 5099.66 2799.41 5699.55 1599.74 999.65 999.70 3199.25 27
UniMVSNet_ETH3D99.61 799.59 599.63 1499.96 199.70 1199.53 3699.86 899.28 699.48 2999.44 5599.86 599.01 7099.78 599.76 499.90 299.33 22
v7n99.68 599.61 499.76 899.89 1399.74 999.87 199.82 1399.20 799.71 699.96 199.73 1499.76 399.58 2199.59 1799.52 4799.46 16
TransMVSNet (Re)99.45 1699.32 1499.61 1799.88 1599.60 2199.75 1199.63 4299.11 899.28 5099.83 1898.35 14299.27 4399.70 1099.62 1499.84 1199.03 54
ACMH97.81 699.44 1799.33 1299.56 2399.81 3499.42 3799.73 1599.58 5199.02 999.10 7599.41 5999.69 2099.60 1099.45 2999.26 3799.55 4399.05 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft98.29 299.37 1999.25 1899.51 3199.74 5999.12 7499.56 3399.39 8898.96 1099.17 6299.44 5599.63 3599.58 1199.48 2799.27 3599.60 4098.81 80
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pm-mvs199.47 1499.38 1099.57 2299.82 3199.49 3099.63 2599.65 3898.88 1199.31 4399.85 1499.02 10799.23 4799.60 1999.58 1899.80 1699.22 35
SixPastTwentyTwo99.70 499.59 599.82 299.93 499.80 399.86 299.87 698.87 1299.79 599.85 1499.33 6799.74 599.85 399.82 299.74 2599.63 6
CSCG99.23 2599.15 2499.32 5899.83 2699.45 3498.97 10499.21 12498.83 1399.04 8599.43 5799.64 3399.26 4598.85 7798.20 10499.62 3899.62 7
new-patchmatchnet97.26 15896.12 17298.58 13499.55 10198.63 13199.14 9197.04 20998.80 1499.19 5999.92 499.19 8498.92 7695.51 19387.04 21197.66 18393.73 201
gg-mvs-nofinetune96.77 17196.52 16597.06 19099.66 7697.82 17997.54 19899.86 898.69 1598.61 12299.94 289.62 19688.37 21997.55 14996.67 16898.30 16895.35 189
ACMH+97.53 799.29 2399.20 2399.40 4499.81 3499.22 6299.59 3099.50 6998.64 1698.29 15099.21 7499.69 2099.57 1299.53 2499.33 3199.66 3598.81 80
anonymousdsp99.64 699.55 799.74 1099.87 1899.56 2699.82 399.73 2398.54 1799.71 699.92 499.84 799.61 999.70 1099.63 1099.69 3499.64 4
WR-MVS99.61 799.44 999.82 299.92 699.80 399.80 499.89 198.54 1799.66 1399.78 2399.16 8899.68 799.70 1099.63 1099.94 199.49 14
tfpnnormal99.19 2898.90 3799.54 2799.81 3499.55 2899.60 2999.54 6098.53 1999.23 5498.40 10998.23 14599.40 3199.29 3899.36 2999.63 3798.95 66
CHOSEN 1792x268898.31 11298.02 11398.66 12899.55 10198.57 13799.38 5499.25 11998.42 2098.48 13799.58 4099.85 698.31 11495.75 18895.71 18396.96 19098.27 129
DeepC-MVS97.88 499.33 2099.15 2499.53 3099.73 6499.05 8299.49 4199.40 8698.42 2099.55 2299.71 2599.89 399.49 1999.14 4398.81 6799.54 4499.02 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
N_pmnet96.68 17495.70 18297.84 17399.42 13398.00 17199.35 6198.21 18998.40 2298.13 16099.42 5899.30 7097.44 14894.00 20888.79 20694.47 20591.96 207
FMVSNet198.90 5599.10 2698.67 12699.54 10599.48 3199.22 8099.66 3698.39 2397.50 18599.66 2799.04 10696.58 16699.05 5599.03 4999.52 4799.08 48
test111198.75 7898.14 10499.46 3299.86 2399.63 2099.47 4399.68 2998.34 2498.76 11299.66 2790.92 19599.23 4799.77 699.71 699.75 2498.95 66
DVP-MVS++99.09 3699.25 1898.90 10299.53 10899.37 4499.17 8699.48 7498.28 2597.95 17299.54 4799.88 498.13 12299.08 5198.94 5599.15 9899.65 3
EU-MVSNet98.68 8398.94 3498.37 14699.14 16798.74 12399.64 2298.20 19198.21 2699.17 6299.66 2799.18 8599.08 6599.11 4698.86 6095.00 20398.83 77
MIMVSNet199.46 1599.34 1199.60 1999.83 2699.68 1499.74 1499.71 2698.20 2799.41 3599.86 1399.66 2799.41 3099.50 2599.39 2699.50 5299.10 46
pmnet_mix0296.61 17595.32 18598.11 16299.41 13597.68 18599.05 9797.59 20398.16 2899.05 8199.48 5199.11 9798.32 11392.36 21287.67 20895.26 20292.80 205
Vis-MVSNetpermissive99.25 2499.32 1499.17 6999.65 7999.55 2899.63 2599.33 10498.16 2899.29 4699.65 3199.77 1197.56 14499.44 3199.14 4299.58 4199.51 13
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.52 10099.00 3097.96 16899.58 9499.26 5499.27 7399.40 8698.07 3098.28 15198.76 9799.71 1892.24 21198.94 6998.85 6299.00 11899.43 18
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
casdiffmvs98.84 6798.75 4598.94 10099.75 5399.21 6399.33 6599.04 14698.04 3197.46 18899.72 2499.72 1698.60 9498.30 11198.37 9899.48 5497.92 147
3Dnovator+97.85 598.61 9198.14 10499.15 7299.62 8698.37 15099.10 9599.51 6798.04 3198.98 8896.07 18698.75 12598.55 10098.51 9398.40 9599.17 9498.82 78
test250696.12 18793.35 20099.35 5599.83 2699.58 2399.37 5599.67 3398.02 3398.44 14197.51 14460.03 22899.10 6299.77 699.70 799.72 2798.86 75
ECVR-MVScopyleft98.74 7998.15 10299.42 3799.83 2699.58 2399.37 5599.67 3398.02 3398.85 10799.59 3791.66 19399.10 6299.77 699.70 799.72 2798.73 87
v114498.94 4898.53 6699.42 3799.62 8699.03 8899.58 3199.36 9797.99 3599.49 2899.91 899.20 8299.51 1797.61 14597.85 12198.95 12298.10 141
3Dnovator98.16 398.65 8698.35 8699.00 9199.59 9298.70 12698.90 11699.36 9797.97 3699.09 7696.55 17599.09 10197.97 13198.70 8598.65 8299.12 9998.81 80
v14898.77 7798.45 7499.15 7299.68 7198.94 10499.49 4199.31 11097.95 3798.91 9999.65 3199.62 3799.18 5197.99 12997.64 13998.33 16797.38 161
diffmvs98.26 11698.16 10098.39 14399.61 9098.78 11998.79 12598.61 17397.94 3897.11 20099.51 4999.52 4597.61 14296.55 17796.93 16498.61 15297.87 149
HyFIR lowres test98.08 12897.16 15099.14 7599.72 6598.91 10899.41 5099.58 5197.93 3998.82 10899.24 6995.81 17898.73 8895.16 19995.13 19298.60 15497.94 146
v2v48298.85 6698.40 8299.38 5099.65 7998.98 9499.55 3499.39 8897.92 4099.35 3899.85 1499.14 9299.39 3397.50 15197.78 12498.98 11997.60 155
v192192098.89 5798.46 7199.39 4599.58 9499.04 8699.64 2299.17 13097.91 4199.64 1599.92 498.99 11199.44 2597.44 15697.57 14498.84 13498.35 121
v119298.91 5498.48 7099.41 3999.61 9099.03 8899.64 2299.25 11997.91 4199.58 1799.92 499.07 10599.45 2297.55 14997.68 13598.93 12498.23 131
MDA-MVSNet-bldmvs97.75 14097.26 14298.33 14999.35 14098.45 14599.32 6797.21 20797.90 4399.05 8199.01 8896.86 17099.08 6599.36 3392.97 20295.97 19996.25 182
DTE-MVSNet99.52 1199.27 1799.82 299.93 499.77 599.79 699.87 697.89 4499.70 1199.55 4699.21 7999.77 299.65 1499.43 2499.90 299.36 20
v14419298.88 5998.46 7199.37 5299.56 10099.03 8899.61 2899.26 11697.79 4599.58 1799.88 999.11 9799.43 2797.38 16197.61 14098.80 13898.43 116
OPM-MVS98.84 6798.59 6099.12 7699.52 11398.50 14299.13 9299.22 12297.76 4698.76 11298.70 9999.61 3898.90 7798.67 8698.37 9899.19 9298.57 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test99.32 2199.33 1299.31 5999.87 1899.65 1899.63 2599.75 2297.76 4697.29 19799.87 1199.63 3599.52 1699.66 1399.63 1099.77 2099.12 41
HFP-MVS98.97 4598.70 5199.29 6199.67 7398.98 9499.13 9299.53 6397.76 4698.90 10098.07 12599.50 5199.14 6098.64 8898.78 7199.37 6799.18 38
DVP-MVScopyleft99.09 3699.07 2799.12 7699.55 10199.40 3999.36 5899.44 8597.75 4998.23 15499.23 7199.80 898.97 7399.08 5198.96 5399.19 9299.25 27
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
IterMVS-LS98.23 12097.66 12898.90 10299.63 8599.38 4299.07 9699.48 7497.75 4998.81 10999.37 6194.57 18597.88 13596.54 17897.04 16198.53 15998.97 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D98.79 7598.52 6799.12 7699.64 8299.09 7699.24 7799.46 7997.75 4998.93 9897.47 14698.23 14597.98 13099.36 3399.30 3299.46 5598.42 117
UA-Net99.30 2299.22 2299.39 4599.94 399.66 1798.91 11299.86 897.74 5298.74 11699.00 8999.60 4099.17 5499.50 2599.39 2699.70 3199.64 4
ACMMPR99.05 3998.72 4999.44 3399.79 3999.12 7499.35 6199.56 5497.74 5299.21 5697.72 13799.55 4399.29 4198.90 7598.81 6799.41 6499.19 37
RPSCF98.84 6798.81 4198.89 10499.37 13798.95 10098.51 14698.85 15897.73 5498.33 14798.97 9199.14 9298.95 7599.18 4298.68 7999.31 7898.99 59
PMVScopyleft92.51 1798.66 8598.86 3998.43 14199.26 15398.98 9498.60 14098.59 17597.73 5499.45 3399.38 6098.54 13695.24 18499.62 1899.61 1599.42 6198.17 138
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SD-MVS98.73 8098.54 6598.95 9799.14 16798.76 12198.46 15099.14 13597.71 5698.56 12698.06 12799.61 3898.85 8198.56 9097.74 13099.54 4499.32 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM98.64 8898.58 6298.72 12099.17 16598.63 13198.69 13099.10 14297.69 5798.30 14999.12 7999.38 6198.70 8998.45 9497.51 14798.35 16699.25 27
thisisatest051599.16 3098.94 3499.41 3999.75 5399.43 3699.36 5899.63 4297.68 5899.35 3899.31 6398.90 11399.09 6498.95 6799.20 3899.27 8499.11 42
v124098.86 6398.41 8199.38 5099.59 9299.05 8299.65 2199.14 13597.68 5899.66 1399.93 398.72 12699.45 2297.38 16197.72 13398.79 13998.35 121
ACMM96.66 1198.90 5598.44 7699.44 3399.74 5998.95 10099.47 4399.55 5697.66 6099.09 7696.43 17899.41 5699.35 3798.95 6798.67 8099.45 5799.03 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDTV_nov1_ep13_2view97.12 16396.19 17198.22 15799.13 16998.05 16899.24 7799.47 7697.61 6199.15 6999.59 3799.01 10898.40 10994.87 20290.14 20593.91 20694.04 200
PEN-MVS99.54 999.30 1699.83 199.92 699.76 699.80 499.88 397.60 6299.71 699.59 3799.52 4599.75 499.64 1699.51 2099.90 299.46 16
v1099.01 4298.66 5799.41 3999.52 11399.39 4099.57 3299.66 3697.59 6399.32 4299.88 999.23 7599.50 1897.77 14097.98 11498.92 12798.78 85
USDC98.26 11697.57 13399.06 8299.42 13397.98 17498.83 12098.85 15897.57 6499.59 1699.15 7798.59 13498.99 7197.42 15796.08 18298.69 14696.23 183
DCV-MVSNet98.86 6398.57 6399.19 6799.86 2399.67 1599.39 5299.71 2697.53 6598.69 11995.85 18998.48 13797.75 13899.57 2299.41 2599.72 2799.48 15
TSAR-MVS + MP.99.02 4198.95 3199.11 7999.23 15898.79 11899.51 3898.73 16597.50 6698.56 12699.03 8699.59 4199.16 5699.29 3899.17 4099.50 5299.24 31
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v898.94 4898.60 5899.35 5599.54 10599.39 4099.55 3499.67 3397.48 6799.13 7199.81 1999.10 9999.39 3397.86 13597.89 11998.81 13698.66 93
TinyColmap98.27 11597.62 13299.03 8899.29 14997.79 18198.92 11098.95 15497.48 6799.52 2598.65 10297.86 15598.90 7798.34 10697.27 15698.64 15095.97 185
gm-plane-assit94.62 19991.39 20998.39 14399.90 1299.47 3399.40 5199.65 3897.44 6999.56 2099.68 2659.40 22994.23 19996.17 18294.77 19697.61 18492.79 206
V4298.81 7498.49 6999.18 6899.52 11398.92 10699.50 4099.29 11297.43 7098.97 8999.81 1999.00 11099.30 4097.93 13198.01 11298.51 16298.34 125
DeepC-MVS_fast97.38 898.65 8698.34 8799.02 9099.33 14198.29 15298.99 10298.71 16797.40 7199.31 4398.20 11999.40 5998.54 10298.33 10898.18 10599.23 9098.58 99
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.94 4898.57 6399.37 5299.77 4499.15 7199.24 7799.55 5697.38 7299.16 6596.64 17299.69 2099.15 5899.09 4998.92 5899.37 6799.11 42
EPP-MVSNet98.61 9198.19 9999.11 7999.86 2399.60 2199.44 4999.53 6397.37 7396.85 20198.69 10093.75 18699.18 5199.22 4199.35 3099.82 1499.32 23
PS-CasMVS99.50 1299.23 2099.82 299.92 699.75 899.78 799.89 197.30 7499.71 699.60 3599.23 7599.71 699.65 1499.55 1999.90 299.56 9
test20.0398.84 6798.74 4698.95 9799.77 4499.33 4899.21 8299.46 7997.29 7598.88 10499.65 3199.10 9997.07 15899.11 4698.76 7399.32 7797.98 145
TranMVSNet+NR-MVSNet99.23 2598.91 3699.61 1799.81 3499.45 3499.47 4399.68 2997.28 7699.39 3699.54 4799.08 10399.45 2299.09 4998.84 6499.83 1299.04 52
ambc97.89 11999.45 12497.88 17697.78 18697.27 7799.80 398.99 9098.48 13798.55 10097.80 13896.68 16798.54 15898.10 141
WR-MVS_H99.48 1399.23 2099.76 899.91 1099.76 699.75 1199.88 397.27 7799.58 1799.56 4299.24 7499.56 1399.60 1999.60 1699.88 899.58 8
testgi98.18 12698.44 7697.89 17099.78 4299.23 5998.78 12799.21 12497.26 7997.41 19097.39 14999.36 6692.85 20898.82 8098.66 8199.31 7898.35 121
OMC-MVS98.35 11098.10 10898.64 13298.85 18497.99 17298.56 14298.21 18997.26 7998.87 10698.54 10699.27 7398.43 10798.34 10697.66 13698.92 12797.65 154
APDe-MVS99.15 3198.95 3199.39 4599.77 4499.28 5399.52 3799.54 6097.22 8199.06 7999.20 7599.64 3399.05 6899.14 4399.02 5299.39 6599.17 39
pmmvs-eth3d98.68 8398.14 10499.29 6199.49 11898.45 14599.45 4899.38 9397.21 8299.50 2799.65 3199.21 7999.16 5697.11 16897.56 14598.79 13997.82 151
CVMVSNet97.38 15797.39 13897.37 18498.58 19897.72 18398.70 12997.42 20597.21 8295.95 20899.46 5393.31 18997.38 14997.60 14697.78 12496.18 19698.66 93
PMMVS296.29 18297.05 15395.40 21198.32 20996.16 20298.18 17297.46 20497.20 8484.51 22599.60 3598.68 12996.37 17198.59 8997.38 15197.58 18591.76 208
MSDG98.20 12397.88 12098.56 13699.33 14197.74 18298.27 16798.10 19297.20 8498.06 16598.59 10499.16 8898.76 8698.39 9997.71 13498.86 13396.38 180
FPMVS96.97 16697.20 14796.70 20197.75 21496.11 20597.72 19095.47 21397.13 8698.02 16797.57 14196.67 17192.97 20799.00 6598.34 10098.28 16995.58 188
PVSNet_Blended_VisFu98.98 4498.79 4299.21 6499.76 5099.34 4699.35 6199.35 10097.12 8799.46 3299.56 4298.89 11498.08 12699.05 5598.58 8699.27 8498.98 60
DI_MVS_plusplus_trai97.57 15396.55 16498.77 11699.55 10198.76 12199.22 8099.00 15097.08 8897.95 17297.78 13491.35 19498.02 12896.20 18196.81 16698.87 13197.87 149
canonicalmvs98.34 11197.92 11898.83 11199.45 12499.21 6398.37 15799.53 6397.06 8997.74 17996.95 16595.05 18398.36 11098.77 8398.85 6299.51 5199.53 10
SED-MVS98.94 4898.95 3198.91 10199.43 12999.38 4299.12 9499.46 7997.05 9098.43 14299.23 7199.79 997.99 12999.05 5598.94 5599.05 11399.23 32
MSP-MVS98.72 8198.60 5898.87 10699.67 7399.33 4899.15 8999.26 11696.99 9197.90 17598.19 12099.74 1398.29 11697.69 14398.96 5398.96 12099.27 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous2023121198.89 5798.79 4298.99 9499.82 3199.41 3899.18 8599.31 11096.92 9298.54 12998.58 10598.84 11997.46 14699.45 2999.29 3399.65 3699.08 48
new_pmnet96.59 17696.40 16896.81 19898.24 21095.46 21497.71 19294.75 21696.92 9296.80 20399.23 7197.81 15696.69 16396.58 17695.16 19196.69 19293.64 202
ACMP96.54 1398.87 6198.40 8299.41 3999.74 5998.88 11299.29 6999.50 6996.85 9498.96 9297.05 15999.66 2799.43 2798.98 6698.60 8499.52 4798.81 80
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMP_NAP98.94 4898.72 4999.21 6499.67 7399.08 7799.26 7499.39 8896.84 9598.88 10498.22 11899.68 2398.82 8299.06 5498.90 5999.25 8799.25 27
PM-MVS98.57 9598.24 9598.95 9799.26 15398.59 13499.03 9998.74 16496.84 9599.44 3499.13 7898.31 14498.75 8798.03 12798.21 10298.48 16398.58 99
DELS-MVS98.63 8998.70 5198.55 13799.24 15799.04 8698.96 10598.52 17896.83 9798.38 14499.58 4099.68 2397.06 15998.74 8498.44 9499.10 10098.59 98
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CP-MVSNet99.39 1899.04 2999.80 699.91 1099.70 1199.75 1199.88 396.82 9899.68 1299.32 6298.86 11699.68 799.57 2299.47 2199.89 699.52 11
QAPM98.62 9098.40 8298.89 10499.57 9998.80 11798.63 13599.35 10096.82 9898.60 12398.85 9699.08 10398.09 12598.31 10998.21 10299.08 10698.72 88
MVS_111021_HR98.58 9498.26 9398.96 9699.32 14498.81 11598.48 14898.99 15196.81 10099.16 6598.07 12599.23 7598.89 7998.43 9698.27 10198.90 12998.24 130
NCCC97.84 13896.96 15698.87 10699.39 13698.27 15598.46 15099.02 14896.78 10198.73 11891.12 21298.91 11298.57 9897.83 13797.49 14899.04 11598.33 126
DeepPCF-MVS96.68 1098.20 12398.26 9398.12 16197.03 22298.11 16598.44 15297.70 20296.77 10298.52 13198.91 9299.17 8698.58 9798.41 9898.02 11198.46 16498.46 112
MVS_030498.57 9598.36 8598.82 11399.72 6598.94 10498.92 11099.14 13596.76 10399.33 4198.30 11399.73 1496.74 16298.05 12697.79 12399.08 10698.97 61
FC-MVSNet-train99.13 3399.05 2899.21 6499.87 1899.57 2599.67 2099.60 5096.75 10498.28 15199.48 5199.52 4598.10 12399.47 2899.37 2899.76 2299.21 36
UniMVSNet (Re)99.08 3898.69 5399.54 2799.75 5399.33 4899.29 6999.64 4196.75 10499.48 2999.30 6598.69 12799.26 4598.94 6998.76 7399.78 1999.02 56
TSAR-MVS + COLMAP97.62 14997.31 14097.98 16698.47 20497.39 18998.29 16498.25 18896.68 10697.54 18498.87 9398.04 15197.08 15796.78 17296.26 17598.26 17097.12 171
TAPA-MVS96.65 1298.23 12097.96 11798.55 13798.81 18698.16 16298.40 15497.94 19896.68 10698.49 13598.61 10398.89 11498.57 9897.45 15497.59 14299.09 10598.35 121
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
X-MVS98.59 9397.99 11599.30 6099.75 5399.07 7899.17 8699.50 6996.62 10898.95 9493.95 20599.37 6299.11 6198.94 6998.86 6099.35 7299.09 47
FMVSNet297.94 13398.08 11097.77 17698.71 19099.21 6398.62 13799.47 7696.62 10896.37 20699.20 7597.70 15794.39 19597.39 15997.75 12999.08 10698.70 90
CP-MVS98.86 6398.43 7999.36 5499.68 7198.97 9899.19 8399.46 7996.60 11099.20 5797.11 15899.51 4999.15 5898.92 7398.82 6599.45 5799.08 48
Anonymous20240521198.44 7699.79 3999.32 5199.05 9799.34 10396.59 11197.95 13297.68 15897.16 15599.36 3399.28 3499.61 3998.90 71
DU-MVS99.04 4098.59 6099.56 2399.74 5999.23 5999.29 6999.63 4296.58 11299.55 2299.05 8398.68 12999.36 3599.03 6298.60 8499.77 2098.97 61
NR-MVSNet99.10 3598.68 5699.58 2199.89 1399.23 5999.35 6199.63 4296.58 11299.36 3799.05 8398.67 13199.46 2099.63 1798.73 7799.80 1698.88 74
pmmvs497.87 13797.02 15498.86 10999.20 15997.68 18598.89 11799.03 14796.57 11499.12 7399.03 8697.26 16598.42 10895.16 19996.34 17498.53 15997.10 172
MVS_111021_LR98.39 10898.11 10798.71 12299.08 17398.54 14098.23 17098.56 17796.57 11499.13 7198.41 10898.86 11698.65 9298.23 11797.87 12098.65 14998.28 127
GeoE98.88 5998.43 7999.41 3999.83 2699.24 5699.51 3899.82 1396.55 11699.22 5598.76 9799.22 7898.96 7498.55 9198.15 10699.10 10098.56 104
UniMVSNet_NR-MVSNet98.97 4598.46 7199.56 2399.76 5099.34 4699.29 6999.61 4896.55 11699.55 2299.05 8397.96 15399.36 3598.84 7898.50 9299.81 1598.97 61
EG-PatchMatch MVS99.01 4298.77 4499.28 6399.64 8298.90 11198.81 12499.27 11596.55 11699.71 699.31 6399.66 2799.17 5499.28 4099.11 4499.10 10098.57 101
Baseline_NR-MVSNet99.18 2998.87 3899.54 2799.74 5999.56 2699.36 5899.62 4796.53 11999.29 4699.85 1498.64 13399.40 3199.03 6299.63 1099.83 1298.86 75
baseline97.50 15597.51 13597.50 18199.18 16397.38 19098.00 17798.00 19596.52 12097.49 18699.28 6699.43 5595.31 18395.27 19696.22 17696.99 18998.47 110
MSLP-MVS++97.99 13097.64 13198.40 14298.91 18298.47 14497.12 20998.78 16296.49 12198.48 13793.57 20799.12 9598.51 10498.31 10998.58 8698.58 15698.95 66
CNLPA97.75 14097.26 14298.32 15198.58 19897.86 17797.80 18598.09 19396.49 12198.49 13596.15 18398.08 14898.35 11198.00 12897.03 16298.61 15297.21 169
ACMMPcopyleft98.82 7398.33 8899.39 4599.77 4499.14 7299.37 5599.54 6096.47 12399.03 8796.26 18299.52 4599.28 4298.92 7398.80 7099.37 6799.16 40
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
IterMVS-SCA-FT97.63 14896.86 15898.52 13999.48 12098.71 12598.84 11998.91 15596.44 12499.16 6599.56 4295.54 18097.95 13295.68 19195.07 19596.76 19197.03 175
xxxxxxxxxxxxxcwj98.28 11398.23 9698.35 14799.43 12998.42 14897.05 21199.09 14396.42 12598.13 16097.73 13599.65 3197.22 15298.36 10298.38 9699.16 9698.62 95
SF-MVS98.25 11898.16 10098.35 14799.43 12998.42 14897.05 21199.09 14396.42 12598.13 16097.73 13599.20 8297.22 15298.36 10298.38 9699.16 9698.62 95
IterMVS97.40 15696.67 15998.25 15499.45 12498.66 12998.87 11898.73 16596.40 12798.94 9799.56 4295.26 18297.58 14395.38 19494.70 19795.90 20096.72 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023120698.50 10198.03 11299.05 8599.50 11699.01 9199.15 8999.26 11696.38 12899.12 7399.50 5099.12 9598.60 9497.68 14497.24 15898.66 14797.30 165
PLCcopyleft95.63 1597.73 14397.01 15598.57 13599.10 17097.80 18097.72 19098.77 16396.34 12998.38 14493.46 20898.06 14998.66 9197.90 13397.65 13898.77 14197.90 148
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SMA-MVScopyleft98.87 6198.73 4899.04 8799.72 6599.05 8298.64 13499.17 13096.31 13098.80 11099.07 8199.70 1998.67 9098.93 7298.82 6599.23 9099.23 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS98.28 11397.51 13599.16 7199.54 10598.78 11998.96 10599.36 9796.30 13198.89 10393.10 20999.30 7099.20 4998.35 10597.96 11599.03 11698.82 78
HPM-MVS++copyleft98.56 9898.08 11099.11 7999.53 10898.61 13399.02 10199.32 10896.29 13299.06 7997.23 15399.50 5198.77 8598.15 12297.90 11798.96 12098.90 71
CNVR-MVS98.22 12297.76 12398.76 11799.33 14198.26 15698.48 14898.88 15796.22 13398.47 13995.79 19099.33 6798.35 11198.37 10197.99 11399.03 11698.38 119
Vis-MVSNet (Re-imp)98.46 10598.23 9698.73 11999.81 3499.29 5298.79 12599.50 6996.20 13496.03 20798.29 11496.98 16898.54 10299.11 4699.08 4599.70 3198.62 95
SteuartSystems-ACMMP98.94 4898.52 6799.43 3699.79 3999.13 7399.33 6599.55 5696.17 13599.04 8597.53 14399.65 3199.46 2099.04 6098.76 7399.44 5999.35 21
Skip Steuart: Steuart Systems R&D Blog.
CANet98.47 10398.30 9098.67 12699.65 7998.87 11398.82 12399.01 14996.14 13699.29 4698.86 9499.01 10896.54 16798.36 10298.08 10998.72 14398.80 84
tmp_tt65.28 21882.24 22471.50 22570.81 22623.21 22296.14 13681.70 22685.98 22192.44 19149.84 22195.81 18794.36 19883.86 224
ADS-MVSNet94.41 20592.13 20697.07 18998.86 18396.60 19698.38 15698.47 18296.13 13898.02 16796.98 16387.50 20095.87 17889.89 21487.58 20992.79 21390.27 213
MVEpermissive82.47 1893.12 20994.09 18991.99 21690.79 22382.50 22493.93 22296.30 21196.06 13988.81 22398.19 12096.38 17397.56 14497.24 16695.18 19084.58 22393.07 203
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CLD-MVS98.48 10298.15 10298.86 10999.53 10898.35 15198.55 14397.83 20096.02 14098.97 8999.08 8099.75 1299.03 6998.10 12597.33 15499.28 8298.44 115
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TSAR-MVS + GP.98.54 9998.29 9298.82 11399.28 15198.59 13497.73 18999.24 12195.93 14198.59 12499.07 8199.17 8698.86 8098.44 9598.10 10899.26 8698.72 88
MCST-MVS98.25 11897.57 13399.06 8299.53 10898.24 15898.63 13599.17 13095.88 14298.58 12596.11 18499.09 10199.18 5197.58 14897.31 15599.25 8798.75 86
DPE-MVScopyleft98.84 6798.69 5399.00 9199.05 17699.26 5499.19 8399.35 10095.85 14398.74 11699.27 6799.66 2798.30 11598.90 7598.93 5799.37 6799.00 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
pmmvs598.37 10997.81 12199.03 8899.46 12298.97 9899.03 9998.96 15395.85 14399.05 8199.45 5498.66 13298.79 8496.02 18597.52 14698.87 13198.21 134
MS-PatchMatch97.60 15097.22 14698.04 16598.67 19497.18 19397.91 18198.28 18795.82 14598.34 14697.66 13898.38 14197.77 13797.10 16997.25 15797.27 18897.18 170
MP-MVScopyleft98.78 7698.30 9099.34 5799.75 5398.95 10099.26 7499.46 7995.78 14699.17 6296.98 16399.72 1699.06 6798.84 7898.74 7699.33 7499.11 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test99.15 3198.74 4699.62 1599.88 1599.86 299.68 1899.78 1695.77 14799.29 4698.28 11599.47 5499.35 3799.30 3699.27 3599.76 2299.23 32
CDS-MVSNet97.75 14097.68 12797.83 17499.08 17398.20 16198.68 13198.61 17395.63 14897.80 17799.24 6996.93 16994.09 20097.96 13097.82 12298.71 14497.99 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS_MVSNet98.20 12398.00 11498.44 14099.82 3199.48 3199.25 7699.56 5495.58 14993.93 21997.56 14296.52 17298.27 11799.08 5199.20 3899.80 1698.56 104
EPMVS93.67 20890.82 21296.99 19598.62 19796.39 20098.40 15499.11 14095.54 15097.87 17697.14 15681.27 22194.97 18888.54 21886.80 21292.95 21290.06 215
CS-MVS99.12 3498.69 5399.62 1599.87 1899.64 1999.70 1799.61 4895.51 15199.56 2098.53 10799.37 6299.27 4399.04 6099.47 2199.71 3099.30 25
DPM-MVS96.73 17295.70 18297.95 16998.93 18197.26 19197.39 20398.44 18395.47 15297.62 18290.71 21398.47 13997.03 16095.02 20195.27 18998.26 17097.67 153
LGP-MVS_train98.84 6798.33 8899.44 3399.78 4298.98 9499.39 5299.55 5695.41 15398.90 10097.51 14499.68 2399.44 2599.03 6298.81 6799.57 4298.91 70
E-PMN92.28 21390.12 21394.79 21498.56 20190.90 22195.16 21993.68 21895.36 15495.10 21596.56 17489.05 19795.24 18495.21 19881.84 21890.98 21981.94 220
EMVS91.84 21489.39 21694.70 21598.44 20590.84 22295.27 21893.53 21995.18 15595.26 21395.62 19387.59 19994.77 19194.87 20280.72 21990.95 22080.88 221
GA-MVS96.84 16995.86 17997.98 16699.16 16698.29 15297.91 18198.64 17295.14 15697.71 18098.04 12988.90 19896.50 16996.41 18096.61 17197.97 18097.60 155
SCA94.53 20291.95 20897.55 18098.58 19897.86 17798.49 14799.68 2995.11 15799.07 7895.87 18887.24 20196.53 16889.77 21587.08 21092.96 21190.69 211
TAMVS96.95 16796.94 15796.97 19699.07 17597.67 18797.98 17997.12 20895.04 15895.41 21299.27 6795.57 17994.09 20097.32 16397.11 16098.16 17596.59 179
MVS_Test97.69 14497.15 15198.33 14999.27 15298.43 14798.25 16899.29 11295.00 15997.39 19298.86 9498.00 15297.14 15695.38 19496.22 17698.62 15198.15 140
PHI-MVS98.57 9598.20 9899.00 9199.48 12098.91 10898.68 13199.17 13094.97 16099.27 5298.33 11199.33 6798.05 12798.82 8098.62 8399.34 7398.38 119
baseline196.72 17395.40 18498.26 15299.53 10898.81 11598.32 16198.80 16194.96 16196.78 20496.50 17784.87 21296.68 16597.42 15797.91 11699.46 5597.33 164
PatchmatchNetpermissive93.88 20791.08 21197.14 18898.75 18996.01 20898.25 16899.39 8894.95 16298.96 9296.32 18085.35 20995.50 18288.89 21685.89 21491.99 21790.15 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet97.24 15997.15 15197.36 18599.03 17798.52 14198.55 14399.73 2394.94 16394.94 21697.98 13097.37 16393.66 20397.60 14697.34 15398.23 17396.29 181
PGM-MVS98.69 8298.09 10999.39 4599.76 5099.07 7899.30 6899.51 6794.76 16499.18 6196.70 17099.51 4999.20 4998.79 8298.71 7899.39 6599.11 42
Effi-MVS+98.11 12797.29 14199.06 8299.62 8698.55 13898.16 17399.80 1594.64 16599.15 6996.59 17397.43 16198.44 10697.46 15397.90 11799.17 9498.45 114
HQP-MVS97.58 15296.65 16298.66 12899.30 14697.99 17297.88 18498.65 17094.58 16698.66 12094.65 20299.15 9198.59 9696.10 18395.59 18498.90 12998.50 109
thisisatest053097.20 16195.95 17698.66 12899.46 12298.84 11498.29 16499.20 12694.51 16798.25 15397.42 14785.03 21097.68 14098.43 9698.56 9099.08 10698.89 73
Effi-MVS+-dtu97.78 13997.37 13998.26 15299.25 15598.50 14297.89 18399.19 12994.51 16798.16 15895.93 18798.80 12195.97 17798.27 11697.38 15199.10 10098.23 131
Fast-Effi-MVS+98.42 10697.79 12299.15 7299.69 7098.66 12998.94 10799.68 2994.49 16999.05 8198.06 12798.86 11698.48 10598.18 11997.78 12499.05 11398.54 107
MDTV_nov1_ep1394.47 20392.15 20597.17 18798.54 20396.42 19998.10 17498.89 15694.49 16998.02 16797.41 14886.49 20295.56 18190.85 21387.95 20793.91 20691.45 210
ET-MVSNet_ETH3D95.72 19193.85 19597.89 17097.30 22098.09 16698.19 17198.40 18494.46 17198.01 17096.71 16977.85 22496.76 16196.08 18496.39 17398.70 14597.36 162
AdaColmapbinary97.57 15396.57 16398.74 11899.25 15598.01 17098.36 15998.98 15294.44 17298.47 13992.44 21097.91 15498.62 9398.19 11897.74 13098.73 14297.28 166
train_agg97.99 13097.26 14298.83 11199.43 12998.22 16098.91 11299.07 14594.43 17397.96 17196.42 17999.30 7098.81 8397.39 15996.62 17098.82 13598.47 110
PatchMatch-RL97.24 15996.45 16798.17 15898.70 19397.57 18897.31 20498.48 18194.42 17498.39 14395.74 19196.35 17497.88 13597.75 14197.48 14998.24 17295.87 186
CANet_DTU97.65 14797.50 13797.82 17599.19 16298.08 16798.41 15398.67 16994.40 17599.16 6598.32 11298.69 12793.96 20297.87 13497.61 14097.51 18697.56 157
APD-MVScopyleft98.47 10397.97 11699.05 8599.64 8298.91 10898.94 10799.45 8494.40 17598.77 11197.26 15299.41 5698.21 11998.67 8698.57 8999.31 7898.57 101
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
tttt051797.18 16295.92 17798.65 13199.49 11898.92 10698.29 16499.20 12694.37 17798.17 15697.37 15084.72 21397.68 14098.55 9198.56 9099.10 10098.95 66
thres600view796.35 17994.27 18798.79 11599.66 7699.18 6898.94 10799.38 9394.37 17797.21 19987.19 21584.10 21498.10 12398.16 12099.47 2199.42 6197.43 159
PVSNet_BlendedMVS97.93 13497.66 12898.25 15499.30 14698.67 12798.31 16297.95 19694.30 17998.75 11497.63 13998.76 12396.30 17498.29 11297.78 12498.93 12498.18 136
PVSNet_Blended97.93 13497.66 12898.25 15499.30 14698.67 12798.31 16297.95 19694.30 17998.75 11497.63 13998.76 12396.30 17498.29 11297.78 12498.93 12498.18 136
tpmrst92.45 21189.48 21595.92 20998.43 20695.03 21697.14 20797.92 19994.16 18197.56 18397.86 13381.63 22093.56 20485.89 22082.86 21690.91 22188.95 218
DROMVSNet98.96 4798.45 7499.56 2399.88 1599.70 1199.68 1899.78 1694.15 18298.97 8998.26 11799.21 7999.35 3799.30 3699.14 4299.73 2699.40 19
GBi-Net97.69 14497.75 12597.62 17798.71 19099.21 6398.62 13799.33 10494.09 18395.60 20998.17 12295.97 17594.39 19599.05 5599.03 4999.08 10698.70 90
test197.69 14497.75 12597.62 17798.71 19099.21 6398.62 13799.33 10494.09 18395.60 20998.17 12295.97 17594.39 19599.05 5599.03 4999.08 10698.70 90
FMVSNet396.85 16896.67 15997.06 19097.56 21799.01 9197.99 17899.33 10494.09 18395.60 20998.17 12295.97 17593.26 20694.76 20496.22 17698.59 15598.46 112
thres40096.22 18494.08 19098.72 12099.58 9499.05 8298.83 12099.22 12294.01 18697.40 19186.34 21984.91 21197.93 13397.85 13699.08 4599.37 6797.28 166
OpenMVScopyleft97.26 997.88 13697.17 14998.70 12399.50 11698.55 13898.34 16099.11 14093.92 18798.90 10095.04 19898.23 14597.38 14998.11 12498.12 10798.95 12298.23 131
CHOSEN 280x42096.80 17096.30 16997.39 18299.09 17196.52 19798.76 12899.29 11293.88 18897.65 18198.34 11093.66 18796.29 17698.28 11497.73 13293.27 20995.70 187
CDPH-MVS97.99 13097.23 14598.87 10699.58 9498.29 15298.83 12099.20 12693.76 18998.11 16396.11 18499.16 8898.23 11897.80 13897.22 15999.29 8198.28 127
EPNet96.44 17896.08 17396.86 19799.32 14497.15 19497.69 19399.32 10893.67 19098.11 16395.64 19293.44 18889.07 21796.86 17196.83 16597.67 18298.97 61
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft87.86 22392.27 22361.98 22093.64 19193.62 22091.17 21191.67 19294.90 19095.99 18692.48 21594.18 199
thres20096.23 18394.13 18898.69 12499.44 12799.18 6898.58 14199.38 9393.52 19297.35 19386.33 22085.83 20897.93 13398.16 12098.78 7199.42 6197.10 172
Fast-Effi-MVS+-dtu96.99 16596.46 16697.61 17998.98 17997.89 17597.54 19899.76 2093.43 19396.55 20594.93 19998.06 14994.32 19896.93 17096.50 17298.53 15997.47 158
pmmvs396.30 18195.87 17896.80 19997.66 21696.48 19897.93 18093.80 21793.40 19498.54 12998.27 11697.50 16097.37 15197.49 15293.11 20195.52 20194.85 194
ETV-MVS98.41 10797.76 12399.17 6999.58 9499.01 9198.91 11299.50 6993.33 19599.31 4396.82 16798.42 14098.17 12199.13 4599.08 4599.54 4498.56 104
abl_698.38 14599.03 17798.04 16998.08 17698.65 17093.23 19698.56 12694.58 20398.57 13597.17 15498.81 13697.42 160
PMMVS96.47 17795.81 18097.23 18697.38 21995.96 20997.31 20496.91 21093.21 19797.93 17497.14 15697.64 15995.70 17995.24 19796.18 17998.17 17495.33 190
NP-MVS93.07 198
EPNet_dtu96.31 18095.96 17596.72 20099.18 16395.39 21597.03 21399.13 13993.02 19999.35 3897.23 15397.07 16790.70 21695.74 18995.08 19394.94 20498.16 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS95.58 1697.60 15096.67 15998.69 12499.44 12798.23 15998.37 15798.81 16093.01 20098.22 15597.97 13199.59 4198.20 12095.72 19095.08 19399.08 10697.09 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_method77.69 21685.40 21968.69 21742.66 22555.39 22682.17 22552.05 22192.83 20184.52 22494.88 20095.41 18165.37 22092.49 21179.32 22085.36 22287.50 219
test0.0.03 195.81 18995.77 18195.85 21099.20 15998.15 16497.49 20298.50 17992.24 20292.74 22296.82 16792.70 19088.60 21897.31 16597.01 16398.57 15796.19 184
tpm93.89 20691.21 21097.03 19298.36 20796.07 20697.53 20199.65 3892.24 20298.64 12197.23 15374.67 22794.64 19392.68 20990.73 20493.37 20894.82 195
MVSTER95.38 19493.99 19497.01 19498.83 18598.95 10096.62 21499.14 13592.17 20497.44 18997.29 15177.88 22391.63 21597.45 15496.18 17998.41 16597.99 143
tpm cat191.52 21587.70 21895.97 20898.33 20894.98 21797.06 21098.03 19492.11 20598.03 16694.77 20177.19 22592.71 20983.56 22182.24 21791.67 21889.04 217
thres100view90095.74 19093.66 19998.17 15899.37 13798.59 13498.10 17498.33 18692.02 20697.30 19586.53 21786.34 20596.69 16396.77 17398.47 9399.24 8996.89 176
tfpn200view996.17 18594.08 19098.60 13399.37 13799.18 6898.68 13199.39 8892.02 20697.30 19586.53 21786.34 20597.45 14798.15 12299.08 4599.43 6097.28 166
PatchT95.49 19393.29 20198.06 16498.65 19596.20 20198.91 11299.73 2392.00 20898.50 13296.67 17183.25 21696.34 17294.40 20595.50 18596.21 19595.04 192
IB-MVS95.85 1495.87 18894.88 18697.02 19399.09 17198.25 15797.16 20697.38 20691.97 20997.77 17883.61 22297.29 16492.03 21497.16 16797.66 13698.66 14798.20 135
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer92.75 21089.49 21496.55 20398.78 18895.83 21397.55 19798.59 17591.83 21097.34 19496.31 18178.53 22294.50 19486.14 21984.92 21592.54 21492.84 204
CMPMVSbinary74.71 1996.17 18596.06 17496.30 20597.41 21894.52 21894.83 22095.46 21491.57 21197.26 19894.45 20498.33 14394.98 18698.28 11497.59 14297.86 18197.68 152
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EIA-MVS98.03 12997.20 14798.99 9499.66 7699.24 5698.53 14599.52 6691.56 21299.25 5395.34 19498.78 12297.72 13998.38 10098.58 8699.28 8298.54 107
baseline295.58 19294.04 19297.38 18398.80 18798.16 16297.14 20797.80 20191.45 21397.49 18695.22 19583.63 21594.98 18696.42 17996.66 16998.06 17696.76 177
GG-mvs-BLEND65.66 21792.62 20434.20 2191.45 22893.75 22085.40 2241.64 22591.37 21417.21 22787.25 21494.78 1843.25 22495.64 19293.80 20096.27 19491.74 209
CR-MVSNet95.38 19493.01 20298.16 16098.63 19695.85 21197.64 19599.78 1691.27 21598.50 13296.84 16682.16 21796.34 17294.40 20595.50 18598.05 17895.04 192
RPMNet94.72 19892.01 20797.88 17298.56 20195.85 21197.78 18699.70 2891.27 21598.33 14793.69 20681.88 21894.91 18992.60 21094.34 19998.01 17994.46 196
MVS-HIRNet94.86 19693.83 19696.07 20697.07 22194.00 21994.31 22199.17 13091.23 21798.17 15698.69 10097.43 16195.66 18094.05 20791.92 20392.04 21689.46 216
MAR-MVS97.12 16396.28 17098.11 16298.94 18097.22 19297.65 19499.38 9390.93 21898.15 15995.17 19697.13 16696.48 17097.71 14297.40 15098.06 17698.40 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test-LLR94.79 19793.71 19796.06 20799.20 15996.16 20296.31 21598.50 17989.98 21994.08 21797.01 16086.43 20392.20 21296.76 17495.31 18796.05 19794.31 197
TESTMET0.1,194.44 20493.71 19795.30 21397.84 21396.16 20296.31 21595.32 21589.98 21994.08 21797.01 16086.43 20392.20 21296.76 17495.31 18796.05 19794.31 197
dps92.35 21288.78 21796.52 20498.21 21195.94 21097.78 18698.38 18589.88 22196.81 20295.07 19775.31 22694.70 19288.62 21786.21 21393.21 21090.41 212
test-mter94.62 19994.02 19395.32 21297.72 21596.75 19596.23 21795.67 21289.83 22293.23 22196.99 16285.94 20792.66 21097.32 16396.11 18196.44 19395.22 191
FMVSNet594.57 20192.77 20396.67 20297.88 21298.72 12497.54 19898.70 16888.64 22395.11 21486.90 21681.77 21993.27 20597.92 13298.07 11097.50 18797.34 163
testmvs9.73 21813.38 2205.48 2213.62 2264.12 2276.40 2283.19 22414.92 2247.68 22922.10 22313.89 2316.83 22213.47 22210.38 2225.14 22614.81 222
test1239.37 21912.26 2216.00 2203.32 2274.06 2286.39 2293.41 22313.20 22510.48 22816.43 22416.22 2306.76 22311.37 22310.40 2215.62 22514.10 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def99.88 2
9.1498.83 120
SR-MVS99.62 8699.47 7699.40 59
our_test_399.29 14997.72 18398.98 103
MTAPA99.19 5999.68 23
MTMP99.20 5799.54 44
Patchmatch-RL test32.47 227
XVS99.77 4499.07 7899.46 4698.95 9499.37 6299.33 74
X-MVStestdata99.77 4499.07 7899.46 4698.95 9499.37 6299.33 74
mPP-MVS99.75 5399.49 53
Patchmtry96.05 20797.64 19599.78 1698.50 132